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Abstract

Implementation Effort and Parallelism – Metrics for Guiding Hardware/Software
Partitioning in Embedded System Design

Hardware/Software partitioning is the task of deciding onto which archi-
tectures the algorithms of an embedded system should be implemented.
Many criteria influence this decision. This thesis focuses on two impor-
tant parameters targeting the implementation effort and the algorithm
architecture affinity toward FPGA implementation.

In the introductory part of this thesis, we give an overview of the
challenges faced by the designers in the industry, and identify hard-
ware/software partitioning as one of the most critical phases in the de-
sign trajectory. We discuss typical parameters, the accuracy of different
estimation techniques, and the many influencing factors when devising
metrics for guiding the partitioning phase. In the last part of the intro-
duction we give an overview of the research efforts related to implemen-
tation effort estimation, execution time estimation, and the framework
and methodologies which use these techniques.

In the main part of the thesis, which is composed of four papers, we
present our contributions to the topic of HW/SW Partitioning guidance.
In Paper A and Tech Report B we deal with the estimation of the imple-
mentation effort for implementing algorithms onto FPGAs. In Paper A
we present a metric-based approach for estimating the hardware imple-
mentation effort for an application in relation to the number of linear-
independent paths of its algorithms. We show that a relation between the
paths and the needed effort exists. In Tech Report B we further investi-
gate the issue of accurate implementation effort estimation with respect
to real-time constrained systems. Here we measure the implementation
hardness of algorithms with respect to the given time constraint.
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In paper C, we extend a promising static partitioning approach with
a parallelism measure to better handle the estimated performance of FP-
GAs. More specifically we improve the affinity metric with parallelism
detection, which is essential when characterising an algorithms potential
for FPGA implementation, and this completely changes the FPGA affin-
ity score for some algorithms. And Finally in paper D, we include a study
which clearly shows the differences between static estimation techniques
and the actual performance of a system generated through system level
tools.
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Synopsis

Implementeringstid og parallellitet - Metrikker til guidet opdeling af hard-
ware/software i indlejrede systemer

Opgaven med at bestemme, p̊a hvilken arkitektur en given algoritme skal
implementeres, kaldes hardware/software partitionering. Mange kriterier
skal tages i betragtning ved et s̊adant valg. Denne afhandling fokuserer p̊a
to indflydelsesrige parametre: implementeringstid og algoritme-arkitektur-
samhørighed set i forhold til FPGA implementering.

I introduktionen til denne afhandling gives et overblik over de udfor-
dringer, som designere i industrien møder, og hardware/software parti-
tionering identificeres som en af de mest kritiske faser i et moderne design-
forløb. Vi diskuterer typiske parametre, forskellige estimeringsteknikkers
nøjagtighed samt de mange andre faktorer, som p̊avirker de metrikker
(m̊aleenheder), der kan guide partitioneringsfasen. I den sidste del af in-
troduktionen gives et overblik over forskningens nuværende stadie inden
for implementeringstid, eksekveringstidsestimering samt en kort præsen-
tation af frameworks og metoder, der benytter disse teknikker.

Hoveddelen af denne afhandling best̊ar af 4 videnskabelige artikler.
I disse præsenterer vi vores bidrag inden for guidning af HW/SW par-
titionering. I artikel A og teknisk raport B behandles estimeringen af
implementeringstid i forbindelse med implementering af en algoritme p̊a
en FPGA arkitektur. I artikel A præsenteres en metrikbaseret frem-
gangsm̊ade til at estimere hardware- implementeringstiden for en applika-
tion i relation til antallet af lineært uafhængige stier i dens algoritme. Vi
viser desuden, at relationen mellem uafhængige stier og den nødvendige
implementeringstid eksisterer. I teknisk rapport B behandles nøjagtighe-
den af implementeringstidsestimater i henhold til realtidssystemer og de
tilhørende problemstillinger. Her m̊ales sværhedsgraden for en imple-
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mentering af en algoritme med hensyn til et givet eksekveringstidskrav.
I artikel C udvider vi en lovende statisk partitioneringsfremgangsm̊ade

med et m̊al for den iboende parallelitet i en algoritme. Dette for bedre at
kunne estimere dens mulige ydelse p̊a en FPGA. Mere specifikt forbedrer
vi samhørighedsmetrikken med detektion af parallelitet, hvilket er es-
sentielt for en algoritmes potentiale p̊a en FPGA. Dette forandrer fuld-
stændigt algoritme-FPGA-samhørighedsværdien for nogle algoritmer. Til
slut i artikel D inkluderer vi et studie, som klart viser forskellen mellem
statiske estimeringsmetoder og den reelle ydelse af systemer, genereret
via system level tools.
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Ejner Christensen who had the job to read all my raw data and drafts for
company approval.

Last but not least, I thank my family and friends for encouragement
and support, especially Hans Laurberg, Jesper Højvang Jensen and Jesper
Abildgaard Larsen for lot of encouragement in the difficult times.

1ETI A/S, Nørresundby, Denmark, is a company which provides diagnostic and
data analysis products to law enforcement agencies and telecommunication providers.

vii



There is a glossary section in the end of the introduction. This replace
many definitions in the introduction, since I usually find it very easy to
deduce from the context what the different terms mean, and having many
definitions in the introduction disturbs the reading flow.
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Introduction

In this chapter we introduce the reader to the topics addressed in this
thesis. We begin by introducing the challenges faced when designing
modern embedded systems. In Section 2 we present the typical design
steps needed when designing heterogeneous multiprocessor systems. One
of the design steps is refered to as hardware/software partitioning, this is
further addressed in Section 3. This step is the domain in which the work
of this thesis is carried out. This is followed by Section 4 that summarises
the state-of-the-art related to methods for hardware/software partitioning
and the criteria for design decision, i.e. design space exploration and the
underlying metrics. Subsequently, Section 5 presents our contributions to
the field. Lastly, we have included a taxonomy (Section 6) that defines
the main terms of the field and the way they have been used in this thesis.

1 Background

When developing embedded system(s) products, e.g. a mobile phone,
there are specific demands and needs from the market, i.e. end users, sales
people, operators, etc., and pressure from competitors which encourage
companies to produce innovative and/or increasingly advanced products.
New products are therefore often more complex in their design than the
previous ones but are yet released with an ever increasing frequency. As
a result of the constant progress of very-large-scale integration (VLSI)
technology (e.g. Moore’s Law2 [1]), it is possible, to some extent, to cope
with these needs.

However, technological progress does not come without related prob-

2Well knowing that it is an observation and not a law
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INTRODUCTION

lems. When systems become larger and more complex, their design be-
comes more complicated and challenging. This results in more time con-
suming development phases. As frequency of release of new products
increases, a conflicting situation arises where it is not possible to get a
product which needs a longer development time to the market in less
time, unless something in the design strategy is changed. Such a change
could either involve allocating more human resources for the development
phase; or regarding the design process, reusing parts of existing designs,
raising the level of abstraction at which the design is conducted, or a
combination of any of the above. Each of the above changes to the design
strategy will come with their own set of issues and problems which will
have to be addressed.

Allocating more human resources in order to reduce the development
time is a very expensive solution. Moreover, there is a certain limit [2]
to how efficient this can be as, it is not always possible to break down
the problem into separate development tasks and increasing human re-
sources require a lot of communication and management, an overhead
which decreases the efficiency of the development team.

Reuse parts of existing designs, whether they are in-house IPs or from
an external vendor, could reduce the development time drastically but de-
signing a unique and innovative product makes it difficult to find suitable
existing building blocks. Furthermore, the integration cost and the qual-
ity of the IPs, especially those from external vendors, are non-negligible
factors which have to be considered.

Thus, in many cases the most promising strategy is to raise the level of
abstraction at which design is conducted [3], i.e. making design decisions
on a higher level without having to worry about implementation details.
This could be done by using a higher level programming language such as
C instead of assembly, or Behavioural VHDL instead of RTL (Structural
VHDL). In addition e.g. design decisions about the hardware platform
could be done earlier in the design process.

To take full advantage of higher levels of abstraction, they should be
used for both the methodology and supporting tools [4]. In this way
the tools will take care of the lowest levels of abstraction (e.g. assembly
or RTL). This enables the design team to focus on handling increasing
complexity of design which involves:

2



1. BACKGROUND

� Removing unnecessary design details;

� Enabling earlier design decisions;

� Enabling easier identification of reusable parts.

Although many existing tools are able to convert a higher level de-
scription into e.g. RTL, they have not yet been widely adopted for a
number of reasons [5], including:

� Licensing costs are high, especially for tools with proven function-
ality.

� Introducing these tools implies significant changes to the overall
design methodology, including the way the development tools are
used. Therefore, extra investments are required for educating the
designers.

� Although tools have matured over the last couple of years, there
is still a lack of supporting libraries and IPs for many application
domains. Moreover, many of the tools do not cover the entire design
trajectory, which requires buying several tools and interfacing them.

� For many practical applications, real-time execution is required.
Even though these tools include high level synthesis features, their
ability to transform algorithms to exploit the architectural features
is still limited. Therefore, designers still have to carry out low level
implementation for the critical parts of the application, in order to
meet real-time constraints.

Many companies do not use higher level synthesis tools due to the
reasons stated above, but they can still raise the level of abstraction in the
methodology and thereby allow the design teams to take design decisions
at higher levels (i.e., earlier in the design trajectory). An example of this
is system partitioning.

Considering today’s complex embedded systems, one of the major
challenges for designers is to have a complete overview of the large systems
they have to develop. These systems often have stringent requirements
for their platforms, which typically are of the heterogeneous multiproces-
sor system type. Working with multiple processors and a heterogeneous

3



INTRODUCTION

architecture makes it necessary to decide where the different parts of
the system should be implemented. This task is called system partition-
ing and has a significant influence on the rest of the design as well as
the design time. The choice is often between implementing a particular
functionality on either a general purpose CPU, a digital signal proces-
sor (DSP), or on a field-programmable gate array (FPGA). Traditionally,
a general purpose CPU is not optimized for any particular application,
while both the architecture and instruction set of a DSP is optimized
for data processing. An FPGA can take advantage of the inherent par-
allelism of algorithms, but is slow for sequential processing. Changing
the partitioning decisions later in the design trajectory will be very time
consuming as a significant part of the design trajectory will have to be
repeated. Therefore it is of great importance to analyse the different
parts of the system functionalities with the purpose of determining their
possible performance and cost on the different processing elements which
are present in the system. This task is called Design Space Exploration,
or DSE, and we will return to this later in subsection 2.2. The choice of
partitioning is especially critical for hard real-time constrained systems
where the high level synthesis tools are typically not mature enough to
produce efficient code.

2 General Design Trajectory

Designing embedded heterogeneous multiprocessor systems requires an
extended analysis compared to ”simpler”systems. Many researchers e.g. [4,
6–10], as well as tool vendors, e.g. [11], have proposed different design tra-
jectories for addressing this problem. Even companies usually modify or
create their own trajectories to fit their needs, see e.g. [12].3 Typically
these trajectories target different types of applications, which involves
both benefits and drawbacks. They are composed of many individual
steps which correspond to specific design activities and are summarized
in the general design trajectory described below as well as illustrated in
Fig. 1.

Analysing from a general point of view, the design trajectory consists

3It is our experience that companies’ design trajectories are not well founded in
theory but more based on experience and intuition.
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INTRODUCTION

of 5 major phases: Specification, Analysis, Detailed Design, Implemen-
tation, and Test, Verification and Validation. The four first ones form
a flow from specification to the final product, whereas Test, Verification
and Validation needs to be conducted concurrently with the flow.

2.1 Specification: Capturing Functionality, Constraints, and
Other Requirements

Every entrance to the design trajectory begins with the specification of
the product. Such a specification can be conducted in many ways and at
many levels of details. The specification typically includes a description
of the behaviour of the product as well as a description of its structure
(architecture). The behavioural description describes in details what the
system should do at any given time. To support this description, many
different behavioural models exists, e.g. FSM, Petri Nets, SDF. Fur-
thermore, there exists many different behavioural specification languages
which support one or more of these models. The usual specification lan-
guages are UML diagrams, the SpecC , SystemC, C++ or C languages,
as well as other languages created specifically for this purpose also ex-
ist. Although C is not designed for describing the behaviour of hardware
systems in detail, it is still the most dominating language for executable
specifications.

Requirements for the product can be separated into several domains.
Requirements and constraints can be in the domains of I) application
requirements, II) methodology requirements, e.g. specific methods or ap-
proaches for designing the products, and III) platform requirements, e.g.
a need for using a specific processor or FPGA. Most works clearly fo-
cus on the application requirements (which we in the remainder of this
thesis will call the functionality or the behaviour), and to some extend
on the platform requirements. Many do not consider methodology re-
quirements although this is crucial for enabling companies to address the
time-to-market factor.

2.2 Analysis

The specification phase is followed by the analysis phase. The purpose of
the analysis phase is to gain knowledge which will enable the designer to
select a promising design solution from many possible solutions, before

6



2. GENERAL DESIGN TRAJECTORY

actually designing it in detail. This solution for the entire system should
be chosen so that it has a high likelihood of fulfilling the requirements.
This is particularly true for the HW/SW partitioning decision which have
a large influence on the final system’s performances. Many different solu-
tions which fulfill the requirements exist. One can visualise this analysis
as the task of finding the path which leads from the specification to a so-
lution that fulfills the requirements. The challenge is not only to identify
the path which will lead to an acceptable solution, but also to identify
those which would lead to inefficient solutions, so that the design space
can be pruned.

In order to identify those paths, it is necessary to evaluate the prop-
erties of the different solutions and to navigate between those. As men-
tioned earlier, this task is called design space exploration (DSE), and
consists of two orthogonal activities [13]: I) generate, according to the
desired exhaustiveness level, different solutions on the basis of the be-
havioural specification and II) evaluate the performance (according to a
cost function) of the individual solutions.

Populating the Design Space

The problems related to the generation of the solutions for a heteroge-
neous multiprocessor architecture raises several issues. First of all, the
architecture is not always “given” and needs to be defined (i.e. select-
ing the type and number of processing elements, also called allocation,
as well as the communication topology). Second, the algorithm(s) must
be mapped (which includes, among others, binding and scheduling) onto
the architecture. These processes are iterative since they influence each
other. Each of these design activities can be influenced by a large num-
ber of parameters, which combined together create a plethora of possible
solutions.

The generation of different solutions in such a solution space is a mul-
tidisciplinary challenge. In the field of design space exploration different
techniques are used. The popular ones are:

Genetic Algorithm: Using the Genetic Algorithm approach to the de-
sign space is typically populated by using random mutation, and/or
crossover and evaluated according to a fitness function which guides
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the generation of the next generation of solutions. Genetic algo-
rithms have gradually emerged from the domain of evolutionary
computing of biological systems and was first popularised by Hol-
land [14] who among others formalised a framework for prediction
of the quality of the next generation. For design space exploration,
genetic algorithms are used among others by [15–18].

Simulated annealing: In simulated annealing, solutions which have been
evaluated as fit are replaced by nearby solutions with the expecta-
tion to identify a local optimum. In order to find the global opti-
mum, heuristics are used to perturb the selection process. Simulated
annealing was independently developed by Kirkpatrick et al. [19] in
1983 and Cerny [20] in 1985. For design space exploration, simu-
lated annealing is used among others by [21].

and more exotic methods including some of the following:

Random generation: Random generation is typically used either to
generate the initial population (e.g. in genetic algorithms) or to
introduce diversity when renewing the population. It can also be
used as an independent method for the generation of solutions.

Bayesian Belief Networks: Bayesian Belief Networks (BBN) for pop-
ulating the design space was first proposed in [22]. Using the BBN,
they are able to model the development in the partitioning, when
deciding to bind certain parts of the algorithm to an architecture.
The performance information for every evaluation of the partition-
ing needs to be fed back into the network, and thereby develop
the knowledge of the different partitionings, to find the one best
suited. [23] has also done some experiements with this method.

Particle Swarm Optimization: In Particle Swarm Optimization (PSO),
optimisation is done by having a population of candidate solutions
called particles which are moved around in the design space ac-
cording to a formula. The direction of the particles are guided by
the best found positions in the design space. For every iteration the
best found positions are updated as better positions are found. The
method where original developed by Kennedy and Eberhart [24].
This method is used for DSE in [25].
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Evaluation and Comparison of Solutions

For each and every generated solution, an evaluation has to be performed.
With a very large design space this is not a negligible task. It has been
shown [26] that exploring the corresponding unconstrained design space is
NPcomplete. Recent theoretical works on this topic include [27]. When
the design is constrained by e.g. real-time requirements, the size of the de-
sign space is still so large that the search complexity is near NPcomplete.
Therefore, in order to keep the search time realistic, heuristic methods
are used in practice.

The heuristic approaches simplifies the problem by introducing models
which are often experience-based. Heuristics enable faster design space
exploration at the expence of accuracy (the optimal solution might not be
found). The heuristic approaches for design space exploration generally
falls into two categories: simulation based and static analysis based. The
former relies on the execution of one or several models to predict the
behaviour and performance of the system (this can be carried out on all
levels of abstraction). The latter consists in extracting relevant properties
of the system in order to predict its performance. This is further discussed
in Section 3.

The criteria for selecting the right solution(s) are set by a cost function
which should be minimised. The cost function is formed by a set of
relevant cost-parameters, on the basis of the project requirements and
constraints. Typically, cost-parameters in the cost function are Execution
Time (T), Area (A) and Power/Energy (P/E), but other parameters can
be considered. All generated solutions are evaluated and their cost are
computed. The solution(s) which minimise the cost function are the one
which are expected to have the best fit with the requirements and can
then be selected for further development. When selecting an evaluated
solution, a certain partitioning of the system is chosen. This represents
one of the major design decisions in the design trajectory. This topic is
where we have carried out research and we discuss it in further details
later in this thesis.

2.3 Detailed Design, Implementation, and Test

Fig. 1 shows a complete design trajectory. However, since the focus of this
thesis is mainly on the specification and analysis steps, the last three steps
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(Detailed design, Implementation, and Test) are only briefly discussed in
this section.

Once the the partitioning of the system has been determined, it is now
possible to proceed with the detailed design of the subsystems. Working
with a heterogeneous multiprocessor system implies that many tasks par-
titioned on different processing elements need to interact with each other.
It is therefore important to take care of the interaction between the hard-
ware and software parts and how they should be interfaced. This can be
done using a co-design approach in which the communication interfaces
are specified in an architecturally transparent way.

After this, it is possible to proceed with the HW and SW implemen-
tations (including architecture specific interface) which we, in this thesis,
consider as the tasks of designing the functionality in detail as well as
carrying out the actual coding. Depending on the behavioural model of
the specification, the process of carrying out the implementation can be
either fully automated, semi automated/manual, or manual. In the case
of semi automated or manual implementation, there is typically a great
deal of interaction between the detailed design stage and the coding.

Once the codes are synthesised (HW) and compiled (SW) it is possible
to proceed with the integration of the entire system and to perform the
end test. In the ideal case, the criteria for passing the end test should
be easily met since the system has been tested, verified and validated
concurrently with the design flow, and the partitioning of the system has
been done based on performance estimates obtained using appropriate
models.

3 Guiding the HW/SW Partitioning Phase

3.1 Background

Being able to decide onto which processing elements an algorithm or
sub-part of an algorithm should be implemented is typically based on
some criteria which are specified in the cost function, with the goal of
minimising it.

