
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2007)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.858

Implementation of a
constant-time dynamic storage
allocator

M. Masmano1, I. Ripoll1, J. Real1, A. Crespo1,∗,† and
A. J. Wellings2

1Department of Computer Engineering, Universidad Politécnica de Valencia,
Valencia, Spain
2Department of Computer Science, University of York, York, U.K.

SUMMARY

This paper describes the design criteria and implementation details of a dynamic storage allocator for
real-time systems. The main requirements that have to be considered when designing a new allocator
are concerned with temporal and spatial constraints. The proposed algorithm, called TLSF (two-level
segregated fit), has an asymptotic constant cost, O(1), maintaining a fast response time (less than 200
processor instructions on a x86 processor) and a low level of memory usage (low fragmentation). TLSF
uses two levels of segregated lists to arrange free memory blocks and an incomplete search policy. This
policy is implemented with word-size bitmaps and logical processor instructions. Therefore, TLSF can be
categorized as a good-fit allocator. The incomplete search policy is shown also to be a good policy in terms
of fragmentation. The fragmentation caused by TLSF is slightly smaller (better) than that caused by best
fit (which is one of the best allocators regarding memory fragmentation). In order to evaluate the proposed
allocator, three analyses are presented in this paper. The first one is based on worst-case scenarios. The
second one provides a detailed consideration of the execution cost of the internal operations of the allocator
and its fragmentation. The third analysis is a comparison with other well-known allocators from the
temporal (number of cycles and processor instructions) and spatial (fragmentation) points of view. In
order to compare them, a task model has been presented. Copyright © 2007 John Wiley & Sons, Ltd.

Received 25 January 2007; Revised 4 July 2007; Accepted 16 September 2007

KEY WORDS: dynamic storage management; real-time systems; operating systems

∗Correspondence to: A. Crespo, Department of Computer Engineering, Universidad Politécnica de Valencia, Camino de
Vera, 14, E-46071 Valencia, Spain.

†E-mail: acrespo@disca.upv.es

Contract/grant sponsor: FRESCOR; contract/grant number: IST/5-034026
Contract/grant sponsor: ARTIST2; contract/grant number: IST NoE 004527
Contract/grant sponsor: Thread; contract/grant number: TIC2005-08665

Copyright q 2007 John Wiley & Sons, Ltd.

M. MASMANO ET AL.

1. INTRODUCTION

Although dynamic storage allocation (DSA) has been extensively studied, it has not been widely
used in real-time systems due to the commonly accepted idea that, because of the intrinsic nature
of the problem, it is difficult or even impossible to design an efficient, time-bounded algorithm.
An application can request and release blocks of different sizes in a sequence that is, a priori,
unknown to the allocator. It is no wonder that the name DSA suggests the idea of unpredictable
behaviour.
An allocator must keep track of released blocks in order to reuse them to serve new allocation

requests, otherwise memory will eventually be exhausted. A key factor in an allocator is the data
structure that it uses to store information about free blocks. Although not explicitly stated, it seems
that it has been accepted that even when using a very efficient and smart data structure the allocation
algorithm, in some cases, has to perform some form of linear or logarithmic search to find a suitable
free block; otherwise, significant fragmentation‡ may occur.
There are two general approaches to DSA management:

1. Explicit allocation and deallocation—where the application has to explicitly call the primitives
of the DSA algorithm to allocate memory (e.g. malloc) and to release it (e.g. free).

2. Implicit memory deallocation (also known as garbage collection)—where allocation is explicit
but the DSA is in charge of collecting the blocks of memory that have been previously
requested but are not needed any more.

This paper is focused on the design and implementation of an explicit low-level allocation and
deallocation primitives. Garbage collection is not addressed in this work.
Explicit allocation and deallocation are usually performed at the individual object level. An

alternative to this fine-grained approach is region-based memory allocation, which has been used
as an implementation technique under a variety of names (zones or groups). Regions have also
recently attracted research attention as a target for static inference of memory management [1]. In
a region-based memory allocation scheme, each allocated object is placed in a program-specific
region. Memory is reclaimed by destroying a region, freeing all the objects allocated therein. Region
management has a low overhead. The programmer can control how long allocated values will live.
Whole regions can be deallocated at once. This can often result in a speed-up over manual memory
management. The main drawbacks of this technique are that the programmer has to group objects
into appropriate regions according to their lifetimes, run-time checks are required to avoid dangling
pointers and memory fragmentation can occur when regions are destroyed [2].
There are several DSA strategies that have been proposed and analysed under different real

or synthetic loads. In [3], a detailed survey of DSA was presented, which has been considered
the main reference since then. The authors presented a comprehensive description, as well as the
most important results, of all problems related to memory allocation: the basic problem statement,
fragmentation, taxonomy of allocators, coalescing, etc. The paper also contains an outstanding
chronological review of all related research starting from four decades ago.

‡Although the term ‘wasted memory’ describes better the inability to use some parts of the memory, historically the term
‘fragmentation’ has been used.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

IMPLEMENTATION OF A CONSTANT-TIME DYNAMIC STORAGE ALLOCATOR

Several efficient implementations of dynamic memory allocators exist [4–11]. Also, there exists
worst-case analysis of these algorithms from the temporal or spatial point of view [12–14]. The
assumed distribution of block sizes, block lifetimes, and details of the testing procedure are relevant
factors that can modify the results when comparing these algorithms. However, it is clear that
if we try to use any of them for real-time applications, the following important aspects are not
acceptable:

• Temporal cost: The worst-case execution of most allocators is very far from the average case.
Binary buddy presents a bounded temporal cost that has been considered the most appropriate
for real-time until now. Half-fit [15] was the first constant-time allocator, but the memory usage
is very poor.

• Memory usage: Fragmentation is still an unsolved issue. From the point of view of real-time
systems that have to operate over very long periods, fragmentation plays an important role in
system degradation. Whereas some of the allocators achieve low fragmentation levels, others
such as binary buddy have a very high fragmentation.