Let’s consider a small example. An algorithm needs to be imple-
mented on a heterogeneous multiprocessor platform consisting of two
processing elements. The designer has to decide onto which processing
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element the algorithm should be implemented. This depends on many
different criteria. If execution time constraints exist, the execution time
of the algorithm on the processing element is an obvious criteria. The
affinity between the algorithm and the architecture of the processing ele-
ment (e.g. special purpose instruction which can speed up the execution)
should be decisive. However, if the algorithm requires a lot of communica-
tion with other algorithms in the system, the interprocess communication
(IPC) will have a large impact on the execution time as well. Although
one processing element is very well suited for executing the particular
algorithm, it might be more efficient to map it onto the other processing
element if the other algorithms are mapped there. In that way the cost
of IPC can be minimised. Similarly, it might be more efficient to map
the algorithm onto a processing element of which the implementation
trajectory is faster and easier, if the development time is a critical issue.

As illustrated in this example, HW/SW partitioning is a non-trivial
task since the individual criteria may influence each other and local deci-
sions might lead to non-optimal final solutions.

3.2 Performance and Process Cost Functions

The importance of the cost-parameters varies from project to project
and company to company. For example, in high volume projects, the
financial cost (i.e. price) of the end product will have an influence while
the Non Recurring Engineering (NRE) cost is less critical as it will be
spread across many instances of the same product. Another example
could be a system which deals with hard real-time constraints, for which
the execution time is the most crucial parameter to optimise. Weighting
the parameters which are in the cost function is based on their importance
for each project.

As earlier mentioned, typical cost-parameters are execution time, area
in terms of memory footprint and/or use of gates, and the power or energy
consumption of the algorithm once mapped onto the architecture. All
these reflects properties of the algorithm/implementation which can be
used when estimating the output properties of the implementation, which
can be related to the application requirements from the specification.

However, considering these technical properties might not be sufficient
to evaluate the solution towards the entire set of requirements (Applica-
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tion, Methodology and Platform as stated in subsection 2.1). For exam-
ple, the non recurring engineering cost plays an important role for low
volume products, which typically is the case for Small and Medium sized
Enterprises (SMEs). Based on our observations as well as others [28], the
main criteria for selecting and/or constructing a suitable architecture for
many of these types of projects is related to the number of development
hours that need to be allocated to the project.

In small as well as larger companies, the availability of the develop-
ers’ resources can also be a criteria in deciding who is going to carry out
the implementation. It can therefore be of vital importance to know the
amount of time it will take to implement an algorithm on different archi-
tectures, together with knowledge of their performance, to determining
the appropriate architecture for an algorithm.

We can therefore classify the output parameters which are used to
partition the system into two different classes:

� Performance oriented parameters are parameters which reflect the
performance properties of the final implementation such as execu-
tion time, area, power;

� Process oriented parameters are parameters which focus on the
methodological aspects of the implementation such as reuse of IPs
and implementation effort.

3.3 Analysis Classes and their Accuracy

In order to extract the parameters for the cost function from the algo-
rithms, an analysis of the algorithm needs to be performed. The input to
the analysis is the behavioural specification of the algorithm. The anal-
ysis can be performed at different levels of abstraction depending on the
desired accuracy of the output.

In general we distinguish between two different analysis types: dy-
namic analysis, where data or a representative set of data are used for
performing the analysis, and static analysis where only the algorithm
itself is analysed. Dynamic analysis includes [13] Cycle-accurate simula-
tion, trace-based simulation, instruction set simulation, and system-level
simulation.

12



3. GUIDING THE HW/SW PARTITIONING PHASE

Behavioral Model

Static Analysis

Frequency based

Precedence/

dependency 

based

Dynamic Analysis

Fig. 2: This figure shows the relation between the different types of analysis (static as
well as dynamic) and the different types of output parameters. The interesting part of this
figure is that when it come to parameters estimating parts of the process, no method (to
the best of our knowledge) so far includes dynamic information.

In static analysis, different categories of approaches also exist. In this
thesis we devide static analysis into two sub-categories: analysis where the
precedences between the operations are taken into account, and analysis
where only the frequencies of occurrence of the different elements are
counted. The latter is typically a textual analysis of an algorithm where
for example the number of operators is counted, whereas in the case of
the former, an analysis of the algorthim is conducted by measurement
done using graphs.

Trade-off Between Dynamic and Static Analysis

Choosing the right estimation technique (dynamic or static) can be of
vital importance for the partitioning phase in relation to the criteria.
The difference between dynamic and static analysis and the arguments for
choosing one or the other is therefore worth discussing. The static analysis
is considered to be more light-weight and fast, but also less accurate
compared to the dynamic analysis. In current literature that we have
found, it is therefore surprising not to see more discussions of this topic.
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In what follows we therefore elaborate on this difference.
Obtaining the performance estimates requires an analysis of how the

behavioural specification can be executed on the architecture. To do so,
a model of the architecture and an execution model are applied to the
specification. The accuracy of the estimates depends on the accuracy of
these models. E.g. a cycle accurate architectural model is typically more
complex and will take longer time to evaluate than a transaction level
model of the same architecture. On the other hand, the estimates of the
former will be more accurate than those of the latter. The models range
from physical level (e.g. transistors modelled with differential equations)
to system level models consisting of estimated properties of the underlying
architecture. Similarly, the execution models range from electric signals
to simply counting the number of operations. Thus, there is no doubt
that the complexity of the analysis increases when the desired accuracy
and precision increase.

Information about the actual trade-off between accuracy and the com-
plexity of the different estimation techniques is rarely found in literature.
An attempt to compare the different classes is done in the survey by
Gries [13]. From the survey we can deduce that the typical estimation
error for static methods starts from 9%. For the dynamic cases the min-
imum error ranges from 0% to 9% for cycle-accurate simulation and for
system-level simulation, respectively. In between these ranges are located
the trace-based analysis (error starting at 1.5%) and instuction set sim-
ulations (error starting at 4%) error estimations. The accuracy of the
estimates depends on the level of detail used in the underlying model,
which is reflected in the computational complexity of the estimation pro-
cess. Although the general trend is that the complexity of the analysis
increases with the accuracy, some of the accurate methods can deliver
their estimates at the same cost as less accurate methods. In general
the trend is that improving the accuracy by 3 percentage points incurs a
complexity increase of one order of magnitude.

Choosing an analysis method for a particular cost-parameter is not
only dependent on the accuracy of the methods but also on the nature of
the underlying factors such as their sensitivity to variations in input data.
If a factor does not change with the input data, a static analysis should
be able to deliver the same accuracy as a dynamic one. For example
considering estimation of the size of a project, every corner of the project
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Fig. 3: The relation between the analysis classes and the metrics proposed in this thesis.

usually4 needs to be implemented and therefore the size will not change
with the input data.

Considering the performance oriented cost-parameters we see that
both static and dynamic methods are used. This is because the accuracy
as well as the computational complexity plays a role in the evaluation
process. For the process oriented parameters, we have on the other hand
not seen any methods which are based on a dynamic approach. One pos-
sible reason is that the process oriented parameters are less data sensitive
than the performance oriented ones. The connection between the differ-
ent classes of analysis and the contributions of this thesis are illustrated
in figure 3.

3.4 Implementation Effort

The goal of estimating the implementation effort is to get an estimate of
the amount of time involved in doing the implementation.

In order to estimate the implementation time, it is necessary to have
an overview of all the factors and conditions that influence the imple-

4This assumes that the behavioural model does not include any unnecessary paths
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mentation effort. We will refer to these factors as influencing parameters
in this thesis. In this section we will shortly illustrate the variety of
influencing parameters that needs to be taken in to account.

There are several different ways to categorize the influencing param-
eter, here we use the following three groupings:

� Human;

� Algorithm;

� Architecture.

Going in more detail about these categories we present which elements
they involve.

The human category deals with all the personal factors (such as devel-
oper skills, team interaction) that influence the implementation process.
An non-exhaustive list of the factors belonging to “human” category is
shown below:

Designer multitasking overhead: The number of concurrent project
a developer is working on influences his or her focus. Shifting be-
tween many task during the course of the the day may lead to longer
implementation time. [29]

Domain experience: The designer’s level of knowledge and experience
from working with the problem domain may assist him or her in
the design, and thereby shorten the implementation time.

Tools experience: If the designer is unfamiliar with the tools used in
the project, his or her ability to exploit the capacity of the tools
will be limited and the implementation time will be prolonged.

Skills: The designers level of skill needed for solving the problem also
plays a role. E.g. if he/she needs to spend time in familiarising
himself/herself with the maths of the algorithm.

Social atmosphere: The quality of the social interactions between the
team members will impact their ability to cooperate.
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Cooperation: The degree of cooperation between the designers within
the project team is an important factor. When working as a team,
activities need to be more coordinated, which will require extra
time [29].

The second category of influencing parameter, the algorithm itself,
deals with the specifications of the algorithm (such as the size and the
number of constraints) that will influence the implementation time, no
matter when or where the algorithm is implemented. These influencing
parameters can e.g. be:

Constraints: The number of constraints, e.g. real-time constraints in
the project plays a fundamental role as well their hardness influences
how difficult they are to meet. Similarly the fulfillment of some
constraints is easier to verify than others, which further influences
on the effort needed.

Project size: An easy description of the size of a project is the number
of individual components to be implemented. In general, the more
components invloved, the longer the implementation time.

Input/output signals: The number of connections and signals between
the internal components influence the design since every time a
signal enters a component the component needs to act on it. Thus,
more signals bring more parameters into the component which very
often leads to an increased complexity.

Complexity: Describes in how many different ways the components in
the algorithm can be concatenated. A complex algorithm where the
components are intensively linked will in general take longer time
to implement.

Novelty: If the components in the algorithm are well known it may not
be necessary to re-implement them. E.g. if the designer is dealing
with an application which has already been implemented, an IP
(in-house or from a vendor) could be reused and potentially shorten
the implementation time. Moreover, existing knowledge about the
feasibility of the implementation will reduce the number of needed
investigations of the algorithm to architecture mapping.
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The third category is the architecture, e.g. the influencing parameters
of the (HW/SW) platform where the algorithm is to be executed and of
the supporting tools suites. A non-exhaustive list of these parameters is
shown below:

Complexity of the architecture: The complexity of the architecture
depends on the internal organisation and the features of the pro-
cessing and communication elements. These include among others
support for parallelism, VLIW capability, low level configurability,
I/O features, pipelining and superscalar capability and branch pre-
diction. Exploiting a complex architecture usually enables the de-
signer to meet performance constraints more easily, at the expence
of a longer development time.

Instruction support: The availability of specialised instructions or ded-
icated circuits which support the algorithm will usually enable the
designer to arrive at a solution faster.

Debugging tools: Good debugging tools will usually result in a faster
development time.

Synthesis/compile time: The architecture is supported by a set of
tools. Not only the designer’s ability to use the tools, but also
the speed of the tools for synthesis and compilation, can have an
influence on the development time, especially during the debugging
phase.

When considering the above mentioned influencing parameters in the
three categories we have listed (please note that the lists are not exhaus-
tive), it is clear that there are many other influencing parameters which
have an impact on the implementation effort. Hence it is therefore not
straight forward to estimate the implementation effort. Considering some
of the parameters, it is clear that they are not easily measurable. This is
especially true for some of the human influencing parameters such as skills
and social atmosphere, in addition to other parameters such as novelty.
In the ideal case, data of all influencing parameters should be considered
when estimating the implementation effort.

The task of estimating the implementation effort can be seen as a
mapping of all the influencing parameter into a single variable. It would
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be a very large task to obtain data for all influencing parameters, if at all
possible. Moreover, not all parameters have the same significance. When
devising a measure for estimating the implementation effort, it is impor-
tant to at least include the influencing parameters which distinguish one
implementation from another. As we are evaluating different algorithms
to estimate their respective implementation times, the algorithm itself is
a major parameter in the estimation process. It is therefore important
to include a parameter which can express the algorithm. Eventhough,
the parameters related to the designer are important, they can be rather
constant. Of course the level of social interaction and cooperation vari-
ate from design to design and company to company, but they can be
generalised and assumed to be constant.

When estimating the implementation effort with a limited subset of
parameters, there will be factors which are not taken into account and
thus limit the accuracy of the results. However, by using the principles of
“other things being equal”5 and thereby assuming that the impact of most
parameters can be generalised to be a constant, we can see the impact of a
few parameters. In Paper A, the algorithm and the designers’ experience
are the only variable parameters, and we see a large correlation between
these and the needed implementation effort.

3.5 Research Thesis

We have now presented the background for this work, been though the
typical design trajectory, and discussed performance and processes as-
pects of modern embedded system design.

Together with the observations of how design partitioning is conducted
in real life in many small and medium sized companies, there is a gap
between a first approach based on experience and intuition and a second
one based on methods which aim to have a high fidelity towards the final
implementation performance.

Furthermore in the current partitioning methods, focus is mostly on
the performance of the final implementation. However, methodological
aspects can be vital for the success of product development, and should
be taken into account.

5In Latin: Ceteris paribus
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Therefore the research thesis of this work is twofold: firstly it must
be possible to partition the design based on metrics which are light, fast
and easy to obtain and still able to provide sufficient fidelity towards the
final implementation. This is to be contrasted to current methods which
use dynamic and static metrics to obtain their high fidelity, and to the
use of intuition and experience. Such an approach should be considered
as a light variant of design space exploration, or DSE light. Secondly, the
typical performance oriented cost function for guiding the partitioning
can profitably be complemented with a metric which reflects the imple-
mentation effort. Such an addition provides valuable information to the
designer for considering the time-to-market issue when partitioning the
system.

4 Design Space Exploration - State-of-the-Art

In the previous sections we have considered the typical design trajectory
for designing a heterogeneous multiprocessor system. We have identified
the pre-analysis as a significant phase when dealing with the increased
complexity of the system. In particular the HW/SW partitioning problem
has a great influence on the solution’s ability to meet the constraints from
a given specification. Furthermore, we have discussed the different criteria
which can be used for evaluating different solutions in order to select the
right partitioning. The criteria result in a set of cost-parameters (Time,
Area, Power, Implementation Effort, etc.) and we have demonstrated
which possible diversity of influencing parameters influences such cost-
parameters. We have also discussed the different classes of analysis which
can be used to quantify the influencing parameters. In this section we
give a non-exhaustive overview of the research field related to execution
time estimation and implementation effort prediction.

4.1 Execution Time

The time, or more precisely the execution time of the algorithm, is in
many cases the most dominant cost-parameter. For many applications,
especially in the area of signal processing, the specifications contains in-
formation about how fast the algorithm(s) need to be executed in order to
interact with other application(s) or users. The constraints in the speci-
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fication will, in many cases, include a real time requirement (soft or hard
real time), which needs to be met in order to achieve a satisfying solution.

The execution time of an algorithm on a given architecture is not
always deterministic. It can be influenced by many run time factors such
as:

� Data dependencies;

� Scheduler (OS Scheduler, hardware scheduler);

� Hazards (Cache misses, pipeline stalls, etc.);

� Out-of-order instruction execution.

Because of this non-determinism, different estimates of the execution
time exist. Most estimation methods focus on estimating the worst case
execution time (WCET) which usually refers to the longest execution
path. However, there are designs where the best case execution time or
the average case execution time are sufficient for partitioning the system.

In order to estimate the execution time, two models are required: one
of the behaviour of the algorithm and one of the architecture. Based on
these models, estimating the execution time involves three steps: Alloca-
tion, Scheduling and Mapping. The allocation step involves determining
the needed number of processing elements for the execution. The schedul-
ing step determines in which order the operations in the algorithm are
executed and the mapping describes on which processing elements the
operations are executed.

The accuracy of the estimates depends on many factors. Firstly, it
depends on whether the data is based on a static analysis of the algo-
rithm or on a set of representative data as input to a dynamic simulation.
Secondly, it depends on the methods used to carry out the three above
mentioned steps. And thirdly, it depends on the accuracy of the models
involved.

In what follows we describe various strategies for estimating the execu-
tion time. As already mentioned, these can be classified into two analysis
classes: Dynamic and Static, which are further explained here.
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Dynamic Execution Time Estimation

For the dynamic class, a few different approaches for measuring the exe-
cution time are used. The dynamic analysis classes work by simulations
whereby the behavioural model of the algorithm is executed on a model of
the architecture. The model contains information about the time required
for performing different operations. During the simulation the number of
occurrences of the different operations are summed up (using more or less
advanced models) into an execution time measure.

As mentioned earlier, the simulation can be performed on many dif-
ferent levels of abstraction. Independently from the abstraction level,
different models of computation are used to represent the architecture.
For example in case of system-level simulation, models of the architecture
are often build by means of Kahn process networks [30], or similar vari-
ants of it. Another used model of computation to simulate the system
are the Petri nets [31], or variants hereof. Finite state machines and an
uncountable number of variants of if are another way of modelling.

When targeting more accurate simulation results, the models of the
hardware become more detailed. Here we see a trend in moving away
from formalised models of computation and just using the specific hard-
ware modelling languages. Those languages include SystemC [32] and
SpecC [33], which support different abstraction levels e.g. Transaction
Level Modelling (TLM), Cycle accurate, etc. For a more thorough survey
and more extensive explanation of different models of computation used
for dynamic analysis, we recommend [34].

Static Execution Time Estimation

In this section we introduce some of the most relevant works about static
execution time estimation relevant to the context of this thesis.

As opposed to the dynamic class, static estimation is not simulation
based, i.e. it does not execute a model of the algorithm on a model of the
architecture. Instead, static estimation bases its measures on collecting
various pieces of information which are related to the execution time. This
can be carried out on many levels using very simple architectural models.
The different methods of collecting execution time related information
fall into two categories: techniques estimating properties which indirectly
report about the execution time, and techniques which directly relate
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to an estimate of the execution time. A first example of the indirect
methods is measuring the frequency of occurrence of a given operation
in the execution path(s) extracted from a graph of the algorithm. A
second example is to simply measure the frequency of occurrence of given
operations. Examples of this direct method include measuring the length
of the execution path(s) based on data-dependencies or simply measuring
the number of executable lines of code.

Since the indirect methods do no give an estimate of the execution
time, they are combined with the direct ones in order to emphasise a
potential affinity between an algorithm and an architecture or to indi-
cate possible overhead(s) that must be considered when evaluating the
estimate of the execution time.

The direct methods include:

Graph based estimation: A very common way to statically estimate
the execution time is to analyse the algorithm and construct a graph
(E.g. CFG, CDFG, and DFG). From this graph, the longest exe-
cution path can be identified and used for estimating the execution
time, which in many cases will correspond to the worst case execu-
tion time [35]. This approach is widely used, as for example in [36]
and [37]. The execution time estimate can be expressed as:

t̂exec =

∑

OperationsInExecutionPath

f̂arch
(1)

where
∑

OperationsInExecutionPath denote the number of oper-
ations in the longest execution path, and 1

f̂arch
is an estimate of the

execution speed of the architecture.

Source code based estimation: A less common, and simpler approach
consists of counting the number of executable lines of source code
or in cross-compiling the source code to assembly and performing
a similar measure. This approach is seen in e.g. [38]. Such an ap-
proach does not take loops into account and is less accurate than
the graph based approach.

Parallelism: γ, proposed by Le Moullec et al. [39], is a metric dealing
with the potential speedup of an algorithm. The γ metric is calcu-
lated by measuring the ratio between the total number of operations
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of the algorithm, NoOp and the number of operations in the critical
path, CP of the algorithm such as:

γ =
NoOp

CP
(2)

The metric enables the designer to get an idea of the potential
speedup of the algorithm when exploiting the parallelism follow-
ing the ideas presented by Amdahl [40]. Exploiting the inherent
parallelism of the algorithm on a supporting architecture directly
influences the execution time.

Similar to γ, γ′ proposed in Paper C, extracts the potential speedup
of an algorithm but in a normalised way. It is defined as:

γ′ = 1−
CP

NoOp
(3)

The γ′ score is normalised and therefore it is easier to compare
different algorithms or subparts hereof.

The indirect methods includes:

Memory Oriented Metric The memory oriented metric, MOM [39],
is a metric measuring the ratio between the operations which have
memory access and the total number of operations:

MOM =
NoOpmemoryAccess

NoOp
(4)

The purpose of the MOM metric is to characterise the nature of
the algorithm. Algorithms with a large number of memory access
compared to the total number of operations will typically be very
demanding on the access time and bandwidth to memory. A high
score of MOM indicates that many memory operations occur which
in turn can prolong the execution time because of e.g. slow external
memories or cache misses.

Control Oriented Metric The control oriented metric, COM [39], is
a metric measuring the ratio between the control operations (IF,
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WHILE, FOR, SWITCH) and the total number of operations. The
metric is calculated as:

MOM =
NoOpControl

NoOp
(5)

Just like MOM, the purpose of the COM metric is to characterise
the nature of the algorithm. An algorithm with many control opera-
tions compared to the total number of operations will usually result
in a large and complex control path when implemented on e.g. an
FPGA. A high value of the COM metric indicates that close atten-
tion should be paid when addressing the control path in the design.
Many steps in the control path can result in longer execution time.
On platforms which use branch prediction and long pipelines this
can result in penalties which also increase the execution time.

Closeness and Affinity metrics Metrics exploring the closeness or affin-
ity between algorithms and architectures have been proposed by
several researchers. Closeness metrics have been proposed in [41].
This set of normalised metrics has been devised for guiding the
partitioning step at the system level. They are derived from a so-
called Access Graph which is a directed graph that represents the
access relations between behaviour and variables. Seven metrics are
computed and used for clustering (and thus partitioning) purpose.
The first three ones, connectivity, shared hardware, and sequential
execution are used to characterize procedural-level behaviour: con-
nectivity estimates the number of wires shared between two sets of
behaviour, shared hardware measures the amount of hardware that
two sets of behavior could share, and sequential execution is used
to identify when two behaviors, defined sequentially in the speci-
fication, could be mapped to a single processing element in order
to reduce communication overhead. The fourth one, communica-
tion, reflects the amount of data transferred during execution. The
fifth one, constrained communication, considers both the commu-
nication and the provided performance constraints. The sixth one,
common accessors, is an indirect measure used when the commu-
nication metric cannot be calculated. The seventh one, balanced
size, is used to avoid too large clusters. By means of these closeness
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metrics, it is possible to identify the most suitable utilisation of the
platform and thus to minimise the execution time.

The affinity metric has been proposed by D. Sciuto et.al. in [42].
The objective of the affinity metric is to guide the design partition-
ing of the system specification between general purpose processors,
DSP processor, and FPGA/ASIC. The metric consists of a triplet
of values (AGPP , ADSP , AFPGA) indicating the match between the
processing elements and the examined code. The elements which
compose the metric are derived from 14 other (sub)metrics which
express the correlation between certain patterns in the code and
the architectural properties. The submetrics are defined as ratios
between lines with specific properties, e.g., the ratio between lines
with a condition and the total number of lines, or defined as the
number of assignment of a special type related to the total number
of assignments. A high affinity score for one or several of the ar-
chitectural categories indicates a high affinity between architecture
and algorithm which should result in the ability to exploit architec-
tural properties leading to a fast execution. In paper C we proposed
an extension to the affinity metric which takes the parallelism into
account and improves the accuracy of the measurement in relation
to FPGA architectures.

Use of estimation methods

In the previous subsections we have discussed the principles of state-of-
the-art estimation methods. In Table 1 we list a large part of frameworks,
approaches, and methodologies which include dynamic and/or static esti-
mation. It is not the purpose of this section to make a detailed description
of the individual entries in the list; the interested reader can find extensive
details about some of, but not all of, them in the surveys by Gerstlauer
et al. [43] and Gries [13].

Looking at Table 1, it is clear that most work is done with a focus
on dynamic estimation methods. It is also worth noting that many of
the frameworks and methodologies which include static estimation use
it as a preliminary partitioning or for reducing the design space before
applying dynamic methods for obtaining more accurate estimates. This
is for example the case for Koski [44], which is a UML based design flow
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Estimation Method Used in

Cycle Accurate Disydent [45], MASIC [10],
MetroPOLIS [7], Koski [44],
CODESL [46], TOSCA: [47],
MILAN [48]

Trace Based MetroPOLIS [7]

Instruction Set Simulation MetroPOLIS [7], CODESL [46]

Transaction Level Simulation MetroPOLIS [7], Koski [44], MI-
LAN [48], No Name [49]

System-Level Simulation MetroPOLIS [7], Ptolemy II [50],
PeaCE [51], SESAME [52]
(now part of Daedalus [53]),
No Name [54], No Name [55]

Synthesis based Synforas’ PICO Express [56]

Static Estimation Koski [44], Affinity-Driven
DSE: [38, 57], Design Trotter [37],
CODESL: [46], iTuCoMe [58] No
name [59], No Name [36]

Table 1: Overview of different estimation methods (with respect to execution time) and
examples of frameworks, approaches, and methodologies where they are used.

for DSE on a high level of abstraction. The design space exploration is
performed in two steps, using first a static analysis for a coarse grained
pre-partitioning and then a dynamic analysis, where more cycle-accurate
models of the processing elements are used for evaluation.

4.2 Measuring and Evaluating the Implementation Effort

In this section we present the concepts found in current methods used for
quantifying the selected influencing factors as well as their corresponding
metrics in the domain of implementation effort.

Measuring and estimating the implementation effort is a topic rooted
in pure software development, mainly for large systems such as main-
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frames. Most research has been carried out for pure software projects,
but in the recent years embedded systems have begun to received a little
more attention.

The core idea shared by all existing methods is twofold: firstly, some
measurable properties of the algorithm are quantified, in order to form
a size estimate of the algorithm. Secondly, the size estimate is fed into
a model describing the relation between size and implementation time6.
More concretely this can be expressed similar to the COCOMO 81 project
(COnstructive COst MOdel) [60] and COCOMO II project [61] asEffort =
A∗sizeb where A and b are adjustable parameters which variates depend-
ing of the type of project, such as embedded systems or real-time systems,
and should also reflect factors such as manpower and experience of the de-
velopers. In the COCOMO II project, 161 software development projects
have been examined and proposals for the adjustable parameters (A and
b) are described in [61]. A similar approach is the ISBSG method [62]
which estimates the development time based on size of the problem, team
size and type of project.

The size of a project can be measured in many ways. One of the first
attempts to measure the size of a project was done by Albrecht [63] with
the function point measure. Function points consist of two main stages:
the first stage consists in counting and classifying the function types of
the software: identified functions are weighted to reflect their complexity
(Low, medium, high), usually based on the developers intuition and ex-
perience. This results in an unadjusted function point measure on which
the ISO/IEC 20926:2003 standard is based. The second stage is the ad-
justment of the function points based on 14 parameters which are tuned
according to the characteristics of the application and of its environment.

SPQR/20 (Software Productivity, Quality and Reliability with re-
gard to 20 influencing factors) has been proposed by Jones [64] as a less
heuristic-oriented variant of function point; experimental results [65] sug-
gest that it can provide the same accuracy than function point while being
simpler to work with.

A simplified function point measure has been developed by the Nether-
lands Software Metrics Users Association (NESMA) which only counts
two of the five elements from the original function point [66].

6notice the difference with execution time
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The function points are relatively easy to measure early in the de-
velopment since they can work directly on the requirement specifica-
tion. Another size measure which does not share this property is lines
of code (LOC). On the other hand LOC is used extensively by the es-
timation techniques presented in the COCOMO projects. The function
points can be converted into a LOC measure based on an implementation
language-dependent factor. LOC has been criticized for its difficulty in
handling different programming languages and productivity across differ-
ent projects [67]. But according to [68] this is also the case for function
points.

Similar to our earlier discussion regarding the parameters influencing
the implementation effort in Section 3, the size of a software project
in relation to the implementation time needed is influenced by multiple
variables. Representing it in only one dimension brings uncertainty to
the representation.

Although the cyclomatic complexity [69] metric was not originally in-
tended for measuring the size of a project, Jay et al. [70] suggests that
there exists a stable linear relationship between cyclomatic complexity
and LOC. The cyclomatic complexity measures the number of linearly
independent paths in an algorithm. As a difference to the function points
measures, the cyclomatic complexity requires a detailed behavioural de-
scription to work on.

Besides the methods described above, which concentrate on size esti-
mation of the project, an index based method is presented in Cadle and
Yeates [71]. The method is called“analysis effort method”and its purpose
is to estimate the needed effort for the analysis of a project. The method
indexes three parameters: Size of the team, Familiarity, and Complexity.
These parameters are rated from a predefined table, and once combined
together, cross-checked with another table which describes the ratios be-
tween the needed effort for Analysis, Design, Coding and Unit Testing
(CUT) and Testing. The method does not include any way to estimate
the specific time needed for the individual phases but only the ratio.

A cost model which takes both the software and hardware aspects into
account has been proposed by Agarwal and Shankar [72]. They introduce
a cost model with the objective of understanding current Product Devel-
opment Cycles (PDC) and evaluating the impact of new technologies on
these PDC. In particular, the authors focus on cost and product develop-
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ment time and propose a PDC model known as One Pass to Production
(OPP). Although promising, their approach is very specific (they consider
a FPGA-based NOC backbone) and the numerous assumptions made by
the authors (e.g. regarding the number of required engineers) make the
generalisation of their approach rather difficult.

To the best of our knowledge, very few works address the problem
of estimating hardware implementation effort, and publications dealing
with this topic are far less abundant than those dealing with software.

VHDL function point, presented in [73], elaborates on the function
points analysis by modifying it to work with VHDL code. In this ap-
proach, the number of internal I/O signals and components is counted,
and their counts are classified into levels. Subsequently, a function point
value related to VHDL is extracted based on a predefined table. Ex-
perimental results considering the number of source lines in the LEON-1
processor project yields predictions which are within 20% of the real size.

An improvement to this can found in Paper A and in Technical Re-
port B where the cyclomatic complexity [69] is used for estimating the
size of a hardware project.

Other publications such as [74] compare actual hardware implemen-
tation efforts for different design methodologies but do not provide any
systematic method to estimate the efforts.

5 Contributions and Conclusion

We have now presented the background of this work, been though the
typical design trajectory, and discussed issues and problems related to
modern design. Following this, we have formulated the research thesis of
this work and have presented the state-of-the-art in design space explo-
ration. We can now present the contributions of this work.

The papers which form the main body of this thesis fall into three
different categories. Paper A and Tech Report B deal with the estimation
of the implementation effort for implementing algorithms onto FPGAs.
Paper C deals with extending a promising static partitioning approach
with a parallelism measure to better handle the estimated performance
of FPGAs. And finally, paper D shows some of the limitations of system
level tools and static analysis.
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Paper A: As we have seen through out this introduction, cost-parameters
dealing with the design processes has not received nearly as much
attention as the performance cost-parameters. In particular we have
identified that implementation effort for hardware design has been
neglected. In order to remedy this situation we decided to concen-
trate a significant part of this research on this highly applicable
topic. This paper presents a metric-based approach for estimating
the hardware implementation effort for an application in relation
to the number of linear-independent paths of its algorithms. We
adapt the cyclomatic complexity measure, and complement it with
a function taking the designers’ learning curve and experience into
account. Our results show that a relation between the paths and
the needed effort exists, and that it is thereby possible to estimate
the hardware implementation effort.

Tech Report B: In this report we further investigate the issue of ac-
curate implementation effort estimation with respect to real time
constrained systems. We suggest a set of two metrics used to char-
acterise the effects of implementation optimisations: one expressing
how hard it is to reach an implementation satisfying the real-time
constraints for the implementation, and another to reflect how the
parallelism impacts optimisations. The Experimental results do not
show an unambiguous result. However, for most algorithms our ap-
proach enables us together with the path measure from paper A
to estimate the hardware implementation effort for hard real-time
constrained applications.

Paper C: Approaches based on the gamma and affinity metrics are in-
teresting for complementing other static analysis methods since they
add information to time estimates and thus strengthen their value.
However, the original gamma metric suffers from the fact that it is
not normalized, which limits the extent with which it can be used to
compare designs. Thus gamma does not reflect how parallelism is
distributed i.e. how much of the algorithm can be parallelised. Fur-
thermore, the original affinity metric does not take parallelism into
account, thus it cannot reflect an algorithm’s potential for FPGA
implementation. In this paper we found that parallelism detection
is essential when characterising an algorithm’s potential for FPGA
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implementation and therefore decided to improve the original affin-
ity model so it includes parallelism. We show that it completely
changes the FPGA affinity score for some algorithms.

Paper D: Static analysis is limited by the accuracy of the underlying
models, especially when considering high level of abstractions such
as system-level. In order to evaluate this type of limitation and to
motivate the need for a metric based approach (cf. Paper C), a
case study has been performed. In Paper D, which was the first
paper we published, we show the differences between static estima-
tion techniques and the performance of a system generated through
system level tools. This was done by working with the implementa-
tion of turbo encoders and decoders for the HSDPA scheme for 3G
networks.

As a wrap up of the individual conclusions we have hereby shown
that the presented static metrics can provide a correlation between their
estimates and reality. At the same time we consider these metrics to be
easy to obtain and smoothly integrated as a parameter when partitioning
a system. These results follows the initial research idea about improving
current partitioning approaches based on experience and intuition by a
light and fast analysis without performing more accurate but also more
time consuming analysis. However, further investigation and extension
are needed before the approach of a light design space exploration will
become a self-contained methodology.

6 Glossary

In this glossary section, we define the essential terms which are used in
this thesis. The glossary has been included as having many definitions in
the main body of the thesis can be disruptive and hinder the smooth flow
of ideas for the reader.

Abstraction Level: Abstraction level denotes the level of detail which
is considered at a certain step in the design trajectory. A low level
of abstraction means a more detailed and accurate description of
the system.
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Accuracy: Accuracy refers to the closeness of a measure or estimate of
a quantity to its actual value. Accuracy is also used to characterize
a measuring system or estimation method. Note that in scientific
terms, accuracy is different from precision; see precision in this tax-
onomy.

Algorithm Transformation: Algorithmic transformations are techniques
used to exhibit certain properties (such as parallelism) of an al-
gorithm, without modifying the input-output relation, in order to
improve its mapping on a given architecture.

Allocation: In hardware synthesis, allocation consists of determining
the number of required resources (operators) for executing the op-
erations of an algorithms. Allocation, binding, and scheduling in-
fluence each other.

Architecture: The architecture denotes both the target platform and
its internal elements and structure.

Behaviour: The behaviour of a system is the description of what the sys-
tem is supposed to output based on input stimuli. Strictly speaking,
behaviour differs from functionality in terms of describing what the
system does and not what it can do. In the literature they are often
used interchangeably although authors use one or the other. Here
we use them as synonyms.

Binding: In hardware synthesis, binding consists in deciding which oper-
ations should be executed by which operators. Binding, allocation,
and scheduling influence each other.

Cycle Accurate: A simulator or model is said to be cycle accurate if it
reflects the micro-architectural features (both HW/SW) of a plat-
form with an accuracy corresponding to an instruction or a hard-
ware cycle (i.e. the number of clock cycles required for the instruc-
tion or hardware cycle is known).

Execution Time: Execution time is the time it takes for executing the
behaviour of an algorithm on a given platform.
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Functionality: If a system is seen as a box, functionality describes what
the box should output, possibly based on its input. In other words
it describes which behaviour the system has, as defined by the de-
signer. Strictly speaking functionality differs from behaviour in
terms of describing what the system can do and not what it does,
but in the literature they are often interchangeably. Here we con-
sider them as perfect synonyms and use them as such.

Hardware/Software partitioning: Hardware/Software partitioning is
the task of deciding onto which architectures the algorithms of an
embedded system should be implemented.

Instruction Set Simulation: Instruction Set Simulation (ISS) refers to
simulation conducted by means of an architectural model and which
reflects the behaviour of a microprocessor with a precision corre-
sponding to an instruction (usually with no information about the
number of clock cycles per instruction). ISS is usually faster than
cycle accurate simulation, but less accurate.

IP: In this thesis, IP (Intellectual Property) blocks refer to already ex-
isting cores for FPGAs and ASICs.

Mapping: The goal of the mapping process is to associate efficiently the
functionality of the application to the target platform. It is a com-
bined task consisting of allocation and scheduling of the operations
to operators.

Operations: Operations are the computations (i.e. arithmetic as well
as conditional) and memory accesses in the algorithm.

Operators: Operators are predefined architectural elements or combi-
nations of architectural elements which can execute operations.

Platform: A platform is a set of processing elements interconnected in
a predefined topology onto which the functionality can be mapped
and executed. The platform can also include a service layer in terms
of software such as an operation system.

Precision: Precision refers to the reproducibility or repeatability of a
measurement system or estimation method. As such, a precise mea-
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surement system or estimation method is not necessarily accurate;
see accurate in this taxonomy.

Processing Element: At any abstraction levels, a processing element
refers to a unit which is able to process data. E.g. it can be a
computer in a network, a FPGA or DSP in a system, or at a lower
level an operator inside a DSP or FPGA.

Real-Time: A real-time system is subject to real-time constraint(s), i.e.
it must respond to events within a given deadline.

Scheduling: In hardware synthesis, scheduling consists in deciding in
which order the operations of an algorithm should execute. Schedul-
ing, binding, and allocation influence each other.

Simulation: Simulation is the activity consisting of the execution of one
or several functional models of the application on a model of the
architecture to mimic the behaviour of a system. This can be car-
ried out at any abstraction levels and can be used to evaluate the
correctness and performance of the system.

Synthesis: The synthesis task is responsible for transforming a behavioural
description (e.g. C or Behavioural VHDL) into a dedicated hard-
ware block. Although many articles as well as EDA tools consider
the synthesis to include only the creation and instantiation of oper-
ators in logic gates, here we also include the place and route task.

System-Level Simulation: System-Level Simulation is conducted us-
ing a System Level Model, i.e. a model of the behaviour of the
entire system described in a high-level language. System Level is
often used to refer to levels above register transfer level.

Test: Tests refer to the experiments which are conducted in a systematic
procedure to measure and evaluate certain properties of a system,
often for verification purposes. See verification and validation en-
tries in this list.

Trace Based: Trace based refers to methods and techniques which rely
on the software and/or hardware traces, i.e. a recorded list of the
execution steps taken by an algorithm onto a platform.
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Transaction Level Simulation: Transaction Level Simulation is based
on Transaction-Level Modeling (TLM), i.e. a high-level approach
which model hardware/software systems by means of communicat-
ing modules (which often do not contain no or little details about
the actual implementation). Communication between modules are
modeled with channels, and are presented to modules by means of
e.g. interface classes. Transaction Level Simulation is often faster
but less accurate than e.g. ISS or cycle accurate simulations.

Validation: Validation is the process which consists in insuring that a
system accomplishes its intended overall purpose. Often expressed
by ”Are you building the right thing?”. See test and verification
entries in this list.

Verification: Verification is the process which consists in checking by
e.g. means of tests whether or not a system complies with the initial
specifications. Often expressed by ”Are you building it right?”. See
test and verification entries in this list.

VLSI technology: VLSI (Very Large Scale Integration) refers to the de-
sign and implementation of integrated circuits which include thou-
sands to billions of transistors into a single chip.