In a previous paper [16], the authors presented a new allocator called TLSF (two-level segregated
fit) and compared it with other well-known allocators under different loads generated by well-
known programs. These programs (e.g. gfrac, perl, gawc, etc.) were used by other authors for
comparison purposes. In this paper, we focus on the criteria used to design and implement the TLSF
allocator for real-time systems. The goal was to obtain an algorithm that allocates and deallocates
in constant-time cost and maintains efficiency in time and space (low fragmentation). These two
characteristics are essential for the analysis and implementation of real-time systems. In particular,
the requirements for our algorithm are as follows.
Temporal requirements: The primary requirement for any real-time allocator is to provide allo-

cator operations with constant response time. The worst-case execution time (WCET) of memory
allocation and deallocation has to be known in advance and be independent of application data.
Although allocation operation involves a search for an appropriated block of memory, this search
has to be bounded.
A second temporal requirement is efficiency: the algorithm has to be fast enough to compete

with other well-known efficient allocators.
Spatial requirements: Traditionally, real-time systems run for long periods of time and some

(embedded applications) have strong constraints of memory size. Fragmentation can have a signif-
icant impact on such systems. It can increase dramatically and degrade the system performance.
The main requirement of our allocator is reduce fragmentation to a minimum.
Another spatial requirement is, given a memory pool, to guarantee that memory requests will

always be satisfied. In order to guarantee this, the memory pool size has to consider the following
aspects: the maximum amount of live memory used by the application, the data structures of the
algorithm and the additional memory generated by memory fragmentation. The first of these is
application dependent and beyond the scope of this paper. Static analysis or run-time profiling of
the application code are possible techniques that can be used here.
The remainder of this paper is structured as follows. Section 2 briefly reviews the basic dynamic

storage concepts and terms used in the paper and presents a review of the available allocators.
Section 3 then summarizes the lessons that can be learned from the long history of dynamic memory
research that allows us to focus our design for a real-time allocator. That design is discussed in

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

M. MASMANO ET AL.

Section 4, followed by a discussion of the implementation from a temporal and spatial point of view
(in Section 5). Section 6 then presents an evaluation of the allocator operations. Section 7 details a
workload model for real-time systems and performs a comparison of TLSF with other significant
allocators. Finally, we conclude summarizing the major points of the paper and outlining future
research directions.

2. DYNAMIC MEMORY ALLOCATION OVERVIEW

In 1995, Wilson et al. [3] presented a detailed survey of DSA that has been considered the main
reference since then. The authors gave a comprehensive description, as well as the most important
results, of all the problems related to memory allocation: the basic problem statement, fragmentation,
taxonomy of allocators, coalescing, etc. In this section we extract the main issues that are relevant
to understand the rest of the paper.
An allocator is an online algorithm that keep tracks of the memory status (areas of memory

in use and free) by maintaining a pool of free blocks to satisfy the application memory requests.
The allocator must respond to memory requests in strict sequence, immediately, and its decisions
are irrevocable. The allocator does not know when the blocks will be allocated or freed. Once the
allocator allocates a block, it is maintained in its place until it is freed.
After successive block allocations and deallocations, the memory space contains holes (free

blocks). The effect of these free blocks is known as fragmentation. The goal of an allocator design
is to find the appropriated free block for a request in a minimum time, minimizing wasted space
(minimal fragmentation).
Allocators record the location and sizes of free blocks of memory using a data structure that may

be a linear list ordered by physical addresses (address ordered (AO)) or block sizes, a totally or
partially ordered tree, a bitmap, a segregated list, or some hybrid data structure.
The problem of finding a block to allocate the memory request is one of the major issues in the

allocator. It depends on the global strategy (for instance, ‘limit the number of operations involved
maintaining low fragmentation’), the policy used (for instance, ‘use the smallest block that satisfies
the request’) and the mechanism (for instance, ‘segregated lists’). The different policies used are
as follows.
First fit: The block used to serve the memory request is the first one found that satisfies the

memory size required.
Next fit: Next-fit allocation differs from first fit in that a first-fit allocator commences its search

for free space at a fixed end of memory, whereas a next-fit allocator commences its search wherever
it previously stopped searching.
Best fit: This policy performs a detailed search to find the smallest block that satisfies the request.

As several equally good fits can be found, the second criterion could be, for example, the one whose
address is lowest.
Good fit: This policy allows the allocator to select a block that is not the best but is near the best.

The term ‘near’ should be specified in terms of maximum block size difference with respect to the
best. This kind of policy permits the allocator to apply search techniques that do not perform a
complete search of the data structures, for example, using an incomplete search (see Section 4.3).

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

IMPLEMENTATION OF A CONSTANT-TIME DYNAMIC STORAGE ALLOCATOR

2.1. Fragmentation and memory coalescing

Although the notion of fragmentation seems to be well understood, it is hard to define a single
method of measuring it, or even an agreed definition of what fragmentation is. For the purpose of
this paper, the definition given by Wilson et al. (in [3]) as ‘the inability to reuse memory that is
free’ will suffice.
Historically, two different sources of fragmentation have been considered: internal and external.

When the allocator serves a memory request, the free block used can be split into two blocks,
one to serve the request and the other containing the remaining memory, which is added as a new
free block. The splitting technique can deliver a block whose size is exactly or greater than the
requested size. In the second case, there is some internal part of the block that will not be used (this
is called internal fragmentation). In the first case, no internal fragmentation is generated. External
fragmentation occurs when there is enough free memory but there is not a single block large enough
to fulfil the request. Internal fragmentation is caused only by the allocator’s implementation, while
external fragmentation is caused by a combination of the allocation policy and the user request
sequence.
When a block is freed, the allocator can coalesce (merge) it with neighbouring free blocks to

maintain the availability of large blocks of memory. In some allocators, the coalescing process
is not performed each time a deallocation occurs. The assumption is that a block of the same
size will be requested (in the near future) for which this block will be candidate. These allocators
avoid the merging and splitting work to increase the performance. However, in order to reduce the
fragmentation, they will have to perform some coalescing process on the memory at a later time.
This is known as deferred coalescing.

2.2. Description of allocators

A review of the most significant allocators is provided in this section. Allocators are organized
considering the mechanism used. In some cases it is difficult to assign an allocator to a category
because it uses more than one mechanism. In that case, the more relevant mechanism is used.

Sequential fits: Sequential fits algorithms are the most basic mechanisms. They search sequentially
free blocks stored in a singly or doubly linked list. Typically, the pointers that implement the list
are embedded inside the header of each free block (boundary tag technique [6]). Examples are first
fit, next fit, and best fit.

First fit and best fit are two of the most representative sequential fit allocators, both are usually
implemented with a doubly linked list.

Segregated free lists: These algorithms use a set of free lists. Each of these lists stores free blocks
of a particular predefined size or size range. When a free block is released, it is inserted into the
list which corresponds to its size. It is important to remember that the blocks are logically but not
physically segregated. There are two types of these mechanisms: simple segregated storage and
segregated fits. An example of an allocator with this mechanism is fast fit [17], which uses an array
for small-size free lists and a binary tree for larger sizes.