7 List of Abbreviations

ASIC: Application Specific Integrated Circuit

CDFG: Control Data Flow Graph

CFG: Control Flow Graph

CPU: Central Processing Unit

DFG: Data Flow Graph

DSE: Design Space Exploration

DSP: Digital Signal Processor

FPGA: Field Programmable Gate Array
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7. LIST OF ABBREVIATIONS

FSM: Finite State Machine

GPP: General Purpose Processor

HW: Hardware

IP: Intellectual Property

IPC: Inter Processor Communication

I/O: Input/Output

LOC: Lines Of Code

NRE: Non Recurring Engineering

OS: Operating System

RTL: Register Transfer Level

SDF: Synchronous Data Flow

SME: Small and Medium Enterprise

SW: Software

TLM: Transaction Level Modeling

UML: Unified Modeling Language

VHDL: VHSIC Hardware Description Language

VHSIC: Very High Speed Integrated Circuit

VLIW: Very Long Instruction Word

VLSI: Very Large Scale Integration
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1. INTRODUCTION

Abstract

This paper presents a metric-based approach for estimating the hardware
implementation effort (in terms of time) for an application in relation to
the number of linear independent paths of its algorithms. We exploit the
relation between the number of edges and linear independent paths in an
algorithm and the corresponding implementation effort. We propose an
adaptation of the concept of cyclomatic complexity, complemented with
a correction function to take designers’ learning curve and experience
into account. Our experimental results, composed of a training and a
validation phase, show that with the proposed approach it is possible to
estimate the hardware implementation effort. This approach, part of our
light design space exploration concept, is implemented in our framework
’Design-Trotter’ and offers a new type of tool that can help designers and
managers to reduce the time-to-market factor by better estimating the
required implementation effort.

1 Introduction

1.1 Discussion of the Problem

Companies developing embedded systems based on high-end technology
in areas such as telecommunication, defence, consumer products, health-
care equipment are evolving in an extremely competitive globalised mar-
ket. In order to preserve their competitiveness, they have to deal with
several contradicting objectives: on the one hand they have to face the
ever-increasing need for shorter time-to-market and on the other hand
they have to develop and produce low-cost, high-quality and innovative
products.

This raises major challenges for most companies, especially for small
and medium-sized enterprises (SMEs). Although SMEs are under pres-
sure due to the above-mentioned factors, they are either not applying
the latest design methodologies or can not afford the modern Electronic
System Level (ESL) design tools. By limiting themselves to traditional
design methodologies, SMEs make themselves more vulnerable to unfore-
seen problems in the development process, making the time-to-market
factor one of the most critical challenges they have to deal with. A survey
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released at the Embedded Systems Conference (ESC 2006) [1] indicated
that more than 50% of embedded design projects are running behind
schedule (i.e., 25% are 1-2 months late, 18% 3-6 months). In the 2008
version of the survey [2] it is again shown that meeting the schedule is
the greatest concern for design teams.

Moreover, a workshop [3] held for Danish SMEs working in the domain
of embedded systems clearly indicates that there is a need for changing
and improving their design trajectories in order to stay in front on the
global market. More specifically, this calls for setting modern design,
i.e., hardware/software (HW/SW) co-design and ESL design into actual
practice in SMEs, so that they can reduce their time-to-market factor
and keep up with their competitors by being more efficient in producing
embedded systems.

Although HW/SW co-design and ESL design tools (both commercial
and academic) have been available for several years, there are several
barriers that, so far, have prevented their wide adoption. To name a few:

� Difficulty in transfering the methods and tools developed by academia
into industry, because they are mostly developed for experimenting
with, validating and proving new concepts rather than for being
used in companies. Therefore adapting and transferring these meth-
ods and tools require additional and tedious efforts, delaying their
adoption,

� financial cost in terms of tool licenses, training, etc. that many
SMEs cannot afford, since the cost of a complete commercial tool
chain can exceeds in excess of 150 k per year,

� training cost and knowledge management issues, meaning switching
to a new design trajectory also involves the risk of loosing momen-
tum, i.e., loosing time and efficiency because of the training needed
to master the new methods and tools,

� finally, many modern design flows are not mature enough to gener-
ate efficient and automatic real-time code, and combined with the
previous item, cause potential adopters to wait until it is safe to
switch.
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Considerable research has been undertaken to estimate implementa-
tion factors such as: area, power, and speed-up that are subsequently
used in HW/SW partitioning tools with different focuses related to gran-
ularity, architecture model and communication topology, and so on. All
of these research projects does not include the man-power cost which is
the most critical one for many companies, and especially SMEs. This
work takes its outset in a research framework facilitating the HW/SW
partitioning step for SMEs. It focuses on a light design space exploration
approach called ”DSE-light” that combines the advances in terms of de-
sign methodologies found in academia and the ease of integration required
by SMEs, i.e., lowering the above-mentioned barriers.

The contribution presented in this paper is the development of a
method for estimating the man-power cost (i.e., development time) for
implementing hardware components and the integration of this method
into our framework, so that HW/SW partitioning decisions can be wiser.
A method that used iteratively and systematic will form the engine for
precise development schedules. The following subsections present the ra-
tionale for this work and the idea enabling this contribution.

1.2 Parameters that Influence the Implementation Effort

A common problem in both SMEs and larger companies is that of esti-
mating the amount of time required to map and implement an algorithm
onto an architecture given parameters such as [4], [5]:

� manpower, i.e. the available development team(s) and their size(s),

� quality of the social interactions between the team members and
the teams,

� experience of the developers (e.g. years of experience, previously
developed projects, novelty of the current project, etc.),

� skills of the developers, i.e. their ability to solve problems (this is
not the same as experience, which only reflects how often one has
tried before),

� availability of suitable and efficient tools and how easy they are to
learn and use,
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� availability of SW/HW IP code/cores,

� involvement of the designers, i.e. are they working on other projects
simultaneously?

� design constraints i.e. real-time requirements,

This work addresses the issue of adding man-power cost parameter
into the cost-function and thereby guiding the HW/SW partitioning.
More specifically we concentrate on the mapping process, i.e. the process
of mapping a given algorithm onto a given architecture and the implemen-
tation effort (i.e. time) related to the complexity of that algorithm. Our
framework also addresses other issues of HW/SW partitioning e.g. [6].

1.3 Idea

In order to understand what makes an algorithm difficult to implement,
five semi-structured interviews1 have been conducted with engineers (hard-
ware developers) with very little to 20 years of experience.

From the interviews it was deduced that several parameters influence
on the hardware design difficulty. The hardware developers stated that
available knowledge about worst cases, dependencies between variables,
and the completeness of the design description of the entire system in-
cluding all communications are important for the design time. However,
according to them, the major parameter influencing a hardware design is
the number of connections and signals between the internal components.
This should be viewed in the way that every time a signal enters a com-
ponent, it means that the component needs to act on it. More signals
bring more parameters into the component and that very often leads to
an increased complexity.

Based on the interviews we form our hypothesis; it is that a strong
relation exists between what renders an algorithm complex to implement
and the number of components as well as the number of signals/paths in
the algorithm.

To ensure that not only the number of paths are counted but also
that a high number of components is present, we choose to only measure

1Semi-structured interview is an information-gathering method of qualitative re-
search. Semi-structured interview is an adequate tool to capture how a person thinks
of a particular domain [7].

52



2. STATE OF THE ART

the number of linear independent paths. Furthermore, this insures that
components occuring several times during the execution are counted only
once, which better reflects the actual implementation efforts.

The remainder of the paper is organised as follows: section 2 gives an
overview of the state-of-the-art methods for estimating the implementa-
tion effort both for software and hardware designs and indicates the need
for further work for hardware design. In section 3 a new metric for esti-
mating the development time is defined and combined with our research
tool ”Design-Trotter”. Section 4 presents some test cases used to investi-
gate the validity of the above mentioned hypothesis and of the proposed
metric. Furthermore, the experimental results are analysed. Finally we
conclude in section 5.

2 State of the art

2.1 Software

Most research about estimating implementation effort is found in the soft-
ware domain, especially within the COCOMO project [8]. The problem
of estimating the implementation effort is twofold. First, a reasonable
measure needs to be developed for being able to quantify the algorithm.
Second, a model needs to be developed, describing a rational relation
between the measure and the implementation effort.

COCOMO

To start with the model, a typical power model has been proposed inside
the COCOMO experiment [8, 9]:

Effort = A× Sizeb (A.1)

where Size is an estimate of the project size, and A and b are adjustable
parameters. These parameters are influenced by many external factors
which we previously discussed in section 1.2, but can be trained, based
on previous project data.

To use this COCOMO measure there is a need for expressing the size
of the project. Inside the software domain the dominating metric is lines
of code, LOC. Using LOC is not without difficulties, e.g. how is a code
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line defined? [10] discusses this issue and states that LOC is not consistent
enough for that use; this is also supported by [11]. Using the LOC metric
also has several difficulties, e.g. it is not a language independent metric.
Furthermore, hardware developers also tend to disapprove this measure,
since they do not feel that it is a representative measure for hardware
designs.

However, we do not claim that there is no relation between LOC
and the implementation effort. It is impossible to write 10k lines in one
day, but for VHDL the relation is not always straightforward. In the
experiments that we have performed (data shown in Table A.1) there is
no unambiguous relation between the LOC in VHDL and the development
time.

[11] describes that making ’a priori’ determination of the size of a
software project is difficult especially when using the traditional lines of
code measure; instead function points based estimation seems to be more
robust.

Function Points Analysis

The function points metric was first introduced by Albrecht [12] and con-
sists of two main stages. 1) Counting and classifying the function types
for the software. The identified functions need to be weighted reflecting
their complexity, that is determined on the basis of the developers’ per-
ception. 2) Adjustment of the function points according to the application
and environment, based on 14 parameters. The function points can then
be converted into a LOC measure, based on an implementation language
dependent factor, and e.g. [11] reports that the function points metric can
be used as implementation effort estimation metric. The function points
analysis has been criticised of being too heuristic and [10] has proposed
the SPQR/20 function points metric as an alternative. [13] has compared
the SPQR/20 and the Function Points analysis and found their accuracy
comparable even though the SPQR/20 metric is simpler to estimate.

2.2 VHDL Function Points

To the knowledge of the authors, limited research has been carried out in
the field of estimating the implementation difficulty of hardware designs.
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Fornaciari et al. [14] have taken up the idea from the function points
analysis and modified it to fit VHDL. By counting the number of internal
I/O signals and components, and classifying these counts into levels, they
extract a function point value related to VHDL. They have related their
measure to the number of source lines in the LEON-1 processor project
and their predictions are within 20% of the real size. However, as stated
previously, estimating the size does not always give an accurate indication
of the implementation difficulty, and the necessary implementation time.

By measuring the number of internal I/O signals and components,
their work goes along the same road as our initial observations indicate.
However, our approach is pointing towards estimating the implementa-
tion effort, based on a behavioural description of the algorithm in the
C-language. Furthermore, it also takes the designer’s experience into ac-
count.

3 Methodology

The proposed flow for estimating the implementation effort is illustrated
in Fig A.1. It takes its outset in a behavioural description of the algo-
rithm, in C-language (including library function source code), which is
intended to be implemented in hardware. From this description, we use
the Design-Trotter Framework to generate a Hierarchical Control Data
Flow Graph (HCDFG) which is then measured to identify the number
of independent paths. The resulting measure, combined with the experi-
ence of the developers, gives an estimate of the required implementation
effort. The method is self-learning in the sense that after each successful
implementation, new knowledge about the developers involved can be in-
tegrated, and improve the accuracy of the estimates. The HCDFG and
the approach for modelling the developers experience are covered later in
this section but initially we investigate how the number of paths can be
measured.

3.1 Cyclomatic Complexity

As described in section 1.3, the number of independent paths is expected
to correlate with the complexity that the engineers are facing when work-
ing on the implementation. Therefore, finding a method to measure the
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Fig. A.1: The flow of estimating the required implementation effort. The starting point
is a behavioural description in C of the algorithm to be implemented in hardware (e.g. via
VHDL). From this description, a HCDFG is generated and measured to identify the number
of independent paths in the algorithm. This measure, combined with the experience of the
developers, gives an estimate of the required implementation effort (expressed in time).

number of independent paths in an algorithm could help us investigating
this issue. A metric measuring that is the cyclomatic complexity measure
proposed by Thomas J. McCabe [15] which measures the number of linear
independent paths in the algorithm.

The cyclomatic complexity was originally invented as a way to in-
tuitively quantify the complexity of algorithms, but has later found use
for other purposes especially in the software domain. The cyclomatic
complexity has been used for evaluating the quality of code in compa-
nies [16], where quality covers aspects from understandability over testa-
bility to maintainability. It has also been shown [17] that algorithms
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with a high cyclomatic complexity more frequently have errors than algo-
rithms with lower cyclomatic complexity. The cyclomatic complexity has
furthermore been used for evaluating programming languages for parallel
computing [18], where languages that encapsulate control statement in
instructions are receiving higher scores. All use the cyclomatic complex-
ity measure under the assumptions that the complexity has significant
influence on the number of paths the developers need to inspect, its cor-
relation to the number of paths that needs to be tested, or a combination
of the two.

In the domain of hardware, the cyclomatic complexity has also found
use, judging the readability and maintainability in the SAVE project [19].
It is worth noticing that they use a misinterpreted [20] definition of the
cyclomatic complexity [21].

All these projects utilise the cyclomatic complexity’s ability to mea-
sure the number of independent paths and relate them to their individual
cases.

The cyclomatic complexity is originally defined as a graph examina-
tion, however, the metric can be simplified [15] to:

P (G) = π + 1 (A.2)

where π represents the number of condition nodes in the graph G rep-
resenting the algorithm being analysed. Fig. A.2 shows two examples of
graphs and the corresponding cyclomatic complexity.

In this work we propose an adapted version of the cyclomatic com-
plexity definition to estimate, a priori, the number of independent paths
on a Hierarchical Control/Data Flow Graph (HCDFG), defined in the
following section. The cyclomatic complexity for an HCDFG is obtained
by examining its subgraphs as explained in section 3.3.

3.2 HCDFG

For this work we use the Hierarchical Control/Data Flow Graphs (HCDFG),
which are introduced in [22] and [23]. The HCDFGs are used to repre-
sent an algorithm with a graph-based model so the examination task of
the algorithm is eased. Control/Data Flow Graphs (CDFGs) are well ac-
cepted by designers as a representation of an algorithm where data flow
graphs represent the data flow between different processes/operations,
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(a) P (G) = 2 (b) P (G) = 3

Fig. A.2: Two examples of graphs for which the cyclomatic complexities have been calcu-
lated.

and the control flow layer, encapsulating these data flows and adding
control structures to the graphical notation. The hierarchy layered struc-
ture is added to help representing large algorithms as well as to enable
the analysis mechanism to identify functions/blocks in the graph. Such
an identified block can then be seen as a single HCDFG that can be in-
stantiated several times. Fig. A.3 shows an example of a Hierarchical
Control/Data Flow Graph.

In this work the design space exploration tool ’Design-Trotter’ is used
as an engine for analysing the algorithms. The HCDFG model is used as
’Design-Trotter’s’ internal representation.

The hierarchy of an HCDFG is shown in Fig. A.3. An HCDFG can
consist of other HCDFGs, Control/Data flow graphs (CDFGs) and data
flow graphs (DFGs) as well as elementary nodes (processing, memory, and
control nodes). An HCDFG is connected via dependency edges. In this
work we only explore the graph at levels above the DFGs, and therefore
only concentrate on these when we define the graph types in what follows.

Let us consider the Hierarchical Control Data Flow Graph, GHCDFG =
(NHCDFG, EHCDFG) whereNHCDFG are the nodes denoted byNHCDFG =
{nHCDFG1

, . . . , nHCDFGm} and the nodes are
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Fig. A.3: An overview of how the hierarchy in an HCDFG allows analysis of an algorithm
on different levels and how the levels are related.

NHCDFG ∈ {GHCDFG|GCDFG|GDFG|Data}, meaning that the nodes in
the GHCDFG can be instances of its own type, encapsulated Control/Data
Flow Graphs, GCDFG, encapsulated Data Flow Graphs GDFG, or data
transfer nodes, Data. The last one is introduced to avoid the duplication
of data representations in the hierarchy, when data is exchanged between
the graphs. Thereby, data are only represented by their nodes and not
by edges as it is common in many other types of DFGs.

The edges, EHCDFG, connect the nodes such that EHCDFG =
{enHCDFGi

,nHCDFGj
} where i �= j and represent the indexes of the nodes,

EHCDFG ∈ {DD} and where every node can have multiple input and/or
output edges. For the GHCDFG, only data dependencies, DD, are al-
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lowed, and no control dependencies, CD.
In this way the HCDFG forms a hierarchy of encapsulated HCDFGs,

CDFGs, and DFGs, connected via exchanging data nodes. The HCDFG
can be seen as a container graph for other graphs types such as the CDFG.

We can define the CDFG asGCDFG = (NCDFG, ECDFG) whereNCDFG

are the nodes denoted by NCDFG = {nCDFG1
, . . . , nCDFGm} and the

nodes are NCDFG ∈ {CC|GHCDFG|GDFG|Data} where CC ∈
{if |switch|for|while|do − while}. In this way the GCDFG is able to
describe common control structures, where the actual data processing
is encapsulated in either DFGs or HCDFGs. Again, the data exchange
nodes are used to exchange data between the other nodes.

The edges, ECDFG , connect the nodes such that ECDFG =
{enCDFGi

,nCDFGj
} where i �= j and represent the indexes of the nodes. If

nCDFGi
∈ CC and nCDFGj

∈ {GHCDFG|GDFG} then {enCDFGi
,nCDFGj

} ∈

{CD}, else {enCDFGi
,nCDFGj

} ∈ {DD}

Beneath the Control/Data Flow GraphsGCDFG the Data Flow Graphs
GDFG exist but they are of no use in this work so we will not define them
further here.

3.3 Calculating the Cyclomatic Complexity on CDFGs

Now that the HCDFG has been defined, we explain our proposed method
for measuring the cyclomatic complexity on the CDFGs.

Since the cyclomatic complexity only considers the control structure
in finding the number of independent paths in the algorithm, the DFG
part of the algorithm is, as mentioned earlier, of no interest for this task
because it only gives a single path. On the other hand, what is of interest
is how the cyclomatic complexity is measured on the CDFGs and HCD-
FGs which are built by the tool Design-Trotter. This leaves us with the
following cases which are described in detail afterwards:

� If constructs

� Switch constructs

� For loops

� While/ Do-while loops
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� Functions

� HCDFGs in parallel

� HCDFGs in serial sequence

If constructs

If constructs are represented as CDFGs, GCDFG, where one node is a
control node of type if (see Fig A.4(a)). Before arriving at the control
node, a condition evaluation node neval ∈ {GHCDFG|GDFG} is traversed
to calculate the boolean variable stored in nData (to maintain simplicity
these are not shown in Fig A.4(a)) that is used in the condition node.
If the variable is true, the algorithm follows the path through the true
body node, ntrue ∈ {GHCDFG|GDFG|∅}. Else it goes to the false body
node nfalse ∈ {GHCDFG|GDFG|∅}. Note that in some cases, either the
true body or the false body does not exist, but it still gives a path. In
this case, according to the cyclomatic complexity measure, the number
of independent paths is:

P (nif ) = P (ntrue) + P (nfalse) + P (neval)− 1 (A.3)

The last part of (A.3), +P (neval) − 1 is included in case the evaluation
graph is a HCDFG node.

Switch constructs

Switch constructs are represented as CDFGs, GCDFG, and have almost
the same flow as the if construct discussed above. One node is a control
node of type switch. Before arriving to the control node, a condition
evaluation node neval ∈ {GHCDFG|GDFG} is traversed. Depending on
the output, the switch node leads the algorithm flow to the selected case
node: ncasei ∈ {GHCDFG|GDFG}. An example is shown in Fig A.4(b).
According to the cyclomatic complexity measure, the number of indepen-
dent paths is here:

P (nswitch) = P (neval)− 1 +
N
∑

i=1

P (ncasei) (A.4)
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(a) If (b) Switch (c) While

(d) For (e) Parallel (f) Serial

Fig. A.4: Overview of the different CDFGs and combined HCDFGs, on which the cy-
clomatic complexity values are measured. Between the (HC)DFGs there is a set of data
exchange nodes which are here left out for simplicity. The symbols are similar to those
presented in Fig A.3.
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where N represents the number of cases, i the index to the corresponding
node on which the paths are measured.

The same argument goes for the P (neval) − 1 part of (A.4); it is
included in case the evaluation graph is a HCDFG node, but else it is
omitted.

For loop constructs

For constructs are the most complex of the control structures. Strictly
speaking, a for-loop consists of three different parts; the evaluation body,
the evolution body and the for-body, neval, nevol, and nfor−body respec-
tively. The control node nfor, determines, based on the output from the
evaluation graph, whether the flow should go into the for-loop or leave it.
The evolution node updates the indexes. Since each iteration of the graph
needs to pass through the evaluation and evolution nodes, the number of
independent paths is calculated as:

P (nfor) = P (nfor−body) + P (neval)− 1 + P (nevol)− 1 (A.5)

In many cases the evaluation and evolution part of the for-loop are quite
simple indexing functions, meaning that neval ∈ {GDFG}, nevol ∈ {GDFG},
will leave P (nfor) = P (nfor−body). The For-loop is illustrated in Fig A.4(d).

While and Do-While loops

While and do-while loops are described jointly since it is only the entry to
the loop structure that separates them and their cyclomatic complexity
are equivalent. The while loops consist of two main parts, the while
body nwhile−body ∈ {GHCDFG|GDFG}, and the while evaluation neval ∈
{GHCDFG|GDFG}. This is illustrated in Fig A.4(c). Deciding whether to
continue looping is decided by the control node nwhile ∈ {while} based
on the output of the neval. Similarly to the for-loop, each iteration of
the graph needs to pass through the evaluation nodes, so the number of
independent paths can be calculated as:

P (nwhile) = P (nwhile−body) + P (neval)− 1 (A.6)

In many cases the Evaluation part of the while-loop is a set of simple test
functions, meaning that neval ∈ {GDFG}, which leaves the P (nwhile) =
P (nwhile−body).
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Functions

The goal is to identify the number of independent paths in the algo-
rithm/system. For this, reuse in terms of functions/blocks of code is
important. When all independent paths through a function are known,
reuse of this function does not change the number of independent paths
in the system. From an implementation point of view such functions
represent an entity where the paths only need to be implemented once.
In HCDFGs, a function/block can be seen as an encapsulated GHCDFG.
Therefore the number of independent paths in function/blocks of reused
code should only count once. The paths can be calculated as:

P (nHCDFGfunction
) =

{

0 if reuse

P (nHCDFG) else
(A.7)

HCDFGs in parallel and serial

Knowing how to handle all the HCDFGs that are identified for reuse
(function), together with all the CDFGs, does not give it all. How the
hierarchy of graphs should be combined is also of interest. For a parallel
combination of two or more HCDFGs/CDFGs, as shown in Fig A.4(e),
the increase in the number of independent paths is then additive. The
number of paths can be calculated as:

P (nHCDFGParallel
) =

N
∑

i=1

P (nHCDFGi
) (A.8)

where N represents the number of nodes in parallel, i the index to the
corresponding node where the paths are measured.

For serial combination of two or more HCDFGs and/or CDFGs, the
number of independent paths is a combination of the independent paths
of the involved HCDFGs/CDFGs. Remembering that there always needs
to be one path through the system, the number of independent paths in
a serial combination, is given as:

P (nHCDFGSerial
) =

N
∑

i=1

P (nHCDFGi
)− (N − 1) (A.9)
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where N represents the number of nodes in serial, i the index to the
corresponding node where the paths are measured.

An example of serial combination is shown in Fig A.4(f). The number
of independent paths for the entire algorithm, (P (nHCDFGAlg

)), is equiv-
alent to the top HCDFG node which includes all the independent paths
of its subgraphs.

3.4 Experience Impact

The experience of the designer has an impact on the challenge that he/she
is facing when developing a system. A radical example is when a beginner
and a developer with ten years of experience are asked to solve the same
task. They will not see equal difficulty in the same task, and thereby do
not need to put the same effort into the development.

Experience is influenced by many parameters but in this work we
only focus on the time the developer has worked with the implementation
language and the target architecture.

The impact of experience is a factor that slowly decreases over time:
consider a new developer, the experience that he/she obtains in the first
months working with the language and architecture improves his/her
skills significantly. On the other hand a developer who has worked with
the language and architecture for e.g. five years will not improve her/his
skills at the same rate by working an extra year. The impact from the
experience is therefore not linear but tends to have a negative accelera-
tion or inverse logarithmic nature, with dramatic change in impact in the
beginning, progressing towards little or no change as time increases.

In the literature, e.g. [24], many studies try to fit historical data to
models. An example of a model is a power function with negative slope or
a negative exponential function. From the vast variety of models that has
been proposed over the years, the only conclusion that can be drawn is
that there are multiple curvatures, but they all appear to have a negative
accelerating slope, which tends to be exponential/logarithmic.

In order to get the best possible outset for predicting the implementa-
tion effort, it is of vital importance to obtain some data of the developers’
experiences, and also how they performed in the past. The parameters
involved in the experience curve can then be trimmed to create the best
possible fit. However, it has not been the purpose of this work to select
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Fig. A.5: An example of how the lack of experience impacts the difficulty the engineers
are facing.

the perfect nature for a learning curve nor to evaluate the accuracy of
such one. The learning curve will be adapted to the individual develop-
ers, and as the model is used in subsequent projects, its accuracy will
progressively improve. As a consequence the experience here is only in-
tended as an element in modelling the complexity and thereby a means
for more accurate estimates.

For the experiments in this study we have chosen to use the following
model:

ηexperience(Dev) =
1

α log(Experience(Dev) + β)
(A.10)

where α and β are trim parameters which can be used to optimise the
curve to fit reality, Experience is the number of weeks which the de-
veloper, Dev, has worked with the language and architecture. Fig A.5
depicts the shape of the experience model.

In this work our initial experiments have shown that setting α = 1
and β = 1 makes our model sufficiently general, and therefore we have
not further investigated the tuning of these two parameters.

4 Results

In order to verify the hypothesis, a classical test has been conducted. The
test is dual phased and consists of: i) a training phase using a first set
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of real-life data, during which the hypothesis is said to be true, and ii)
a validation phase during which a second set of real-life data is used to
evaluate whether the hypothesis holds true or not.

4.1 Phase One – Training

The real-life data used as training data originate from two different appli-
cation types that are both developed as academic projects in universities
in France. The first application is composed of five different video pro-
cessing algorithms for an intelligent camera, which is able to track moving
objects in a video sequence. The second application is a cryptographic
system, able to encrypt data with different cryptographic/hashing algo-
rithms, i.e. MD5, AES and SHA-1. The system consists of one combined
engine [25] as well as individual implementations. These projects were se-
lected since they all follow the methodology of using a behavioural specifi-
cation in C, as a starting point for the VHDL implementation. Common
to this data is that none of the developers have made the behavioural
specification in C. For the cryptographic algorithms the behavioural spec-
ification comes from the standards, and the video algorithms were based
on a previous project.

Using the behavioural description as the starting point of the ex-
periment, the exercise consists of studying the relationship between the
complexity of the algorithms (as defined in section 3) and the implemen-
tation effort (i.e., time) required to implement them in VHDL (including
testbed and heuristic tests).

The developers involved in these projects have all been Master and
Ph.D. students with electrical engineering backgrounds but no VHDL
background other than what they obtained during their studies, see Ta-
ble A.2. All developers were taught VHDL by other instructors than the
authors, but at our university. Table A.3 summaries the training data.

Fig A.6 shows the relation between the implementation effort and the
measured complexity for the individual algorithms. Please note that in
this graph, the complexity values are not yet corrected for the designers’
experience.

A first examination of the data points indicates a possible relation
between some of them. However many other points are located far away
from any relation. These data are not corrected for the designers’ experi-
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Table A.1: Line of code, area, and time constraints for the validation data.

Algorithm SS1 SS2 SS3 SS4 SS5 SS6 Ethernet App 4

Dev. Time [weeks] 3.6 6.4 2.4 16.4 12 17.2 16 2
LOC-VHDL 994 1195 776 1695 760 2088 3973 232

Slices 564 2212 382 888 372 2171 3372 750
FlipFlops 913 2921 1290 1366 1208 2077 6149 942
LUTs 997 3157 6453 1569 6443 3458 18255 567

Time Constraint. [ns] 112 128 360 112 360 248 696 56

Table A.2: Facts about the developers. Developers for training data (Top) and validation
data (Bottom)

Developer Education Years in the domain

Dev 1 Ph.D. stud. 0
Dev 2 Stud. (EE) 0
Dev 3 Stud. (EE) 0
Dev 4 Stud. (EE) 0

Dev 5 BSc.EE. 9
Dev 6 MSc.EE. 15
Dev 7 MSc.EE. 9
Dev 8 MSc.EE. 8
Dev 9 MSc.EE. 8
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Table A.3: Training Data (Top) and Validation Data (Bottom). Algorithms are related to
the developers and their experience at the given time. Complexity is not corrected.

Algorithm Complexity Developer Dev. Exp.

T1 10 Dev 1 2
T2 24 Dev 1 10
T3 12 Dev 1 18
T4 14 Dev 2 1
T5 4 Dev 1 20
MD5 10 Dev 3 1
MD5 10 Dev 4 1
AES 10 Dev 4 8
SHA-1 27 Dev 4 14

Combined 59 Dev 4 14

SS1 25 Dev 6,7 150
SS2 35 Dev 5 150
SS3 17 Dev 5,6,7,8 150
SS4 50 Dev 6 6
SS5 29 Dev 7 3
SS6 25 Dev 5,6,7 3

Ethernet app 60 Dev 5,6,7,8,9 150
App 4 9 Dev 6 150
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Fig. A.6: Relation between the implementation effort [number of weeks] and the not
corrected complexity (as defined in section 3).
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ence and, as earlier mentioned, we strongly believe that the experience of
the individual designer has a non-negligible influence on the development
time. If we inspect the data more thoroughly, it is clear that the points
of greatest divergence, are those implementations where the developers
have very limited knowledge and experience with the VHDL language.

Applying the proposed (A.10) (non-linear) experience transform onto
the data, results in a significantly different picture, as depicted in Fig A.7.
A clear trend toward a relation is now visible in the plotted data. From
the COCOMO II project [8] it is known that the relationship between the
implementation time and the complexity measure (in their case lines of
code, LOC) can be expressed as a power function with a weak slope. We
showed its nature in (A.1), and with correction for experience it becomes:

Effort = A · (ηexperience(Dev) · P (nHCDFGAlg
))b (A.11)

The parameters A and b are found, via a least square (LS) fit on our
training data, to be A = 0.226 and b = 1.103. In Fig. A.7 the dashed line
illustrates the relationship, with the parameters given above.

4.2 Phase Two – Validation

After having elaborated on a model based on the training data, we pro-
ceeded with the validation of its correctness. For this, a new set of data
provided by ETI A/S, a Danish SME, is used. The dataset originates
from a networking system and consists of Ethernet applications that have
been implemented on an FPGA, as well as corresponding testbeds. This
Ethernet application is part of an existing system with which it requires
interaction. Table A.1 shows additional implementation information with
regards to these applications. The system is a real-time system with hard
time-constraints and all algorithms were implemented as to meet these
constraints. Similar to the training data, the development flow for this
application has been as follows: a behavioural C++ model of the ap-
plication has been constructed before the implementation on the FPGA
architecture. The behavioural model has been developed by develop-
ers separate to those undertaking the implementation. The developers
responsible for the implementation have obtained their skills in VHDL
from a professional course with no relation to our university in Denmark.

The time spent on the implementation process covers: the design and
implementation of the VHDL code of the functionalities and testbed as
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Fig. A.7: Relation between the implementation effort [number of weeks] and the complexity
corrected according to the designers’ experience model as shown in Fig A.5.
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Fig. A.8: Validation data plot: relation between implementation effort [number of weeks]
and complexity, corrected according to the designers’ experience model.

well as the tests of the different modules in the applications. This data is
shown in the lower part of Table A.3. The time data originate from the
company’s internal registration for the project, and correspond therefore
to the effective time used.

The relation between implementation effort and complexity is plotted
in Fig A.8. It can be seen that this data, corrected for the designers’
experience (*) closely follows the model derived from the training data
(dashed line). Fig A.8 also shows the 95% confidence interval, indicating
that with 95% confidence, future predictions of implementation effort will
lie within this, given that the model holds true.

Comparing the predicted effort (dashed line) to the real effort (*),
indicates that there is an estimation error. The values are also shown in
Tabel A.4 The average estimation error is 0.2 weeks with a variance of 8.
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In the next section we discuss the validity of the model.

Table A.4: Development time and estimated development time measured in weeks together
with the error.

Algorithm Dev. Time Est. Dev. Time Error

SS1 3.6 3.3 0.3
SS2 6.4 4.8 1.6
SS3 3.2 2.2 1
SS4 16.4 20.3 -3.9
SS5 12 16.2 -4.2
SS6 17.2 13.8 3.4

Ethernet app 11.4 8.8 2.6
App 4 2 1.1 0.9

Mean (Variance): 0.2 (8)

4.3 Validity Discussion

Estimating the effort required in implementing an algorithm into hard-
ware involves many parameters. We discussed a number of these param-
eters in section 1.2, but could not include them all in this study. The
proposed model is therefore devised from the idea of the relation between
implementation effort and number of linear independent paths.

To validate the model, a classical two-phased hypothesis test has been
performed and the validity of this test depends on the following important
factors: i) the independence between training and validation data ii) the
volume and variety of the experiments.

In the first instance, not only different applications were used for train-
ing and validation data, but in addition the developers had no relation in
terms of education, nationality, work, etc. Moreover, the validation data
has not been measured before the model was trained. All this strengthens
the validity of the results. The only potential connection is that some of
the developers who have been involved in the implementation of the train-
ing and validation data have also been included within those interviewed.
However, this accounts for a minority and we see this as a minimal risk.
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Secondly, we should ideally have had a large volume and variety of
experimental data for training and validation. However, our set of data
originates from a single company and a few developers. So strictly speak-
ing we can only conclude that this model applies to the specific SME
setup involved in the study and partially to the academic environment
studied.

In order to generalise our model, more cases of validation are needed.
However, obtaining all the statistical data for this new methodology is
time consuming. We would therefore like to remind the reader that this
paper proposes a methodology for estimating implementation effort and
the validation of the model concentrates on illustrating its usefulness.
Looking at the graphs, we can determine a clear trend in the results. The
curve identified in the training data are sustained for the validation data
as well: they both fall in line with the underlying rationale, and we are
quite confident in the strength of the proposed model.

The results clearly show the necessity for the proposed correction
function; the proposed logarithmic nature works well, even though the
correction function has not been trimmed to fit the individual developers
due to the lack of available data. In this light, our approach must be
seen as the engine of a global methodology for the management of design
projects, that impose a systematic registration of man-power. With such
a registration, a database of the developers’ experience can easily be con-
structed and the correction function can be trimmed to fit the companies’
individual designers. Several iterations of this process would provide con-
vergence towards a more precise estimation of the implementation effort.

The limited data set on which the model is constructed also limits
the complexity window to which this model can be applied: having no
algorithm with a corrected complexity value larger than 51, extrapolating
the model further would weaken the current conclusion. More training
data, from larger and more varied projects would allow for a more refined
model.

Nevertheless, the results described in this paper are very encouraging
with all the real-life cases that we have examined and we are reasonably
confident that this model can easily be applied to other types of applica-
tions.
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5 Conclusion

The contribution presented in this paper is a metric-based approach for
estimating the time needed for hardware implementation in relation to the
complexity of an algorithm. We have deduced that a relationship exists
between the number of linear independent paths in the algorithm and
the corresponding implementation effort. We have proposed an original
solution for estimating implementation effort that extends the concept of
the cyclomatic complexity.

To further improve our solution, we developed a more realistic esti-
mation model that includes a correction function to take into account the
designer’s experience.

We have implemented this solution in our tool Design Trotter of which
the input is a behavioural description in C language and output is the
number of independent paths. Based on this output and the proposed
model, we are able to predict the required implementation effort. Our ex-
perimental results, using industrial Ethernet applications confirmed that
the data, corrected for the designers’ experience, follows the derived model
closely and that all data falls inside its 95% confidence interval. Using this
method iteratively paves a way for an implementation effort estimator of
which the accuracy improves continuously after each project.
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1. INTRODUCTION

Abstract

This paper presents a structured method and underlying models for esti-
mating the hardware implementation effort of hard real-time constrained
embedded systems. We propose an optimization model which takes some
of the most common optimization techniques into account as well as the
order in which they should be applied. We suggest a set of two metrics
used to characterise the effects of optimisations: one expressing how hard
it is to reach an implementation satisfying the real-time constraints for
the implementation, and another one to reflects how the distribution of
parallelism in an algorithm influences the impact of the optimisations.
Experimental results do not show an unambiguous result. However, for
most algorithms our approach enables the estimation of the hardware im-
plementation effort for hard real-time constrained applications.

1 Introduction

The need for continuous innovation combined with growing complexity,
increased product release frequency, increasing time-to-market pressure
and fierce competition, make the task of project managers working in the
embedded systems industry more and more challenging. For example, the
2009 Embedded Market Study [1] reports that 63% of the projects were
not finished on schedule and that the average lateness is 4.4 months.

In this context, accurate development time estimates are an essential
tool which can make the difference between success and failure. However,
obtaining such estimates is not a trivial task since development time de-
pends on many factors, including both technical (hardware and software
e.g. products built upon new platforms, area/time/energy constraints),
human (e.g. skills, mood of the developers), and managerial aspects.

Whereas methods and techniques are readily available for estimating
the development time of software executing on GPPs [2], mainly for desk-
top applications, to the best of our knowledge little efforts have been car-
ried out in the hardware domain. Working with a systematic approach for
estimating the development time for different projects requires a certain
maturity in the organisation. Many small and medium sized enterprises
(SMEs) usually do not have such priories, although they would benefit
from it. Many SMEs perform ”ad hoc” estimations (e.g. based on expe-
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rience or intuition), but in many cases these ad hoc approaches do not
provide accurate estimates, which in turn means delayed projects. This
work proposes a method and tools which offer a systematic and structured
approach for estimating more precisely the implementation effort.

1.1 Our Prior Work

The work presented in this paper is part of a larger effort aiming at
improving this situation [3]. In this paper we describe our contribution
regarding the problem of estimating the hardware implementation effort
(in terms of development time) for real-time constrained applications.
This contribution is an extension of what is summarized below.

In [3] it has been shown that every path in the algorithm(s) that
the designer must implement adds to the development time and that the
complexity of a design can be expressed by the number of independent
paths in the algorithm(s). It has also shown that, when the experience
of the designer is taken into account, a relation between the number of
independent paths and development time exists and that it is possible
to estimate the hardware implementation effort (in terms of development
time) of applications.