Buddy systems: Buddy systems [6] are a particular case of segregated free lists. If H is the heap
size, there are only log2(H) lists since the heap can be split only into powers of 2. This restriction
yields efficient splitting and merging operations, but it also causes a high memory fragmentation.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

M. MASMANO ET AL.

There exist several variants of this method [7], such as binary buddy, Fibonacci buddy, weighted
buddy and double buddy.
The binary-buddy [6] allocator is the most representative of the buddy systems allocators, which

has always been considered as a real-time allocator. The initial heap size has to be a power of 2. If
a smaller block is needed, then any available block can be split only into two blocks of the same
size, which are called buddies. When both buddies are again free, they are coalesced back into a
single block. Only buddies are allowed to be coalesced. When a small block is requested and no
free block of the requested size is available, a bigger free block is split one or more times until one
of a suitable size is obtained.
Indexed fits: This mechanism is based on the use of advanced data structures to index the free

blocks using several relevant features. To mention a few examples: algorithms that use Adelson-
Velskii and Landin (AVL) trees [11], binary search trees or cartesian trees (fast fit [17]) to store
free blocks.
Bitmap fits: Algorithms in this category use a bitmap to find free blocks rapidly without having

to perform an exhaustive search. Half-fit [15] is a good example of this sort of algorithms.
Half-fit groups free blocks in the range [2i ,2i+1] in a list indexed by i . Bitmaps are used to keep

track of empty lists along with bitmap processor instructions to speed up search operations.
When a block of size r is required, the search for a suitable free block starts on i , where i=

�log2(r−1)�+1 (or 0 if r =1). Note that the list i always holds blocks whose sizes are equal to or
larger than the requested size. If this list is empty, then the next non-empty free list is used instead.
If the size of the selected free block is larger than the requested one, the block is split into

two blocks of sizes r and r ′. The remainder block of size r ′ is re-inserted into the list indexed by
i ′ =�log2(r ′)�. The cost of this algorithm is constant (O(1)).
The process of avoiding an exhaustive search and only considering the sizes of the free blocks

as a power of 2 causes what the author calls incomplete memory use [15].
Hybrid allocators: Hybrid allocators can use different mechanisms to improve certain charac-

teristics (response time, fragmentation, etc.). The most representative is Doug Lea’s allocator [8],
which is a combination of several mechanisms. In what follows, this allocator will be referred to
as DLmalloc.
DLmalloc implements a good fit jointly with some heuristics to speed up the operations as well

as to reduce fragmentation§ .
Depending on the size of the free blocks, two different data structures are used. Blocks of size

up to 256 are stored in a vector of 30 segregated lists. Each list contains blocks of the same size.
Larger blocks are organized in a vector of 32 trees, which are segregated in power-of-2 ranges, with
two equally spaced treebins for each power of 2. For each tree, its power-of-2 range is split into
half at each node level, with the strictly smaller value as the left child. Same-sized chunks reside
in a first-in first-out (FIFO) doubly linked list within the nodes.
Previous versions of DLmalloc used the delayed coalescing strategy, that is, the deallocation

operation does not coalesce blocks. Instead, a massive coalescing was done when the allocator could
not serve a request. The current version (2.8.3) performs an immediate coalescence. DLmalloc is
considered one of the best and is widely used in many systems (glibc, eCos, etc.).

§A detailed description of the algorithm can be found in the comments of the code of the allocator [http://gee.cs.oswego.edu].

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

IMPLEMENTATION OF A CONSTANT-TIME DYNAMIC STORAGE ALLOCATOR

Additionally, several custom allocators have been proposed [5,9,18]. They are designed consid-
ering the specific behaviour of the target application and can be tuned to improve time performance
or optimize memory footprint. However, in [19] several custom allocators are evaluated and, in
general, their performance is worse than DLmalloc’s.

2.3. An illustrative simple example

In order to illustrate previous concepts, a naive allocator is described. The allocator is designed to
serve memory size requests in the range of [0 . . .8191]bytes. The mechanism used is a segregated
list composed of an array of eight lists. Each list holds free blocks of a size class in the range of
[(1024∗i) . . . (1024∗(i+1)−1)], where i is the list index. Figure 1 shows the data structure.
A request of r bytes implies a search in the linked list pointed by the array index computed by

�r/1024�. If this list is empty, the free block is searched in the next non-empty segregated list. For
example, if the request is 4630 bytes, the searching function obtains a pointer position given by
�4630/1024�=4. This segregated list is empty; hence, the next non-empty list (index 5) is used.
Several policies can be applied to find a free block in the list:

1. First fit: A sequential search is performed in the list until a block of size greater than or equal
to the request is found. In the example, the block found is the first in the list (5120). The block
is split into two blocks of 4630 and 1490 bytes. The first one is returned to the application
and the second one, the remaining block, is inserted into the appropriated list.

2. Best fit: The sequential search tries to find the best block (the remaining block with smallest
size). In this case the best block is 4650, and the remaining block has 20 bytes.

When a block is split to serve a request, the remainder size has to be inserted into the appropriated
list. Also, when a block is freed, it has to be included in its segregated list. To insert a free
block of size f in the data structure, we need to compute the function � f/1024� to obtain its
segregated list. Following the previous example, if the block has 1490 bytes it has to be inserted
in the segregated list indexed by �1490/1024�=1. Blocks can be inserted into the head or tail of
the list.

Figure 1. Simple example data structure.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

M. MASMANO ET AL.

In this example, we have assumed that lists are not sorted. However, depending on the policy
used, sorted lists can improve the performance of the search or insertion. Sort criteria can be block
size, block logical address, etc.
Other aspects, such as coalescence, are not considered in this example.

3. DESIGN CRITERIA (LESSONS LEARNED)

In this section we summarize some conclusions from previous work to design a new allocator
for real-time applications. We have split these conclusions into two aspects: those related to the
allocation policies and the allocation mechanisms.

3.1. Allocation policies

The allocation policy has a strong influence on memory efficiency. The lessons learned from the
literature can be used as starting point for the design of the TLSF allocator. In particular, we note
the following results.

• AO first-fit policy has less worst-case external fragmentation than AO best fit [13].
• When using real workloads, the fragmentations caused by best-fit policies are slightly better
than those produced by first-fit policies [20,21].

• Synthetic workload performance analysis gives no conclusive results about AO best and
first policies. Depending on the parameters used in the workload generation, best fit may
or may not outperform first fit. In all cases, the difference between allocators is quite
small [22].

• Delayed coalescing improves the mean response time but slightly increases fragmentation [21].
• It is better to reallocate blocks that have been freed recently over those freed further in the
past. In other words, LIFO policies are better than FIFO ones. Also, any variant of the best-fit
policy or AO first-fit policy is much better than the next fit [21].

• The larger the amount of internal fragmentation, the smaller the external fragmentation. For
example, on the one hand, the allocator half-fit does not suffer from internal fragmentation
but, in the tests, it often has a high level of external fragmentation compared with the other
allocators. On the other hand, Binary buddy’s internal fragmentation can be up to 50%, but its
observed external fragmentation is much smaller than that of other allocators. The worst-case
fragmentation scenario for allocators with no internal fragmentation (like AO first fit and AO
best fit) is several orders of magnitude the size of the live memory [7].

• With real workload, buddy systems have shown much higher average fragmentation than any
basic policy (best, first or next fit) [20,21].

• Applications that allocate data structures tend to allocate only a few sizes (the sizes of the
objects used in dynamic data structures like lists, trees, etc.). This is not the case for applications
that handle strings or other variable size data objects [21].

In conclusion, an efficient allocator would do immediate coalescing, implement a best fit or close
to best-fit policy and round-up memory request to reduce external fragmentation.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

IMPLEMENTATION OF A CONSTANT-TIME DYNAMIC STORAGE ALLOCATOR

3.2. Allocation mechanisms (data structures)

Whereas the spatial behaviour of an allocator is strongly determined by the allocation/deallocation
policies employed, the temporal cost is mainly related to themechanisms used in the implementation.
A description of the mechanisms and data structures that have been used to implement best fit is
summarized below:

• The simplest data structure to implement a best-fit policy is to use a doubly linked list. In the
worst case, all elements of the list have to be visited on each memory request.

• A LIFO best-fit policy can be implemented using search trees (such as AVL, red–black or 3–4
search trees data structures). Although the asymptotic cost of these algorithms is O(log(n)),
where n is the number of sizes, the constant factors are not negligible, mostly because several
tree operations (search, remove and/or insert) may be needed for a single allocation or release.

• Segregated list mechanisms consist of a set of free lists, where each list holds free blocks of a
size or range of sizes. The more the segregated lists, the faster the search, because only those
blocks that are close to the size requested are visited. Most of the best-performance allocators
[8] use some variant of this mechanism.

• Buddy systems are a family of implementations that combine a set of segregated lists and a
policy to split up and coalesce blocks; this allows it to perform those operations (split and
coalesce) in constant time. The worst-case cost of both allocation and free is O(log(H)), where
H is the heap size.

Based on the above lessons, TLSF has been implemented using a set of segregated lists that can
be directly reached through the size of the blocks. Also, TLSF does not implement a strict best-fit
policy, but a good-fit one.

4. TLSF DESIGN

The goals of the TLSF allocator are to obtain a constant, and small, allocation cost (temporal require-
ment) and very low fragmentation of free memory (spatial requirement). This section discusses how
these conflicting goals can be achieved using two levels of segregated lists, where each segregated
list has an associated bitmap. The approach achieves a satisfactory compromise between temporal
and spatial efficiency, allowing its use in real-time applications.

4.1. Temporal cost issues

The allocation of a requested memory block requires a search of the most appropriated memory-
available (free) blocks. In order to implement a best-fit policy, an exhaustive search of the exact
free blocks has to be done. Good-fit policies limit the search to find a free block near the best. In
our case, we decided to use the good-fit policy to fulfil the constant time requirement.
The TLSF data structures are composed of a set of segregated lists. In general, in order to find a

suitable block to serve a memory request, an algorithm based on segregated lists has to:

1. find the segregated list which holds blocks that can fulfil the memory request, and
2. if the segregated list holds a range of block sizes, search the list to find an appropriate fit.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

M. MASMANO ET AL.

Figure 2. Segregated lists structure.

In TLSF, the range of sizes of the segregated lists has been chosen such that a mapping function
can be used to locate the position of the segregated list given the block size, with no sequential
or binary search. Also, ranges have been spread along the whole range of possible sizes in such
a way that the relative width (the length) of the range is similar for small blocks as it is for large
blocks. In other words, there are more lists used for smaller blocks than for larger blocks. Lists
are arranged in a two-level tree, where the first-level directory splits sizes in power of 2 ranges,
and the second-level sub-splits each first-level range linearly. Figure 2 shows a reduced version of
the TLSF data structure with four segregated lists on the second level. This distribution of ranges
provides the following benefits:

• Experimental results [21] show that most of the allocated blocks are of small sizes (data
structures and strings).

• The fragmentation caused by this range distribution is independent of the requested sizes (see
Section 4.3).

• The function which maps the size of a block to the indexes that point to the corresponding list
can be computed efficiently (see TLSF functions on Section 5).

The first level is an array of four elements (pointers). Each element points to a segregated list of
the second level. The second level is an array of eight elements. Each element points to the first
component of a list of free blocks whose ranges match the element range. If a pointer is nil, this
implies that there are no free blocks of this range in the system. For instance, in Figure 2, the third
element (labelled as 128) in the first level is nil (white coloured). This means that there are no free
blocks in the range [128 . . .255]. However, the second element (64) is not nil (grey coloured). This
indicates that there exist one or more free blocks in the range [64,127]. In the second level, the
second array (pointed by the second element (64) in the first level) has free blocks in the range
[104,111]. The corresponding element in this list (grey coloured) points to the first free block
whose size is 109. This free block points to the next element in the list (104).

4.2. TLSF functions

To work with the data structure, several functions have been defined.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

IMPLEMENTATION OF A CONSTANT-TIME DYNAMIC STORAGE ALLOCATOR

The function mapping insert(r) calculates the indexes (i, j) which point to the list whose range
contains blocks of size r:

mapping insert(r)=

⎧⎪⎨
⎪⎩
i=�log2(r)�

j =
⌊

(r−2i)

(2i−J)

⌋

whereJ is the log2 of the second level range. Values ofJ of 4 or 5, imply 16 or 32 lists, respectively,
in the second level.
This mapping function is used by the free and malloc operations whenever a free block needs

to be inserted into the TLSF structure. This function returns the indexes of the list where the free
block has to be inserted.
The segregated list returned by the mapping insert function may contain blocks that are

smaller than r , and a search for a suitable block, from those stored in the given segregated list, has
to be carried out. Rezaei and Cytron [23] proposed a segregated binary tree, where each segregated
list is a binary tree. This solution will speed up the average search time, but in the worst case (all
free blocks are located in the same list/tree and the tree gets unbalanced) the algorithm is almost
unbounded.
The solution used in TLSF is to remove completely the search inside a segregated list. TLSF will

look for a segregated list that holds blocks whose sizes are equal to or larger than the requested
size. In this case, any block of the target segregated list can fulfil the request, and in particular
the first block of the list can be used to serve it. This policy achieves constant time by using
slightly larger blocks rather than the block that fits best. This is the main aspect that determines
that TLSF is a good-fit allocator. The wasted memory caused by this policy is analysed later in this
paper.
The function that returns the indexes of the list used to serve a memory request is

mapping search(r)=

⎧⎪⎪⎨
⎪⎪⎩
i=�log2(r+2�log2(r)�−J−1)�

j =
⌊

(r+2�log2(r)�−J−1−2i)