However, in many cases the implementation can become very chal-
lenging when (hard) real-time constraints need to be fulfilled. Typically
in such cases only a limited number of “implementational tracks” lead to
a (or sometimes the) satisfying solution. This can be illustrated as in
Fig. B.1, where only one implementation track (the thick red line) sat-
isfying the contraints. The idea on which this work builds upon is that
real-time constraints make the implementation more difficult and that,
in order to fulfill these constraints, designers need to perform certain
optimizations in a certain order. Identifying a or the suitable track(s)
adds to the overall development time since extra efforts must be spent
at evaluating and applying the right combination (i.e. type and order)
of optimization techniques. In order to take these considerations into
account, we propose to complement and augment our prior work with
several extensions. These extensions are described in Section 1.2.
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Fig. B.1: The task of designing and implementing an algorithm can be seen as going
from a specification to a solution. Typical more than one solution will satisfy the same
specification. However, when constraints are introduced, the solution space narrows down
and only a few or one“implementation tracks”(depicted as the thick red line) will result in
a satisfying solution.

1.2 Contributions

One major contributor to the overall development time is the implementa-
tion effort. The contributions presented in this paper are i) a method and
ii) a set of underlying models aiming at estimating the implementation
effort, measured in time, of real-time constrained embedded applications.
We propose an optimization model which takes some of the most common
optimization techniques into account as well as the order in which they
should be applied. An essential contribution of this work is a set of two
metrics used to characterise the effects of optimisations. The first one
expressing how hard it is to reach an implementation satisfying the real-
time constraints for the implementation. The second one reflects how the
distribution of parallelism in an algorithm influences the impact of the
optimisations.

The remainder of the paper is organized as follows: section 2 intro-
duces related works. Section 3 details the proposed methodology and
section 4 details the metric for the distribution of the parallelism. Sub-
sequently, section 5 presents and discusses the experimental results ob-
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tained. Finally, section 6 concludes the paper.

2 State of the art - Effort Estimation

To the best of our knowledge, very few works address the problem of esti-
mating the hardware implementation effort of hard real-time constrained
applications. On the other hand, there exist several approaches for esti-
mating the software implementation effort, some of them providing ideas
and directions for the hardware oriented ones. Thus, in this section we
start by reviewing the most relevant approaches for estimating the soft-
ware implementation effort and proceed with the few existing approaches
for hardware implementation effort estimation.

Some of the most known and used tools for estimating the software
implementation effort are the COCOMO project [2], function point [4],
and SPQR/20 [5]. They all build upon the same concept: firstly, in
order to quantify certain properties of an algorithm, a measure or set of
measures is defined. Secondly, a model describing the relation between
the measure(s) and the implementation effort is derived.

The core idea in COCOMO (COnstructive COst MOdel) [2] is that
the effort mainly depends on the project size, i.e., Effort = A · sizeb

where A and b are adjustable parameters which must be trained in order
to reflects factors such as manpower, experience of the developers, etc.
The remaining parameter in the equation, the size of a project, can be
measured by means of e.g. Lines of Codes (LOC); however, this is subject
to criticism and thus other measures have been proposed like function
point.

Function point [4] consists of two main stages: the first stage consists
in counting and classifying the function types of the software: identified
functions are weighted to reflect their complexity, which in practice is left
to the developers’s perception. The second stage is the adjustment of the
function points based on 14 parameters which are tuned according to the
characteristics of the application and of its environment. Subsequently,
the function points are converted into a LOC measure based on an im-
plementation language-dependent factor, which in turn can be used as an
implementation effort estimation metric.

SPQR/20 (Software Productivity, Quality and Reliability with regard
to 20 influencing factors) has been proposed as a less heuristic-oriented
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variant of function point; experimental results [6] suggest that it can
provide the same accuracy than function point while being simpler to
work with.

Publications dealing with the estimation of hardware implementation
effort are far less abundant than those dealing with software. Consider-
ing the context of the present work, interesting approaches include VHDL
function point [7] and cost models such as [8]. Several other publications
such as [9] compare actual hardware implementation efforts for differ-
ent design methodologies but do not provide any systematic method to
estimate those efforts.

VHDL function point, presented in [7], builds upon the idea of func-
tion points analysis and is modified to work with VHDL code. The ap-
proach consists in counting the number of internal I/O signals and com-
ponents, and classifying these counts into levels. From there, a function
point value related to VHDL is extracted. Experimental results consid-
ering the number of source lines in the LEON-1 processor project yields
predictions which are within 20% of the real size. However, estimating
the size does not always give an accurate indication of the implemen-
tation difficulty, especially when the application is subject to real-time
constraints.

[8] introduces a cost model with the objective of understanding cur-
rent Product Development Cycles (PDC) and evaluating the impact of
new technologies on these PDC. In particular, the authors focus on cost
and product development time and propose a PDC known as One Pass to
Production (OPP) which takes both software and hardware aspects of a
complete system into consideration. Although promising, their approach
is very specific (they consider a FPGA-based NOC backbone) and the
numerous assumptions made by the authors (e.g. regarding the number
of required engineers) make it challenging to see how their approach could
be made sufficiently generic to be applied to much more varied types of
applications.

We can safely conclude that there is currently a lack of suitable and
systematic methods and tools for estimating the hardware implementa-
tion effort for real-time constrained applications. In what follows we
present our contribution to improve this situation.
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3 Methodology

In [3] it has been shown that the hardware implementation effort can then
be modelled as

Effort = A(η(Dev) · P (alg))b (B.1)

where η reflects the experience of the developer Dev, P (alg) is the num-
ber of independent path in the algorithm alg, and A and b are trim
parameters.

Experimental results have shown that it is possible to estimate the
hardware implementation effort, expressed as the development time, of
applications and that the proposed model is able to estimate the need
implementation effort with a confidence interval of 95%. However, this
approach is not specifically targeting real-time constrained applications
and is therefore not suitable for this type of application.

Since we in this work want to take hard real-time constraint into
account, we propose a method which adds a parameter τ(tc) expressing
the difficulty or hardness of reaching an implementaion which meets the
time constraint, tc. This parameter we will call implementation hardness
and therefore the effort can be modeled as:

Effort = A(η(Dev) · P (alg) · τ(tc))
b (B.2)

The underlying idea is that as far the execution time texec is from tc the
more difficult it will be to fullfil tc. Whenever tc is not met, optimizations
have to be performed. However, modeling optimizations and their impact
is not a trivial task for a designer; therefore, in what follows, we propose
a method and a set of models which reflect the most common cases.

3.1 Real-Time Constraint

When optimizing the implementation to meet a real time constraint, the
optimization strategies can be many fold. For a developer, the optimiza-
tion strategy is very much application dependent but also depends on his
experience and on his analytical thinking. Optimizations can fall into two
different domains; spatial and temporal. Optimizations in the spatial do-
main include algorithmic parallelism exploitation on multiple functional

88



3. METHODOLOGY

units. For the temporal domain, different optimization techniques exist
such as chaining and pipelining.

Typically, the type of optimization to be performed in the tempo-
ral domain is chosen depending on a) data/control dependencies in the
algorithm and b) the constraint type:

� Throughput (pipelining)

� Latency (chaining)

Both type of constraints can benefit from parallelism exploration.
Usually when analyzing an algorithm, for e.g. parallelism, the measure
applied will indicate the potential of exploiting the entire parallelism in
the algorithm, as for example with the measure γ [10]. Performing a
straight manual implementation of an algorithm will usually not result
in a complete exploitation of the parallelism. Either because it is not
necessary or because the designer has omitted optimizations which could
have a significant impact on the exploitation of the algorithm’s inherent
parallelism.

An illustration of the overall optimisation approach is shown in Fig. B.2.
The starting point will usually be a sequential version of the algorithm.
The developer chooses in which order he/she performs one or several of
the different optimisations strategies. The order and types of strategies
will vary from algorithm to algorithm. To generalise our approach we
constrain the optimisation strategy to follow the template denoted by
the thick line in Fig. B.2. This limits the overall strategy to complete the
parallelism optimisation strategy before starting the chaining strategy.
We will not consider pipelining optimisations further in this paper.

In order to guide the designer in the exploration of the parallelism,
this work considers a fully spatially parallelized algorithm as an extreme.
Similarly, a complete chained implementation is also considered as ex-
tremes, these extremes indicate the bounds of how much speedup can
be obtained when applying the respective type of optimization, without
rewriting the algorithm.

Furthermore, not knowing the exact strategy that a development en-
gineer is following, but knowing which options he/she has, our hypothesis
is that it is possible to estimate the minimum number of optimizations
required in order to fulfill a real-time constraint. This, in turn, provides
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Parallelism

Chaining

Pipelining

Sequential

Fig. B.2: The overall optimisation approach where the starting point usually will be the
sequential version of an algorithm. The developer freely chooses in which order he/she per-
forms the different optimisations strategies. For our approach we constrain the optimisation
strategy to follow the thick line.

useful information which can be converted into the implementation hard-
ness parameter, τ , of Eq. B.2 for estimating the required implementation
effort.

It is therefore important to know how many optimizations inside the
different categories should be applied in order to fulfill the time constraint,
tc. The next section describes the concept of estimating the execution
time on basis of the number of optimisations.

3.2 Optimisation Dependent Execution Time Estimation

Every optimisation yields a certain speed-up to the execution time. Fig B.3
shows the execution time of an algorithm with different numbers of opti-
misations for the different optimisation categories. This is illustrated by
the relation between the number of applied optimisations (represented by
the small vertical lines) and the resulting execution time (texec) for several
optimisation strategies (parallelization and parallelization+chaining).
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Fig. B.3: Relation between the number of applied optimisations (represented by the small
vertical lines) and the resulting execution time, texec, for several optimisation strategies
(parallelization and parallelization+chaining). The reduction of the execution time gets
smaller as the number of optimisations increases for a certain strategy (represented by the
spacing between the small vertical lines). In order to arrive at an execution time equal
to or smaller than the time constraint, tc, several possible paths exist which depend on a
combination of different optimisation strategies and the number of applied optimisations
for each strategy.

The reduction (per optimisation) of the execution time gets smaller
as the number of optimisations increases for a certain strategy. This is
represented by the spacing between the small vertical lines. In order to
arrive at an execution time equal to or smaller than the time constraint
(tc) represented by the dashed line, the designer can choose between sev-
eral possible paths. An optimization path is the number of optimizations
performed in the parallelization category followed by the number of op-
timizations performed by chaining. The number of optimisations in the
different categories can vary since there can be more than one path sat-
isfying the time constraint.

Therefore, it is necessary to know an estimate of the execution time
for different optimization paths. In the following we describe how to
estimate the execution time for the non-optimized case and the three
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different optimisation cases:

Case 0: No optimization (sequential execution)

The most simple case is the sequential execution. To calculate the esti-
mate, texec , we use the following equation:

texec(0) = NOPatomic
1

ˆfarch
(B.3)

where NOPatomic denotes the number of operations in the sequential al-
gorithm and 1

ˆfarch
the time for executing one operation. In this work we

assume that all operations can be considered as atomic and therefore have
the same execution time.

Case 1: Parallel optimization

The estimated execution time, texec(NOOPAR), when applying a certain
number of parallelization optimisations, NOOPAR, can be expressed as

texec(NOOPAR) =
NOPatomic

γimpl(NOOPAR)

1

ˆfarch
(B.4)

where γimpl(NOOPAR) expresses the degree of speed-up obtained with
NOOPAR number of optimisation. This can be calculated as:

γimpl(NOOPAR) =
NOPatomic

NOPatomic −NOPoptimised(NOOPAR)
(B.5)

where NOPoptimised(NOOPAR) expresses the reduction in executed oper-
ations in the critical path when NOOPAR, number of optimizations, are
applied. How to obtain this estimate is further discussed in section 3.3.

All in all this gives:

texec(NOOPAR) = (NOPatomic −NOPoptimised(NOOPAR))
1

ˆfarch
(B.6)
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Case 2: Chaining

Similarly, for chaining we can express the estimated execution time,
texec(NOOChain), as:

texec(NOOChain) = (NOPatomic −NOPoptimised(NOOChain))
1

ˆfarch
(B.7)

where NOOChain denotes the number of applied chaining optimizations.
Please note that, ˆfarch, the frequency of the architecture will typically
change when creating larger operators.

Case 3: Combined

Combining the parallelized and chained cases will leave us with the fol-
lowing equations:

texec(NOOPAR, NOOChain) =
(

NOPatomic

γimpl(NOOPAR)
−

NOPoptimised(NOOChain|NOOPAR)

ϕ(NOOPAR)−1

)

1

ˆfarch
(B.8)

where ϕ(NOOPAR) is a parallelism distribution measure which takes the
fact that a chaining optimisation in the parallel context does not neces-
sarily result in a reduction of the execution time. We discuss this later in
section 4.

3.3 Optimisation Impact Estimation

When implementing an algorithm containing loops, different loops have
different numbers of iterations. Typically, loops with larger numbers of
iterations contribute more to the execution time of the algorithm than
loops with small numbers of iterations. Optimizing an operation in a
loop with a large number of iterations yields a larger reduction of the
execution time. Assuming that the effort required to perform an opti-
misation does not change with the number of iterations, processing the
loops with the largest number of iterations first, pays a larger impact
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on the reduction of the execution time for a given implementation effort.
It is therefore essential to take this into account when estimating the
optimisation impact on the execution time.

The real impact of an optimisation on algorithms that include loops
can not be known without deep inspection of the algorithm; however, an
approximation would be beneficial. We therefore propose a measure ap-
proximating that. The requirements for defining such a measure include
that it should reflect the number of executed operations compared to the
number of operations that need to be implemented. In Fig. B.4 a random
algorithm containing loops is considered. The figure shows the relation
between the number of optimisations and the corresponding reductions
in the executed number of operations. The optimisations are ordered ac-
cording to their impact on the execution time of the algorithm. The solid
line represents the real impact. The dashed line, the average and the
dotted line, a first order logarithmic based approximation. The real line
corresponds to the case where the optimisations are fully prioritised ac-
cording to their impact, the average line corresponds to the mean impact
of a random optimisation strategy.

One interesting point in the graph in Fig B.4 is the end point. The
number of operations which can be parallelized as well as the number of
operations which can be chained limit the possible number of optimisa-
tions. We denote the maximum number of optimisations for the parallel
case as:

|NOOPAR|max = NOPimpl − CPimpl (B.9)

where NOPimpl represents the number of implemented operations and
CPimpl the number of implemented operations which are present in the
critical path. These numbers are different from NOP and CP when loops
are present since the operations inside a loop are executed several times.
Similarly to the measure in Eq. B.9 a measure, NOPoptimised(|NOOPAR|max),
for the maximum number of executed optimised operations can be calcu-
lated. The ratio between these two measures reflects the average impact
of the loops present in the algorithm when taking the parallelism into
account. This will be the slope of the average line in Fig. B.4.

A similar approach is used for the chaining case except that the max-
imum number of optimisations is calculated as:
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|NOOChain|max (NOOPAR) = NOPimpl − P (NOOPAR) (B.10)

where P (NOOPAR) denotes the number of paths in the algorithm, which
is further detailed in section 4.

It turns out to be difficult to obtain a good and stable first order
approximation of the impact of the loops in the algorithm based on the
limited number of data which we have available. We have therefore de-
cided to use the average as a measure for the impact of an optimisation
which can be calculated as:

NOPoptimised(NOOPAR) =
NOPoptimised(|NOOPAR|max)

|NOOPAR|max

NOOPAR

(B.11)
and

NOPoptimised(NOOChain|NOOPAR) =

NOPoptimised (|NOOChain|max (NOOPAR))

|NOOChain|max (NOOPAR)
NOOChain (B.12)

4 Metrics

4.1 Metric of distribution of parallelism

When chaining operators, the impact on the execution time depends on
whether the optimisations are done in the critical path or in other paths.
For this work we expect that the developer has carefully analysed the
algorithm and is only optimising where it is most feasible, i.e. in the
critical path.

However, chaining operations in the critical path can lead to a sit-
uation where the path which was originally the critical one is reduced,
due to the optimisations, so another path becomes the the longest one.
Fig B.5 shows three different examples, all having 15 nodes and a criti-
cal path of 5, which gives a speedup measure, γ = 3. Fig B.5(a) shows
an example where the initial critical path (grey) has the same length as
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Fig. B.4: The figure shows the impact (in terms of reduction) of optimisations in an
algorithm with operations in different loops and also outside loops. The operations are
optimised following the order of their impact on the execution time of the algorithm. The
solid line represents the real impact. The dashed line, the average and the dotted line,
the approximated. The real line corresponds to the case where the optimisations are fully
prioritised according to their impact, the average line corresponds to the mean impact of a
random optimisation strategy.
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(a) Extreme 1 (b) Extreme 2 (c) Average

Fig. B.5: Illustration of the distribution of the parallelism in the algorithm. Fig B.5(a)
and B.5(b) shows the two extremes, with either the critical paths (grey) being comparable
to the other paths (denoted highly distributed case) or completely unique (denoted narrow
case). Fig B.5(c) shows a more average case. All examples have 15 nodes and a critical
path of 5, which will give a speedup measure, γ = 3. When operations get chained, the
different cases lead to different reductions of the critical path. This makes it difficult to
predict the reduction of the critical path per chaining optimisation. This calls for a metric
indicating the distribution of the parallelism.

the two other paths in the algorithm (highly distributed case). Chaining
two operations in the critical path will change the longest path to one
of the two others. Opposite to this, Fig B.5(b) shows an example where
the initial critical path is significantly longer (narrow case), which means
that chaining operations in this case will lead to a reduction of operations
in the initial critical path. In between, Fig B.5(c) shows a more average
example.

Knowing the graph would make it possible to derive the exact reduc-
tion of the algorithm’s critical path with a specific number of chaining
optimisations. However, not knowing the graph but only the average
speedup, γ, the number of operations and the length of the initial critical
path makes it challenging to predict this reduction.

In order to obtain a more sufficient estimate of the effect of an average
chaining optimisation, we propose a metric which considers the distribu-
tion of the parallelism in the algorithm.

It is desirable that such a metric has the following properties: in case
of a highly distributed parallelism (see Fig B.5(b)), i.e. many paths in the
algorithm, the value of the metric should converge towards one. In case
the distribution is “narrow” (see Fig B.5(a)), i.e. the number of paths is
equivalent to the speedup, the metric should give a value close to zero.
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Fig. B.6: Every graph can be transformed into a graph which can be treated as the two
extremes of Fig B.5. M denotes the length of the critical path which is longer than the
average of the off critical paths length.

Most graphs will not fall into the two extremes from Fig B.5, but will
be more like the average case. In order to obtain the metric of the the
average contribution of chaining optimisations, we propose a mechanism
with which any graph can be transformed and handled as a combination
of the two extremes. The transformation is illustrated in Fig B.6. The
mechanism is as follows: keep the critical path fixed and substitute the off
critical paths (i.e. all paths excluding the critical one) with paths having
their average length.

Doing this transformation brings us to a simplified problem where we
first can handle chaining as the narrow distributed case, and second as
the highly distributed case. It is given that the impact of the chaining
optimisation will always be better or equal to this simplified model, with
this number of paths. An optimisation following this model is shown in
Fig B.7.

In order to handle that graph as the narrow distributed case, it is
important to know how large the difference between the critical path and
the off critical paths is. To do so we utilize P (NOOPAR), the number
of paths of the parallel-optimised algorithm. The difference between the
critical path and the average of the off critical paths can then be calculated
as:
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Fig. B.7: This figure shows the relation between the number of optimisations and the
corresponding impact when performing chaining optimisations. The solid line shows the
impact when working with the transformed graph. In the beginning every optimisation is
performed in the critical path, where every optimisation results in a reduction. When the
average length of the off critical path paths is reached, chaining optimisations need to be
performed in every path to induce a reduction. The dashed line denotes the average impact
of the chaining optimisations.
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M =

(

1−
γ − 1

P (NOOPAR)− 1

)

CP (B.13)

when the critical path is changed so that the critical path has the same
length as the average of the off critical paths, the scenario changes to the
highly distribution extreme. The rest of the chaining optimisations are
handled as so.