(2i−J)

⌋

The mapping function will always return the address of the smallest segregated list which contains
blocks equal to or larger than the size requested. In case this list is empty, a search for the next
non-empty segregated list has to be carried out. TLSF relies on a two-level bitmap data structure
and special bit instructions to find the next non-empty list in constant time.
Figure 3 shows the complete data structure used. Each bit in a bitmap indicates whether the

corresponding segregated list is empty or not. The hierarchical bitmap organization limits the
number of bitmaps to be searched to 2. The number of segregated lists on each second-level node is
customizable, which, due to implementation constraints, has to be a power of 2. Also, for efficiency
reasons, the number of second-level lists, 2J, should not exceed the number of bits of the underlying
architecture. Therefore, J has to be no larger than 5.
For efficiency purposes, the tree structure can be directly transformed into a two-dimensional

array as will be described in Section 5.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

M. MASMANO ET AL.

Figure 3. Bitmaps and segregated lists.

4.3. Spatial cost issues

Best-fit policies, or close to best-fit policies, are known to cause low fragmentation [21]. In this
section, we analyse how the ‘good-fit’ allocation policy affects fragmentation and how the policy
can be tuned to reduce fragmentation.
To serve an allocation request, TLSF will search for a list of free blocks that holds blocks that

are certainly of size equal to or larger than the requested one. Once a target list has been found
(position j), the first block of that list is used to serve the request.
It is possible that the predecessor list (j−1) contains free blocks that are large enough to serve the

request. For example (see Figure 4), suppose thatJ is 3 and that the segregated list (f l=10,sl=3)
(which holds blocks of sizes [1408,1535]) contains a block of size 1524. TLSF is not able to use
the existing free block to serve a request of size 1512. TLSF will use a block located on list (10,4)
(range [1536,1663]) or above.
Although, at first glance, the wasted memory caused by this incomplete search policy can be

assumed as an acceptable price to be paid to achieve constant response time, a deeper analysis
reveals that incomplete search can produce a large amount of wasted memory.
The problem is best illustrated by means of a numerical example. Suppose that the memory is

that stated and represented in Figure 4. The application requests a block of size 1512. TLSF will
start looking for a suitable block in list (f l=10,sl=4). Since that list is not empty, the block at
the head of that list (block of size 1630) will be used to serve the request. At this point, there are
two possible policies for splitting the block:

1. Assign to the application a block of exactly the same size as the requested one.
2. Round up the assigned size to the starting range of the list where a block of that size will be

found. Following the example, a request of size 1512 would be rounded up to 1536, which is
the starting size of the list pointed by (f l=10,sl=4).

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

IMPLEMENTATION OF A CONSTANT-TIME DYNAMIC STORAGE ALLOCATOR

Figure 4. Structural fragmentation example.

An example of the first policy is presented in the left side of Figure 4. A similar trace sequence
is sketched in the right side, but using the round-up split policy. The block of size 1630 is used in
both cases to serve a request of size 1512. Using the first policy, the 1630 is split into two blocks:
1512 and 118. The first block is returned to the application, and the second one stored back as a free
block. The second policy splits the 1660 bytes block differently: 1536 and 94. In step 2, the small
remaining block is allocated by the application. Next, the application releases the first allocated
block in step 3. Note that it cannot be coalesced because the neighbour was allocated in step 2;
therefore, the first policy will store the block in the list pointed by (10,3) and the second policy
will store the block in the list pointed by (10,4), since the freed block was rounded up to be in the
range on the next list. Finally, if the application requests again a block of size 1512, then the exact
split policy has to use a different large block to serve the request, but the round-up split policy is
able to successfully reuse the first allocated block.
TLSF overcomes the problem caused by the incomplete search using the round-up split policy.

This solution replaces the wasted memory caused by the incomplete search policy by internal
fragmentation. Also, the more the segregated lists (the bigger the J parameter), the smaller the
distance between ranges, and then, accordingly, the amount of rounded-up memory. In Section 5.3
this internal fragmentation is analysed in detail.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

M. MASMANO ET AL.

5. TLSF IMPLEMENTATION

As explained in the previous section, TLSF was designed to be a compromise between constant
and fast response time and efficient memory use (low fragmentation).
The TLSF tree structure can be implemented efficiently using a two-dimensional array, where the

first dimension (first-level directory) splits free blocks into size ranges that are a power of 2 apart
from each other, so that first-level index i refers to free blocks of sizes in the range [2i ,2i+1]. The
second dimension splits each first-level range linearly into a number of ranges of equal width. The
number of such ranges, 2J, should not exceed the number of bits of the underlying architecture,
so that a one-word bitmap can represent the availability of free blocks in all the ranges. A good
balance between temporal cost and memory efficiency is obtained for values of J=4, or J=5
for a 32-bit processor. Figure 5 illustrates the data structure for J=3. This figure will be used in
the examples of this section.
The mathematical function �log2(x)� can be computed very fast by finding the index of the

most significant bit with the processor instruction fls¶ . Another bitmap function that is commonly
available on modern processors is ffs‖ . Note that it is not mandatory to have these advanced bit
operations available in the processor to achieve constant time, since it is possible to implement them
by software using less than six non-nested conditional blocks (see glibc or Linux implementation
in Appendix A).
The function mapping insert computes efficiently f l and sl:

1 procedure mapping_insert (r : integer; f l, sl: out integer) is
2 begin
3 f l :=fls(r);
4 sl :=(r right shift (f l − J)) − 2J ;
5 end mapping_insert ;

For example, given the size r =74, the first-level index is f l=6 and the second-level index is
sl=1. It is straightforward to obtain these values from the binary representation of the size:

r=74d =00000000 01001010b=15
0
14
0
13
0
12
0
11
0
10
0

9
0
7
0
fl=6
6
1

5
0
4
0
3
1︸︷︷︸

sl=1

2
0
1
1
0
0b

The list indexed by f l=6 and sl=1 is where blocks of sizes in the range [72 . . .79] are located.
The function mapping search computes the values of f l and sl used as starting point to

search for a free block. Note that this function also rounds up (line 3) the requested size to the next
list (see Section 4.1).

¶ fls: Find last set. Returns the position of the most significant bit set to 1.
‖ffs: Find first set. Returns the position of the first (least significant) bit set to 1.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

IMPLEMENTATION OF A CONSTANT-TIME DYNAMIC STORAGE ALLOCATOR

1 procedure mapping_search (r : in out integer; f l, sl: out integer) is
2 begin
3 r :=r+ (1 left shift (fls(r) − J))− 1;
4 f l :=fls(r);
5 sl :=(r right shift (f l − J)) − 2J;
6 end mapping_search ;

A call to mapping search for a size r =74 returns the values of f l=6 and sl=2, which
points to the list that holds blocks in the range [80 . . .87].
The function find suitable block finds a non-empty list that holds blocks larger than or

equal to the one pointed by the indexes f l and sl. This search function traverses the data structure
from right to left in the second-level indexes and then upwards in the first level, until it finds the
first non-empty list. Again, the use of bit instructions allows implementation of the search in fast
and constant time.