Since most algorithms do not fall into one of the two extremes, when
estimating the impact of a certain number of chaining optimisations the
average measure is more representative than the measure obtained based
on considering the two extremes.

Furthermore, it can be shown that the real impact from optimisation
will be equal to or better than the average of the simplified model1. Using
such a measure will therefore ensure that the estimates of the chaining
optimisation impact are not overestimated.

The measure for the impact of a chaining optimisation can therefore
be denoted by the following:

ϕ(NOOPAR) =

(

M

NOP
+

CP −M

NOP −M

)

(B.14)

With all these defined we are now ready to find the number of op-
timisations need to fulfil the real-time constraint, and define the metric
expressing how hard it is to reach this implementation. We call this
metric for implementation hardness.

4.2 Implementation hardness

Knowing the maximal number of possible optimisations and the minimum
needed to meet the time constraint, the ratio (Eq: B.15) between these
two indicates how much the implementation needs to be investigated.
Using the analogy with the implementation tracks, a number close to one
indicates that almost all possible optimisations in the algorithm need to
be considered, and only a very limited number of tracks will lead to a
solution. Finding these solutions will require a lot of effort. On the other
hand a number close to zero indicates that few optimisations are required

1equal to or better than only applies when considering the lower integer value of
the achieved reduction, since no partial operators exist.
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to meet the time constraint and thus almost every implementation track
will result in a satisfying solution. Hereby less effort is probably needed.

τ(tc) =
|NOOPAR,Chain(tc)|min

|NOOPAR,Chain|max

(B.15)

Using τ(tc) in Eq. B.2 we are now able to express the implementation
hardness, τ(tc), and thereby refine the estimated implementation effort.

5 Results

Similar to when we developed the implementation effort estimation tech-
nique in [3], we will verify the proposed improvement by first building a
model on basis of the same training data as in [3], and then validate the
model with a set of validation data, which is also the same as used earlier.
By doing so, we are able to first test if our considerations are valid and
tune the proposal, and still use the second set of real-life data to evaluate
whether it generalizes.

To summarize, the training data originates from two different applica-
tion types that are both developed as academic projects in universities in
France. The training data has therefore not been produced specifically for
this project, but is comparable to data from industrial projects. The first
application is composed of five different video processing algorithms that
are able to track moving objects in a video sequence. The second appli-
cation is a cryptographic system, where we use the hashing algorithms,
MD5, AES and SHA-1, as well as a combined crypto engine, which is
also part of the system. The developers for the training data have been
a Ph.D. student and M.Sc.EE. students, as can be seen in Table B.1.

The validation data originates from a local company, ETI A/S, which
is a Danish SME. The dataset contains algorithms from a state-of-the-art
network system and consists of Ethernet applications implemented on FP-
GAs, as well as corresponding testbeds. The system is a real-time system
with hard time constraints, and all algorithms were implemented as to
meet these constraints. The developers for the validation data had some
experience before starting the implementation as shown in Table B.1. For
more information about the data we would like to point the reader to [3].
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5.1 Training Data

Fig. B.8 shows the training data where the uncorrected complexity as
defined by the number of linearly independent paths (as defined in [3]) is
plotted in relation to the needed effort. A small update in the method of
how to measure the independent paths have been applied compared to [3].
This implies that we now only measure the core of the algorithm, which
is the part going to be implemented on the FPGA, and do not include
small fragments of data formatting code. Taking these data and applying
the original experience transformation on the data, results in the picture
shown in Fig. B.9. A least-squares fit trend line can be extracted to form
our model (Eq. B.1):

Effort = A(η(Dev) · P (alg))b (B.16)

where the trim parameters A = 0.196 and b = 1.191. This is depicted as
the dash-dot-dash line.

In Fig B.11, the new parameter τ(tc) taking the real-time constraint
into account is applied. The τ(tc) value for the different algorithms is
shown in the upper part of Table B.2. This changes the complexity for
the different algorithms a little, and a new least-squares fit line of our
model is depicted with the dashed line. The trim parameters of our
model (Eq. B.2):

Effort = A(η(Dev) · P (alg) · τ(tc))
b (B.17)

are now A = 0.209 and b = 1.181.
A comparison of the two models is shown in Table B.3, where the

model taking the real-time constraint into account performs slightly bet-
ter. However the result is not statistical significant. However, we continue
with the

5.2 Validation Data

We continuing by validating the correctness of the model using the valida-
tion data. In Fig B.11, the corrected validation data are shown together
with the model, which is depicted by the dashed line, and a 95% con-
fidence interval. Both the model and confidence interval are extracted
from the training data. It is clear that most algorithms fit nicely with
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the proposed model and are well within the confidence interval. The ex-
ceptions are algorithm SS4 and SS5. In the next section we will discuss
this in details. The mean and variance of the prediction errors are shown
both with and without SS4 and SS5 in Table B.4.

5.3 Discussion of result

Most of the algorithms fit nicely with the proposed model and are well
within the confidence interval. The improved model indeed does perform
better than the original model, which had a mean error of 0.2 and a vari-
ance of 8. Taking a closer look at Table B.2 shows that for all the Ethernet
algorithms, except for SS3, we obtain an implementation hardness value
τ(tc) very close to one. This indicates that the implementations have
been very close to the maximum achievable with the algorithm. This fits
very well with the knowledge that these algorithms are used in state of
the art high performance systems. However, the result for SS3 shows
that it should have been possible to choose a less optimised solution and
still meet the constraints, which would have resulted in a reduction of the
implementation time, at least if the model holds for this algorithm.

An exception to these results are the SS4 and SS5 algorithms, where
the estimates do not fit the model. Looking at table B.2 again, we see
that their implementation hardness value is set to 1. This is an error
value actually indicating that the time constraint cannot be met with
the current algorithm, and an algorithm transformation is needed. This
indicates that the algorithm which is used for estimating the complexity of
the implementation and thereby the needed effort, will not be able to fulfill
the requirements, and an algorithm transformation is probably needed.
Not going into details with the two algorithms, we can say that their
final implementations involve a lot of bit manipulation which is not easily
reflected in the initial C algorithm which is used for the measurement.
A safe conclusion is therefore that if the implementation hardness factor
indicates the need for algorithm transformation, the result would hardly
be covered by the proposed model.

Furthermore it is also important to stress that our set of data orig-
inates from a single company with few developers. So strictly speaking
we can only conclude that this model can be applied to the specific SME
setup involved in the study and partially to the academic environment
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studied. A large volume and variety of experimental data for training
and validation is needed to generalise our model. Also, the model can be
refined with more parameters for more precise results.

Table B.1: Facts about the developers. Developers for training data (Top) and validation
data (Bottom)

Developer Education Years in the domain

Dev 1 Ph.D. stud. 0
Dev 2 Stud. (EE) 0
Dev 3 Stud. (EE) 0
Dev 4 Stud. (EE) 0

Dev 5 BSc.EE. 9
Dev 6 MSc.EE. 15
Dev 7 MSc.EE. 9
Dev 8 MSc.EE. 8
Dev 9 MSc.EE. 8

6 Conclusion

Accurate development time estimates are an essential tool for project
managers working in the embedded systems industry. Obtaining such
estimates is challenging and in particular very few existing works can
provide hardware implementation effort estimates. In this paper we have
presented our contribution to this topic, namely a systematic and struc-
tured approach for estimating the hardware implementation effort of hard
real-time constrained applications.

The underlying idea off this work is that implementing a system is
more difficult when hard real-time constraints must be fulfilled since de-
signers have to identify a or the suitable implementational track(s) that
lead to a satisfying solution. We have proposed an optimization model
which takes some of the most common optimization techniques into ac-
count as well as the order in which they are applied.

In particular we have suggested a set of two metrics which are used to
characterise the effects of optimisations. The first one, the implementa-
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Table B.2: Training Data (Top) and Validation Data (Bottom). Algorithms are related
to the implementation hardness, τ(tc), the developers, and their experience at the given
time. Complexity is not corrected.

Algorithm Complexity τ(tc) Developer Dev. Exp.

T1 10 0.97 Dev 1 2
T2 24 0.99 Dev 1 10
T3 12 0.91 Dev 1 18
T4 14 0.96 Dev 2 1
T5 4 0.89 Dev 1 20
MD5 10 0.98 Dev 3 1
AES 10 0.99 Dev 4 8
SHA-1 27 0.98 Dev 4 14

Combined 59 0.99 Dev 4 14

SS1 25 0.99 Dev 6,7 150
SS2 35 0.98 Dev 5 150
SS3 17 0.26 Dev 5,6,7,8 150
SS4 50 1 Dev 6 6
SS5 29 1 Dev 7 3
SS6 25 0.99 Dev 5,6,7 3

Ethernet app 60 0.99 Dev 5,6,7,8,9 150
App 4 9 0.94 Dev 6 150
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Fig. B.8: Relation between the implementation effort [number of weeks] and the uncor-
rected complexity.
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corrected according to the designersŠ experience model.
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Fig. B.10: Relation between the implementation effort [number of weeks] and the com-
plexity corrected according to the designersŠ experience model and the hardness of meeting
the real-time constraint.
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Table B.3: Comparison of the development time and estimated development time for the
two models measured in weeks.

Algorithm Original Model Error New Model Error

T1 0.67 2.19
T2 1.38 3.29
T3 -0.82 -1.56
T4 -2.96 -4.45
T5 -1.53 -3.14
MD5 0.09 0.51
AES 2.57 6.65
SHA-1 2.10 5.28

Combined -1.40 -2.83

Mean (Variance): 1.50 (3.39) 1.42 (3.07)

Table B.4: Comparison of the development time and predicted development time measured
in weeks.

Algorithm Estimation Error

SS1 -0.14
SS2 0.91
SS3 2.71
SS4 -9.64
SS5 -8.42
SS6 0.19
Ethernet app 0.90
App 4 0.96

Mean (Variance): -1.56 (22.02)
Mean without SS4 and SS5 (Variance): 0.92 (0.98)
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tion hardness metric, reflects how hard it is to reach an implementation
satisfying the real-time constraints for the application. The second one,
the parallelism distribution metric, reflects how the distribution of paral-
lelism in an algorithm influences the impact of the optimisations.

The experimental results is not unambiguous: for the model the major
improvement of the accuracy comes from refining the way the complexity
of training data is measured compared to our prior work. A small and
not statistical significant improvement comes applying the implementa-
tion hardness measure. When validating the model with the validation
data, most of the data approve the model, and fit with it very well. A
mean error of 0.92 week (variance 0.98) is achieved, when not considering
two outlying data points for which our implementation hardness measure
indicate that the time constraint for these algorithms can not me met.
Strong algorithm transformation is probably need here and safe conclu-
sion will therefore be that the proposed model will hardly cover these
cases.

In order to strengthen the result this work need to be evaluated with
more cases. The work would also benefit from making room for other
optimisation strategies such as pipelining.
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1. INTRODUCTION

Abstract

Reducing the time-to-market factor is a challenge for many embedded sys-
tems designers. In that respect, hardware-software partitioning is a key
issue which has been studied during the last two decades. In this paper
we present an extension to recent works dealing with metrics for guiding
the hardware-software partitioning step. This extension builds upon and
complement our own work with metrics in the Design Trotter project, and
is combined with the affinity metric approach. We show that the proposed
extension improves the original affinity metric in terms of parallelism
detection, and thus can help system designers to make wiser hardware-
software partitioning decisions, which in turn reduces the time-to-market
factor.

1 Introduction

In order to achieve more advanced and faster services in embedded sys-
tems, increasingly sophisticated algorithms are used. To keep abreast
with the increased need for processing power, heterogeneous multiproces-
sor platforms are introduced, which includes GPPs, DSPs and FPGAs.

Introducing this variety of processing elements (PEs), not only in-
creases the computational capacity of embedded systems but also adds
various computational properties. To exploit this increased capacity and
properties, the designer needs to find the best suited PEs for the differ-
ent system functionalities. By considering these facts together with all
the system constraints (Area, Time, Power, Price, Development Time), it
becomes a non-trivial task to decide how the system functionality should
be mapped on the architecture.

To handle this task system level design methodologies have been de-
veloped, including structured design space exploration (DSE). A suite of
academic DSE frameworks, e.g. [1–3], as well as commercial tools have
been proposed, in order to provide the design engineer with qualitative
information for partitioning.

Exploring the design space with optimising for different constraints is
known to be NP hard [4]. The DSE in these frameworks is therefore car-
ried out as heuristic simulations, which still can be a time-consuming but
necessary task for state-of-the-art large scale products. Large companies
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can usually find these resources and keep up with their competitors.
However, small and medium enterprises (SMEs), which typically sell

state-of-the-art products of much smaller volumes, must also stay on the
competitive edge. They are also restricted by the time-to-market factor,
and can also benefit from using system level design methodologies (SLD)
and tools. Unfortunately, many SMEs can not afford tools and special-
ists like big companies, and therefore have problems with changing their
design methodology into SLD methodology.

We have examined the design methodology of a high-tech company
in Denmark and found that the design space exploration phase in their
overall design trajectory is limited in the sense that their partitioning
depends on prior design, designers intuition and experience, and in rare
cases on ad hoc analysis. Danish Technological Institute, a consulting
company helping many SMEs incorporating new research results, agrees
on that picture in most SMEs [5].

As a consequence of sticking to ad hoc design methodologies, SMEs
development often run into situations where redesigning part of the sys-
tem is necessary and therefore increases the time-to-market.

In this paper we propose an extension to the existing affinity metric
proposed in [6] for guiding the partitioning of the system specification,
and help making the DSE faster and easier. The rest of the paper is
organised as follows. In section 2, the existing affinity metric is presented
and examples for the need of an extension to the original metric are
shown. In section 3 the new proposed metric for parallelism is presented.
The benefits of the proposed parallelism metric are illustrated in section 4
by means of a Reed-Solomon decoder case-study. Finally we conclude in
section 5.

2 Affinity Metric

This section summarises the affinity metric proposed by D. Sciuto et.al.
in [6, 7], and argues for the need of an extension of this metric. The affinity
metric is designed to guide the design partitioning of system specification
between general purpose processors, DSP processor, and FPGA/ASIC.
The metric consists of a triplet of values (AGPP , ADSP , AFPGA) indicating
the match between the processing elements and the examined code. The
individual values in the metric are calculated based on 14 other metrics
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which are designed to measure the source code for certain patterns highly
correlated with architectural properties. The measurement is a static
analysis of the source code and the metrics are defined as ratios between
lines with specific properties, e.g., the ratio between lines with a condition
and the total number of lines, or defined as the number of assignment of
a special type related to the total number of assignments. The metrics
measure properties such as data types, Harvard architecture patterns,
MAC patterns, and bit manipulation.

To illustrate how the affinity metric works on a real life example, we
have applied it onto c-code (Fig C.3) calculating a matrix multiplication.
The results of the different metrics are shown in table C.1:

Table C.1: The affinity value for the matrix multiplication algorithm, where Axxxx indicates
the match between the processing element type and the code. 0 =no matching, 1 =perfect
match.

AGPP ADSP AFPGA

0.89 0.96 0.39

The normalised metric values indicate that the best architecture match-
ing the algortihm is a DSP architecture, which the designer could easily
rely on. An in-depth analysis of the code shows that besides the already
extracted properties from the affinity metric, a high degree of inherent
parallelism is present in the matrix multiplication algorithm. This is fur-
ther discussed in section 3. A high degree of inherent parallelism indicates
that the algorithm is suited for parallel execution. This is one property of
a FPGA architecture, and the original affinity metric does not consider
it.

3 Parallelism metric

From the analysis of the matrix multiplication shown in Fig C.3, we see
that the inherent parallelism of an algorithm is an important parameter.
Therefore it would be beneficial to measure the degree of inherent par-
allelism in the algorithm and use this in calculating the AFPGA value of
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the affinity metric.
One of the first metrics considering the parallelism is Amdahl’s speedup

metric [8]. Here the potential execution speedup of an algorithm is defined
as the ratio between the sequential execution, and the fully parallelised
execution. What determines the fully parallelised execution is the critical
path in the algorithm.

This is also the case for more recent parallelism metrics e.g. [9, 10],
so let us consider the critical path by looking at precedence graphs.

Definition 1. Let G = (N,E) represent the precedence graph of a method,
m, where N represents the set of nodes ni and E is the set of edges ei,j. A
node ni can have a source node and a destination node. If the node does
not have a source node, it is defined as a start node, and if the node does
not have a destination, it is a sink node. If a dependency between two
nodes; the parent node, ni and the child node, nj, exists, it is connected
with an edge ei,j. The node, nj, cannot execute before it has obtained data
from its parent(s).

Using definition 1, we can now express the critical path of algorithm
using the following definition:

Definition 2. The critical path, CP , is a set of nodes nstart, . . . , ni, . . .
. . . , nsink and associated edges estart,h, . . . , ei,j , . . . , ek,sink forming a path,
p, from a start node, nstart, to a sink node, nsink, for which the sum of
costs are a maximum:

CP = max cost({nstart, estart,h, nh, . . . , ni, ei,j , nj , . . .

. . . , nk, ek,sink, nsink}) (C.1)

A way to measure the inherent parallelism that uses the critical path
is the γ metric developed in our previous work [9] which is defined as:

γ =
NOP

CP
(C.2)

where we consider the nodes to be atomic, meaning that NOP represents
the total number of operations in the precedence graph.

The metric described in (C.2) expresses the level of inherent paral-
lelism of the algorithm by calculating the ratio between the number of
operations in the algorithm, and the number of operations in the critical
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path. In this case, where we consider all nodes as basic operations, NOP
is equivalent with the total number of nodes N . This metric is organised
such that with no inherent parallelism its gives the value 1. The metric
value increases along with the inherent parallelism.

The affinity metric [7] on the other hand is in comparison a normalised
measure, where zero indicates the worst match and one indicates a perfect
match between the algorithm and the architectural property. Using the
γ for expressing the inherent parallelism will lead to non-comparable re-
sults. A metric expressing the parallelism together with the affinity metric
should have the same normalised properties. To suit these properties we
can rewrite the γ metric into a normalised metric:

γ′ = 1−
CP

NOP
(C.3)

The affinity metric is based on textural analysis of the source code
and therefore does not refer to the number of operations, critical path or
any of the terms used above for γ and γ′. Instead it operates with source
lines which contain certain patterns.

In order to cope with the parallelism measure inside this source line
based framework, we propose a new metric, θ, inspired by the γ′ metric.
θ is defined as:

θ = 1−
SCP

Sm
(C.4)

where SCP is the number of source lines included in the critical path
and Sm is the total number of source lines in the code. To emphasise
the weight of the critical path, a loop unrolling is need to be performed
before measuring Sm and SCP of the θ metric.

This way of expressing the parallelism is not equivalent with γ′ since
every source line in a high level language will usually lead to more than
one atomic operation. The danger is that the number of atomic opera-
tions highly depends on the programmers coding style. A compact code
will result in more operations per source line than a fragmented code with
many intermediated/temporary variables which come close to one opera-
tion per code line. It is therefore impossible to obtain the same precision,
as the modified and normalised γ′ metric.
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Fig. C.1: Precedence graph of random 1 algorithm.