1 function find_suitable_block (f l, sl: in integer) return address is
2 begin
3 bitmap_tmp:= SL_bitmaps[f l] and (FFFFFFFF#16# left shift sl);
4 if bitmap_tmp �= 0 then
5 non_empty_sl:= ffs(bitmap_tmp);
6 non_empty_fl:= f l;
7 else
8 bitmap_tmp:= FL_bitmap and (FFFFFFFF#16# left shift (f l+1));
9 non_empty_fl:= ffs(bitmap_tmp);

10 non_empty_sl:= ffs(SL_bitmaps[non_empty_fl]);
11 end if ;
12 return head_list(non_empty_fl, non empty_sl);
13 end find_suitable_block ;

By following the example, the returned free block is the one pointed by the list (6,5) which
holds blocks of sizes [104 . . .111].

Allocation procedure

1 function malloc (r : in integer) return address is
2 begin
3 mapping_search(r , fl, sl);
4 free_block:= find_suitable_block(r , fl, sl);
5 if not(free_block) then return error; end if;
6 remove_head(free_block);
7 if size(free_block)−r {>} split_size_threshold then
8 remaining_block:= split(free_block, r);
9 mapping_insert(size(remaining_block), fl, sl);

10 insert_block(remaining_block, fl, sl);
11 end if ;
12 return free_block;
13 end malloc ;

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

M. MASMANO ET AL.

The code of the malloc function is almost self-explanatory (numbers at the start of the following
list refer to lines in the code):

3. Compute the indexes of the list which holds blocks of size equal to or larger than the requested
size.

4. Starting from the obtained list, find a non-empty free list.
6. Extract the block at the head of that list.
7. If the result of the size of the found block minus that of the requested block is larger than a

predefined threshold (this threshold can be defined as the minimum block size that is worth
being managed by TLSF), then:

8. Round up and split the block: create a block header on the remaining free memory and
update the header of the original block.

9. Compute the indexes of the list whose range contains the size of the remaining block.
10. Insert the remaining block in the list pointed by these indexes.

12. Return the block.

The remove head and insert block functions extract and insert an element from the head
of a list, respectively, and update the corresponding bitmaps. These operations work in constant
time.

Operations for coalescing blocks

1 function merge_prev (block) return address is
2 if is_prev_free(block) then
3 prev_block := prev_physical(block);
4 mapping_insert(prev_block, fl, sl);
5 remove_block(prev_block, fl, sl);
6 merge(prev_block, block);
7 end if ;
8 return prev_block;
9 end merge_prev ;

10
11 function merge_next (block) return address is
12 if is_next_free(block) then
13 next_block := next_physical(block);
14 mapping_insert(next_block, fl, sl);
15 remove_block(next_block, fl, sl);
16 merge(block, next_block);
17 end if ;
18 return block;
19 end merge_next ;

The free function always tries to coalesce neighbour blocks. merge prev checks whether
the previous physical block is free; if so, it is removed from the segregated list and coalesced with

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

IMPLEMENTATION OF A CONSTANT-TIME DYNAMIC STORAGE ALLOCATOR

the block being freed. merge next does the same operation, but with the next physical block.
Physical neighbours are quickly located using the size of the free block (to locate the next block) and
a pointer to the previous one, which is stored in the head of the freed block. The remove block
function removes a given free block from a doubly linked list. In order to update head pointers and
bitmaps, this function needs to know which is the head of the segregated list where the removed
block belongs to. Therefore, the mapping insert function has to be called to compute the
indexes of the corresponding segregated list. Merging two adjacent free blocks can be accomplished
by incrementing the size field of the first block (the block with smaller physical address).

Deallocation procedure

1 procedure free (block: in address) is
2 begin
3 merged_block:= merge_prev(block);
4 merged_block:= merge_next(merged_block);
5 mapping_insert(size(merged_block), fl, sl);
6 insert_block(merged_block, fl, sl);
7 end free ;

In order to implement the doubly linked list of segregated blocks, two pointers are needed for
each free block. Since only free blocks are linked in a segregated list (note that allocated blocks
are not handled by the allocator), these pointers are located inside the free block itself. Neighbour
blocks are reached using the boundary tag mechanism [6]. Therefore, allocated blocks have a header
that contains only the size of the block (4 bytes in a 32-bit processor), and free blocks have to be
large enough to contain four words (12 bytes): the size at the head and replicated at the bottom
(boundary tag mechanism), and two pointers for the doubly linked list.

5.1. A note on the actual implementation of the TLSF

As explained in Section 4, TLSF sub-divides the first level ranges linearly. The number of sub-
ranges is customizable. This structure works as expected for all block sizes but small ones. The
problem is that there are more free lists than possible ranges for small blocks. For example (suppose
J=5): the number of different sizes in the first level for i=4 is 24=16, but the number of lists
allocated in the second level is 32. Therefore, some list ranges overlap.
To overcome this problem, the actual implementation of the TLSF handles small blocks as a

special case. Blocks smaller than 128 bytes are stored in a vector of lists, and lists for larger sizes are
arranged using the already described two-level lists structure. This change only affects the mapping
functions (mapping search and mapping insert) that have to compute f l and sl differently
depending on the size. All the data structures, matrix of lists and bitmaps, remain unchanged.

5.2. Temporal cost analysis

It is straightforward to obtain the asymptotic cost of the TLSF from its implementation.
Although malloc has to perform a search of the TLSF data structure (search suitable

block), its asymptotic cost is O(1) due to the use of bitmap search functions. remove head

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

M. MASMANO ET AL.

Figure 5. TLSF data structures example.

function simply unlinks the block from the segregated fit list, and insert block function inserts
at the head of the corresponding segregated list.
Function merge checks whether the previous and next physical blocks are free and tries to merge

them with the freed block. No search has to be done since the previous and next physical blocks
are linked with the freed block.
All internal operations used from malloc and free have constant times and there is no loop;

therefore, the asymptotic worst-case response time is

malloc free
O(1) O(1)

5.3. Fragmentation cost analysis

There are two sources of wasted memory: internal and external fragmentation.
As analysed in Section 4, the wasted memory caused by the incomplete search policy is minimized

with both the round-up split policy and a large number of segregated lists. The round-up split policy
converts the incomplete search wasted memory into internal memory. For example, a request of
size 1512 bytes is rounded up to 1536 bytes as shown in Figure 4.
The worst-case internal fragmentation occurs when the requested size is 1 byte bigger than an

existing segregated list (r =2i +1), and has to be rounded up to the next list (rrounded =2i +2i−J).
In the TLSF this can be calculated as follows:

Int block frag(r) :=
Allocated︷ ︸︸ ︷

(2fl(r)+2fl(r)−J ·sl(r))−
Requested︷︸︸︷

r

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

IMPLEMENTATION OF A CONSTANT-TIME DYNAMIC STORAGE ALLOCATOR

The resulting worst-case internal fragmentation is bounded by

internal fragmentationmax
TLSF≤ 1

1+2J

This gives a worst-case internal fragmentation that is around 3.1% of the requested size for a
value of J=5 and 6.2% for J=4.
Note that wasted memory due to internal fragmentation and incomplete memory usage cannot

occur at the same time on the same block. If a block has internal fragmentation, it is because it
is already allocated, and a block can cause incomplete memory usage only if it is a free block.
Therefore, the overall ‘non-external’ fragmentation of the TLSF is 3.1%. A more detailed analysis
of the fragmentation can be found in [24].
External fragmentation occurs when there is enough free memory but there is no single block large

enough to fulfil a request. Internal fragmentation is caused only by the allocator implementation,
while external fragmentation is caused by a combination of the allocation policy and the user-
request sequence. Robson [12,13,25] analysed the worst-case memory requirements for several
well-known allocation policies. Robson designed allocation sequences that force each policy to
exhibit its maximum external fragmentation. If the maximum allocated memory (live memory) is
M and the largest allocated block is m, then the heap size needed for a best-fit policy in the worst
case is bounded by M(m−2).
Most of the initial fragmentation studies [22,26] were based on synthetic workload generated by

using well-known distributions (exponential, hyper-exponential, uniform, etc.). The results obtained
were not conclusive; these studies show contradictory results with slightly different workload
parameters. At that time, it was not clear whether first fit was better than best fit. Zorn and
Grunwald [27] investigated the accuracy of simple synthetic workload models and concluded that
synthetic workloads should not be used in the general case because they do not reproduce properly
the behaviour of real workloads.
Johnstone and Wilson [21] analysed the fragmentation produced by several standard allocators,

and concluded that the fragmentation problem is a problem of ‘poor’ allocator implementations
rather than an intrinsic characteristic of the allocation problem itself. Among other observations,
Johnstone and Wilson pointed out that low-fragmentation allocators are those that perform imme-
diate coalescing, implement a best-fit or good-fit policy and try to relocate blocks that have been
released recently over those that were released further in the past.
A comparative analysis of the fragmentation incurred by TLSF and other relevant allocators is

provided in Section 7.

6. TLSF EVALUATION

In order to evaluate the proposed allocator, we have performed two temporal analyses:

• Worst-case scenario test: The allocator is analysed in a worst-case scenario in order to determine
the WCET. This analysis can be summarized in two steps: firstly, building two worst-case
synthetic loads (allocation/deallocation) for our allocator; secondly, measuring the executed
number of instructions when both synthetic loads are run.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

M. MASMANO ET AL.

• Analysis of the TLSF execution: The allocator is instrumented and fed with a random load.
The goal is to analyse the behaviour of the allocator regarding the complexity of the internal
operations.

It is difficult to perform a spatial analysis without a comparison with other allocators. For this
reason, the spatial analysis is performed in the next section when comparing temporal and spatial
measures with other allocators under real-time workloads.

6.1. Worst-case analysis

The worst-case scenarios for allocation and deallocation are as follows.
Allocation: Since this operation does not depend on the number of free or busy blocks and

there are no loops in the implementation, only small variations in the execution time can be
observed depending on the conditional code executed. The worst case for allocation occurs when
there is only one large free block and the application requests a small block. The asymptotic cost
is O(1).
Deallocation: The timing cost of this operation depends on the number of times that the released

block has to be merged with other free blocks. There are three possible cases: (1) no free neighbours;
(2) one neighbour; and (3) two neighbours. The worst case is when the two neighbours are free so
that the allocator has to coalesce them. The cost is O(1).
In these scenarios, the measured number of instructions executed by the malloc and free

operations is 160 and 176, respectively. It is important to note that these results can slightly change
depending on the compiler version and the optimization options used.

6.2. Detailed execution analysis

For this test, the code of TLSF has been instrumented to measure the number of machine code
instructions required by each step of the algorithm on an x86 box. All the tests have been compiled
using GCCwith the flag ‘-O2’ set.We have used the Linux ptrace system call to trace the process that
runs the allocator (traced process). The traced process reads the allocation/deallocation sequence
from a file and makes the corresponding allocation/deallocation calls. The allocator is executed in
a single-step mode, thus being stopped after each executed instruction. By using a shared memory
area, the traced process can inform the tracer (writing a single integer in a shared variable) of which
block of code is being executed. It is important to note that the measures obtained by this method
differ from the previous one because this introduces an overhead when the tracer marks the code
being executed.
Although less intrusive methods could be used (for example, using the address of the instruction

being executed to keep track of which part of the allocator is being executed), the optimizations
performed by the compiler, i.e. reordering code, make it difficult to determine which ‘C’ code
belongs to which instructions.
Figures 6(a) and (b) show the number of instructions executed by malloc and free under a

random workload.
Several bands, groups of mallocs performing the allocation in the same number of instructions,

can be identified. The first two bands of Figure 6(a) (105 and 109 instructions) correspond to

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

IMPLEMENTATION OF A CONSTANT-TIME DYNAMIC STORAGE ALLOCATOR

Figure 6. Instruction bands of (a) malloc and (b) free operations.

requests of sizes smaller than 128 bytes served with free blocks of the same size as the requested
one. In this case, the function mapping search is faster because it only has to search the first-
level bitmap (see Section 5.1), and no division and re-insertion of the remaining block have been
carried out.
The difference between the 105 and the 109 bands is due to the cost of remove head, which

requires four instructions more for bitmap updates if the removed block is the last block of the
segregated list.
Table I summarizes the exact number of instructions required to perform each internal operation.
As can be seen in Figure 6(b), the free operation shows three different behaviours: if the freed

block cannot be coalesced, it requires 90–96 instructions; if the block has to be coalesced with one
neighbour it requires 112 to 146 instructions; and if the freed block has to be coalesced with both
neighbours, then it takes between 143 and 190 instructions.
Table II details the number of instructions measured for each internal operation. The sum of the

costs of each operation produces the final dispersion of the free operation.