To examine their differences, extreme cases, i.e. a purely sequential
and a fully parallel execution as well as two random cases have been
considered. The two random execution graphs are shown in Fig C.1
and Fig C.2. Comparing the γ′ metric and the θ metric on these cases
provides us with the results shown in the four first lines of table C.2.
We here consider N = 40 in the precedence graphs, where a source line
on average corresponds to four nodes. The sequential execution gives,
as expected, the same result for both metrics i.e., 0. The fully parallel
execution however, gives a slightly different result for the two metrics,
γ′ = 0.975 and θ = 0.9. None of them reach the value 1 for a full parallel
execution, because of the way CP is defined. But we notice that θ gives a
lower score than the γ′ metric. This is due to the smaller number of code
lines compared with the number of nodes, which influences the ratio. For
the random case there are larger differences (0.65 vs. 0.56) and (0.7 vs.
0.75).
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Fig. C.2: Precedence graph of random 2 algorithm.

Table C.2: Differences between the γ′ and θ metric.

γ′ θ

Sequential: 0 0
Parallel: 0.975 0.9
Random 1 0.65 0.56
Random 2 0.7 0.75

Matrix Multiplication: 0.999 0.989
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Table C.3: The original affinity metric values for GPP, DSP, and FPGA and the proposed
metric (FPGA&θ) for the Reed-Solomon Decoder algorithm. The performance (latency)
of the different architectures are also shown.

GPP DSP FPGA FPGA&θ

Affinity 0.717 0.795 0.205 0.806
Latency [µs] - 514 2278 244

Even though the θ metric and the γ′ metric do not give similar re-
sults, θ still gives a good indication of the algorithms affinity to a parallel
architecture. Let us discuss this issue by re-considering the matrix mul-
tiplication case given by:

C = AB (C.5)

where C ∈ R
X×Z , A ∈ R

X×Y , B ∈ R
Y×Z are matrixes where X,Y, Z

denotes the dimensions. Here the dimensions are X = Y = Z = 10. The
c-code taken from the DSPstone project [11] is shown in Fig C.3, and
we see that the kernel of the algorithm consists of multiplications, mem-
ory reads and writes together with some indexing controls. A precedence
graph of the kernel of the algorithm is shown in Fig C.4. The results of the
examination of the algorithm with the two metrics are also shown in ta-
ble C.2. From this we see that there is an insignificant difference between
the two metrics (i.e., 0.999 and 0.989), which is due to the high number
of nodes and unrolled source lines. From these cases it appears that the
newly proposed metric θ serves its purpose of indicating parallelism.

4 Case study

In this section we present a case study, which expresses the benefits of the
introduced metric, before selecting the architecture for a Reed-Solomon
decoder.
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int matrixMul(static int A[X*Y],

static int B[Y*Z],

static int C[X*Z])

{

int *p_a = &A[0] ;

int *p_b = &B[0] ;

int *p_c = &C[0] ;

int f ;

int i ;

int k ;

for (k = 0 ; k < Z ; k++)

{

p_a = &A[0] ; /* point to the beginning of array A */

for (i = 0 ; i < X; i++)

{

p_b = &B[k*Y] ; /* take next column */

*p_c = 0 ;

for (f = 0 ; f < Y; f++) /* do multiply */

*p_c += *p_a++ * *p_b++ ;

*p_c++ ;

}

}

return(&C[0]) ;

}

Fig. C.3: Matrix multiplication example.
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Fig. C.4: Precedence graph of the kernel of the matrix multiplication example.

4.1 Reed-Solomon Decoder

Reed-Solomon codes are a forward error correction codes used in many
modern communication systems. The decoder is able to detect and cor-
rect some bit errors which have occurred doing the transmission. It is an
algorithm which involves many conditional branches in order to detect
and repair errors.

The algorithm has been examined with the affinity metric, and the
results are shown in table C.3. The table shows the original affinity
metric values for GPP, DSP and FPGA architectures and the affinity
metric for FPGA with our new extension (added as an extra parameter
for FPGA metric before normalisation as in [7]). We see that the Reed-
Solomon decoder has the highest score (0.795) on a DSP architecture
with the original affinity metric, however, the score for FPGA architecture
increases significantly (from 0.205 to 0.806) when including our extension,
and thereby gets the highest score. To verify the results, the algorithm
has been implemented on a Analog Devices TigerSHARK ADSP-TS201
DSP and a Xilinx Virtex II FPGA, in high-level languages (C and Handel-
C, respectively). The latency for decoding one block was measured on
both platforms. The FPGA implementation was done in two steps: first,
a version without exploiting the parallelism, which corresponds to the
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original affinity metric interpretation, and second, a version exploiting
the inherent parallelism. These latencies are also shown in table C.3.

Inspecting the results shows that the best performance is obtained
by the parallelised FPGA implementation, with a latency of 244µs. We
can then deduce that using the original affinity value for FPGA in this
case will not disclose the architectures potential for the Reed-Solomon
algorithm. Without considering the parallelism, the designer would make
an inefficient partitioning choice.

Using the extended metric that we propose gives a better indication
of the affinity between algorithm and FPGA architecture, thus helps the
designer to make wiser partitioning decisions.

5 Conclusion

In this paper we have proposed an extention of the affinity metric [6],
in order to improve the capability to measure the algorithm-architecture
affinity for FPGA. The extension consists of a new metric derived from
some of our previous work [9]. This new metric provides a mean for
measuring the inherent parallelism of the algorithm inside the source code.
We have shown that adding this new metric to the original affinity metric
improves its score for FPGA matching.
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1. INTRODUCTION

Abstract

This work addresses some of the implementation challenges for recent and
future wireless communication systems. More specifically this paper de-
scribes a design methodology for design space exploration and implemen-
tation guidance and illustrates its practical usage and benefits by applying
it to two sub-parts (i.e., the turbo-encoder and turbo-decoder) of the HS-
DPA technique. The implementation examples and results show how the
proposed methodology based on our tool “Design-Trotter” can guide system
designers in selecting and/or building the most appropriate architecture
for their application.

1 Introduction

In order to satisfy the ever-increasing need for data-traffic and high-speed
services in the wireless domain, new techniques have been developed to
increase the spectral efficiency of current third generation systems to sup-
port high user data rates. The High Speed Downlink Packet Access (HS-
DPA) technique [1], which has been validated by the Third Generation
Partnership Project (3GPP) in the specification of the Release 5 is a
significant step to boost the WCDMA performance for downlink packet
traffic, enabling user peak data rates up to 14 Mbps. HSDPA offers new
opportunities for wireless communications but also raises a number of im-
plementation challenges such as platform selection (e.g., DSP-processor,
FPGA, GPP) and optimizations (e.g., time, power and area).

In order to alleviate system designers from time-consuming and error-
prone design tasks which increase the time-to-market factor, a systematic
and efficient design methodology is highly desirable. This work illustrates
how designers can benefit from a guidance methodology for the imple-
mentation of the HSDPA technique by means of design space exploration
(DSE) with the Design-Trotter tool [2]. In particular we investigate how
DSE combined with the characterization of the application by means of
metrics provide a design trajectory allowing early and right decisions for
selecting and/or building the most appropriate target architecture accord-
ing to the system specifications, and thus reducing the time-to-market
factor.

The remainder of the paper is organized as follows: Section 2 intro-
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duces the main steps of the proposed design methodology and discusses
some of the key issues related to design space exploration and how to
move from high-level estimates to an actual implementation. Then sec-
tion 3 illustrates how the proposed methodology can be used for guiding
the implementation of some of the most critical sub-parts of the HSDPA
concept (i.e., the turbo-encoder and turbo-decoder) by means of design
space exploration examples and implementation results. Finally we con-
clude in section 4.

2 Methodology

Modern system development requires a design methodology which enables
the designer to explore different implementations in order to choose one
which fulfils the performance requirements for the product. In this work
we consider a design methodology build upon the design space exploration
tool Design-Trotter. The overall design methodology is summarised in
Fig.D.1 and the main steps are presented hereafter. Further details about
the tool Design-Trotter can be found in [2].

The task of analysing an algorithm with a design space exploration
tool consists of characterizing the algorithm, in such a way that the de-
signer is able to get useful information about the performance of different
implementations, typically in terms of a resource vs. execution time, or
area vs. time curve.

Based on the design space exploration results, a particular solution
can then be further explored and implemented. Some tools try to do this
automatically based on the algorithm description, however this task is still
done more or less manually in many situations. Due to the time-to-market
parameter, high-level languages are increasingly used for implementation.
It is therefore important that the used high-level languages are able to
express the detailed needs in order to implement the chosen design.

In the following we describe the individual tasks and illustrate some
of the issues involved when going from DSE estimates to real implemen-
tations using high-level languages.
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Fig. D.1: Our mehodology for rapid development of wireless applications.

2.1 Design Space Exploration with Design-Trotter

Design-Trotter [2] is an academic design space exploration tool conjointly
developed by Laboratoire d’ Électronique des Systémes TEmps Réels
(LESTER), Université de Bretagne Sud, France and Center for Software
Defined Radio (CSDR), Aalborg University, Denmark.

For guidance purposes metrics are computed to rapidly stress the
proper architecture style for the application, e.g., the ratio of explicit
parallelism versus the pipeline depth, the need for complex control struc-
tures, the requirements in terms of local memories and specific bandwidth,
and the need for processing resources for specific computations or ad-
dress generation. Design-Trotter computes three orientation metrics [3]:
the Memory Orientation Metric (MOM), the Control Orientation Metric
(COM), and the criticity (average potential parallelism) of a function (γ).

Since parallelism has a direct impact on several performance factors
such as execution time, energy consumption, area, etc., Design-Trotter
explores the potential parallelism of an application in terms of i) type
(data-transfer and data processing), ii) granularity level, and iii) type
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(spatial, temporal). Design-Trotter rapidly provide dynamic exploration
of an application by means of parallelism vs. delay trade-off curves on
which a point corresponds to a potential architecture.

The analysis of the algorithm under consideration in Design-Trotter is
done automatically, and provide the designer with the above mentioned
information. The designer use these information to identify which possible
solutions in the solution space are fulfilling the requirements. Since the
solutions provided by Design-Trotter are estimates, it is important that
these estimates are close to the performance of the real implementation.

2.2 Design-Trotter Solution to Handel-C

Having the algorithm and the design suggestions provided by Design-
Trotter, the next task is to perform the actual implementation. To keep
the development time short, high-level languages like Handel-C [4] are
preferred.

Each solution proposed by Design-Trotter could be implemented on
an FPGA using a HDL. Ideally this could also be the case for high-level
languages, however, the main problem at this point is how to achieve
this precision. To settle it the following elements are used: the resource
schedule details provided by Desing-Trotter and the ”par” statement in
Handel-C. Firstly the C source code used in Design-Trotter is converted
to Handel-C; secondly by referring to the schedule details of the desired
Design-Trotter solution, we can manually express parallelism inside the
top-level blocks of an algorithm using the ”par” construct in the corre-
sponding Handel-C code parts; thirdly the Handel-C code in DK-Suite [4]
is compiled to an EDIF design file, used for further implementation on
the FPGA.

The structure of the compiled Handel-C code depends on the as-
signments in the Handel-C code, meaning that every assignment in the
Handel-C code have a corresponding circuit which takes a clock cycle to
execute.

Due to this fact, one can imagine that the Design-Trotter result in
terms of cycle-budget will differs from the corresponding Handel-C result.

As an example, let’s depict the schedule details of the encoder’s in-
terleaver block, shown in Fig D.3. The C source code of this interleaver
is shown below:
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Fig. D.2: Schedule details of the interleaver, derived from Design-Trotter.

/* interleave output of upper RSC encoder */

for(j=0; j<FrameLength; j++){

index = alpha[j]; //statement #1

input2[j] = output1[2*index]; //statement #2

}

As we see in Fig D.2, one iteration of the interleaver’s loop body
takes 6 cycles in Design-Trotter, where statement #1 in the code above
takes 2 cycles to be performed: it takes 1 cycles to read from memory
the constant 2 and alpha[j] values, then 1 cycle to write alpha[j] to
index variable. Statement #2 takes 4 cycles to be performed: 1 cycle
to read index value, 1 cycle to perform 2*index multiplication, 1 cycles
to read output1[j] value, and 1 cycles to store output1[2*index] in
input2[j].

In contrast, in Handel-C, one iteration of this loop body takes only 2
cycles: 1 cycle both for statements #1 and #2.

The difference in cycle-budget between the Design-Trotter result and
the corresponding Handel-C result will, in most cases, have a overweight
of cycles in the Design-Trotter solution. The reason is that assignments
and control statements in Handel-C are incorporated in the cycle circuit,
whereas they have their individual cycle in Design-Trotter. This means
that in practice the implemented solution typically is more efficient in
terms of timing performance than the corresponding solution, shown in
the Design-Trotter trade-off curves between resource usage and cycle-
budget.
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Fig. D.3: Different blocks of the turbo encoder analysed.

If we use Design-Trotter as a guidance tool and want to implement
the Design Trotter solution as precisely as possible in hardware, in terms
of timing performance, we need to cope with this difference by trying to
minimize it as much as possible.

2.3 Timing matching between Design-Trotter and Handel-C

If we consider the nature of these differences, it is clear that the reduction
in the cycle budget, in the Handel-C case comes from the assignments. It
is not a constant reduction for all assignments but the reduction is more
or less equal for the individual assignments whether they are executed in
parallel or sequentially.

We can not remove this but try to minimise it. To do so, it is impor-
tant that all complex code assignments in the Handel-C code should be
split into simpler assignments if possible, and that the same code should
be used for the Design-Trotter analysis.

3 Examples

In the following we illustrate the methodology applied on the turbo coder
part of the HSDPA scheme. The turbo encoder and turbo decoder consist
of different blocks which are illustrated in Fig D.3 and Fig D.4 respec-
tively.
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Fig. D.4: Different blocks of the turbo decoder analysed.

Table D.1: Metric of the encoder derived from Design Trotter.

Block # Block description COM MOM γ

1 Interleaver 0.071 0.786 1.273
2 Upper RSC encoder 0.018 0.667 2.237
3 Lower RSC encoder 0.018 0.667 2.237
4 P/S converter (1 of 2) 0.03 0.636 3.286
5 P/S converter (2 of 2) 0.017 0.525 5.028

3.1 Design-Trotter Characteristics

The characterization results derived by Design-Trotter for the turbo-
encoder and turbo-decoder are given in Table D.1 and Table D.2, re-
spectively. The block numbers refer to the numbers shown in Fig D.3
and Fig D.4.

As seen in Table D.1 and Table D.2, all blocks have relatively low
COM metric values denoting easily conditioned data-flows, i.e., with al-
most no nondeterministic control operations in the algorithms. This is
due to the fact that the loop indices are almost not data-dependent.
The MOM metric values, greater than 2/3, indicate an important data
accesses frequency: these blocks require high memory bandwidth in hard-
ware. Finally, we observe high parallelism (high γ value) in the encoder’s
P/S converter, and in the decoder’s SISO processors. It means that these
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Table D.2: Metric of the decoder derived from Design Trotter.

Block # Block description COM MOM γ

1 Upper SISO processor 0.059 0.73 8.276
2 Lower SISO processor 0.059 0.73 8.276
3 Interleaver 0.077 0.846 1.183
4 Deinterleaver 0.143 0.793 1.473
5 Output formation 0.001 0.576 1.405

blocks can benefit from an architecture offering high parallelism capabil-
ities (e.g., FPGA).

Design-Trotter also generates the resource vs. cycle-budget trade-off
curves of the turbo-encoder and of the turbo-decoder as shown in Fig D.5
and Fig D.6 respectively.

For the turbo-encoder case, Fig D.5 shows that the most-right solu-
tion (3595 cycles) is purely sequential, i.e., at this point all of the turbo
encoder operations are performed in a sequential manner using the min-
imum number of different operation resources.

With the most-left solution (1121 cycles), the maximum available par-
allelism for the encoder is achieved, where therefore this encoder operates
in the fastest way as compared with other solutions. However, this solu-
tion is the most expensive in terms of resources. Finally the solutions in
between offer different level of trade-off between the most sequential and
most parallel ones.

For the decoder case, Fig D.6 shows that there are more solutions than
for the turbo-coder. This is mainly due to the fact that there is more
processing operations and less data-dependencies, thus more flexibility
for scheduling the individual operations.

3.2 The Handel-C implementaion

Different implementations of the HSDPA’s encoder and decoder in terms
of parallelism and split of complex statements are shown in Table D.3.

The implementation results in terms of timing performance are pre-
sented in Table D.4, and the implementation results in terms of resource
usage are shown in Table D.5.
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Fig. D.5: Resource vs. Exec. Time graph for turbo encoder.

Fig. D.6: Resource vs. Exec. Time graph for turbo decoder.
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By examining the results of the different implementation of the turbo
encoder, i.e., implementations #1, #2 and #3, from Table D.3, we see
the following:

With implementation #1, the original sequential C source code of
the encoder without complex statement splitting was used. Here we can
observe (Table D.4) that the cycle-budget of this encoder in Handel-C
differs from the cycle-budget of the same encoder in Design-Trotter: in
Handel-C it is about five times less (3595 cycles / 735 cycles) than the in
Design-Trotter.

With implementation #2, all complex statements of the encoder’s
code, used in implementation #1, are splitted into simpler statements.
Here we see that the cycle-budget of the splitted code in Handel-C is
now about three times less (5470 cycles / 1880 cycles) than the one of
the same splitted code in Design-Trotter. With implementation #3, the
internal parallelism is expressed inside all blocks of the encoder’s code,
used in implementation #2.

At this point we notice that the cycle-budget both in Handel-C and
Design-Trotter is reduced about the same number of times (as compared
with implementation #2), so using another solution from the trade-off
curve gives the same trend in both Design-Trotter and Handel-C imple-
mentations.

Let’s consider the implementation results of the turbo decoder, i.e.,
implementations #4 and #5, shown in Table D.4. With implementation
#4, the original C source code of the turbo decoder is implemented. With
implementation #5, this code is splitted, i.e., all complex statements of
this code are broken up into simpler statements.

When comparing implementations #4 and #5, we notice that splitting
of complex statements increases the hardware clock speed.

4 Conclusion

In this paper some of the implementation challenges raised by recent
and future wireless communication systems have been addressed. More
specifically we have described a design methodology for design space ex-
ploration and implementation guidance for wireless systems. By applying
the proposed methodology to the HSDPA concept we have illustrated its
practical usage and benefits. The implementation examples and results
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Table D.3: Different implementation used in the example.

# Algorithm Solution Statement
splitting

1 Turbo encoder Purely sequential No
2 Turbo encoder Purely sequential Yes
3 Turbo encoder Internal parallelism

is max exploited
Yes

4 Turbo decoder Purely sequential No
5 Turbo decoder Purely sequential Yes

Table D.4: Estimated cycle times from Design-Trotter and Handel-C, and execution times
from Handel-C implementation, for the corresponding solutions in table D.3.

# DT Handel-C HW clock Exec. time
[Cycles] [Cycles] [MHz] [µs]

1 3595 735 70.1 10.49
2 5470 1880 83.6 22.49
3 4357 1714 83.6 20.51
4 319691 39928 37.5 1066
5 249903 48213 57.6 836.7

Table D.5: Resources use of the different implementations.

# # of 4-input LUT # slices # RAM blocks

1 593 330 6
2 685 416 6
3 597 363 6
4 6348 3547 4
5 5662 3222 4
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have shown how the proposed methodology based on our tool Design-
Trotter can alleviate system designers from time-consuming and error-
prone design tasks, and thus reducing the time-to-market factor. In par-
ticular we have discussed the design space exploration and characteriza-
tion of the turbo-encoder and turbo-decoder for HSDPA and illustrated
how the exploration results can be used to guide the back-end implemen-
tation phase.
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