7. EXPERIMENTAL EVALUATION

In this section, we compare the performance of TLSF with respect to other allocators. In [16],
TLSF∗∗ was compared with several well-known allocators such as first fit (sequential fits), best fit
(sequential fits), binary buddy (buddy systems), DLmalloc†† (hybrid algorithm using segregated
and sequential system) and half-fit under real loads produced by typical programs such as compilers
(gcc, perl, etc.) and application programs (cfrac, espresso, etc.). In this paper, we compare TLSF

∗∗The version used in that comparison was TLSF 1.2.
††The version used in that comparison was Dlmaloc 2.7.2.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

M. MASMANO ET AL.

Table I. Costs of internal functions for malloc.

Operation Instruction Comment

mapping search
11 Requested block is smaller than 128bytes

→search on one bitmap
21 Requested block is larger than 128bytes

→search on two bitmaps

find suitable block
20 A free block of the searched range exists
29 The first suitable segregated list was empty

remove head

17 It was not the last one of its segregated list
→no bitmap update

21 It was the last block of its segregated list
→one bitmap update

24 The last block in its power of two range
→ two bitmap updates

split 6 Constant time

mapping insert
10 Inserted block is smaller than 128 bytes

→search on one bitmap
15 Inserted block is larger than 128bytes

→search on two bitmaps

insert block
22 Insert on non-empty list→update linked list pointers
24 Insert on empty list→update only the head

Table II. Costs of internal functions for free operation.

Operation Instruction Comment

next physical 3 Add to the current block address its size

prev physical 1 There is a pointer to the previous block

mapping insert
6 Requested block is smaller than 128bytes→search on one bitmap
11 Requested block is larger than 128bytes→search on two bitmaps

remove block

There are several issues that affect the cost of this operation: (1) if
it is not the last block of the list→update previous pointer; (2) if it is
in the head→update the head pointer; (3) if it is the last block of the
list→update the bitmap; and (4) if it is the last block of its power of
two range→update the first-level bitmap. The combination of previous
conditions produces the eight different observed values

19,21,
23,27,
29,36,
38,39

merge 7 Increment the size field of a block

insert block
22 Insert on non-empty list→update linked list pointers
23 Insert on empty list→update only the head

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

IMPLEMENTATION OF A CONSTANT-TIME DYNAMIC STORAGE ALLOCATOR

with the most efficient reported allocators. The compared allocators are as follows:

• Binary buddy: This allocator has been used in some real-time applications.
• DLmalloc: Currently, this allocator is considered to be one of the best existing allocators. It is
widely used in general-purpose systems.

• Half-fit: This was the first published allocator with constant timing cost.

Whereas the codes of binary buddy and half-fit have been written from scratch, DLmalloc has
been freely downloaded from the author’s web site. The version used in this evaluation is 2.8.3. With
respect to TLFS, the version used in this evaluation is 2.2, which corresponds to the description
given in this paper.

7.1. Load model

To the best of our knowledge, there is not a memory model for real-time periodic threads except
the model proposed in the real-time specification for Java [28]. In this model, a real-time thread
can define its memory requirements specifying a limit on the amount of memory a thread may
allocate in its initial memory area, a limit on the amount of memory a thread may allocate in the
immortal area and a limit on the allocation rate in the heap. The real-time Java memory model has
been designed around the needs of the garbage collector. That is, to say, the activation period of
the garbage collector can be calculated from the task parameters.
In order to perform an evaluation of the considered allocators under the proposed model, a

synthetic load generator has been designed. Although synthetic workloads should be avoided
because they are not able to grasp the fundamental behaviour of real applications (see Section 5.3),
this kind of workload is widely used by the real-time community [29]. Also, considering the lack of
real-time applications that use dynamic memory, we were forced to use synthetic workloads in our
experiments. The definition of a workload benchmark for real-time applications remains an open
issue that deserves further research.
The proposed load model [30] considers that each periodic task Ti defines gi as the maximum

amount of memory a task can request per period, and hi as the longest time a task can hold a block
after its allocation (holding time). In other words, a task Ti can ask for a maximum of gi bytes
per period, which have to be released not later than hi units of time. In order to serve all memory
requests, the system has an area of free memory (also known as heap) of H bytes.

7.2. Load generator

The proposed workload model generates task sets under the following premises:

1. The number of tasks is randomly generated from a uniform distribution range.
2. The periods (pi) are randomly generated using a uniform distribution that is defined by

minimum and maximum admissible period values.
3. The maximum number of memory requests (Nr) per period follows a uniform distribution in

a specified range.
4. The maximum amount of memory requested by period (gi) is randomly generated using a

uniform distribution specified by minimum and maximum block sizes.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

M. MASMANO ET AL.

Table III. A task set example of profile 1.

pi gi Gavg Gsdv Hmax Hmin

T1 60 23 657 18 198 1000 35 22
T2 96 54 126 41 636 1375 26 25
T3 98 44 996 34 613 2500 25 18
T4 120 55 995 13 998 1125 29 21
T5 150 34 457 8614 2000 32 14

0

 100

 200

 300

 400

 500

 600

 700

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 m

al
lo

c

Block sizes

Block size frequency (profile 1)

’ptr1.tbl’

Figure 7. Block size histogram of the requests generated by the task set of Table III.

5. Each memory request follows a normal distribution with an average value (Gavg=gi/Nr) and
a standard deviation calculated as a constant factor of the block size.

6. The holding time (hi) is determined using a uniform distribution with minimum (Hmin) and
maximum (Hmax) admissible holding time values.

Three different application profiles (task sets) have been considered:
Profile 1: A set of tasks that allocate high amount of memory per period by requesting large

blocks. The load consists of a set containing between 3 and 10 tasks with periods in the range
[20 . . .150]. The maximum amount of memory, gi , requested per period by each task is in the range
[8 . . .64kb]. We assume that the number of requests Nr performed by a task during its activation
period is in the range [2 . . .5]. The holding time, hi , of each request has also been calculated with
a uniform distribution defined in the range [30 . . .50]. An example of a task set generated from
this profile is detailed in Table III, which generates the block size requests shown in the histogram
plotted in Figure 7.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

IMPLEMENTATION OF A CONSTANT-TIME DYNAMIC STORAGE ALLOCATOR

Profile 2: This profile is configured to evaluate the behaviour of the allocators when only small
blocks are requested. All the parameters of the profile are the same as in the previous one, except
the range considered for the gi parameter, which here is set to [64b . . .8kb].
Profile 3: The third load pattern tries to cover both previous cases. Now the maximum amount

of memory gi requested during a period can vary in the range [64b . . .48kb].

7.3. Experimental evaluation of the allocators

In this section we present the outcomes obtained by the selected allocators under the workloads
generated by the proposed profiles.
For each profile, 100 different task sets have been generated. Each task set performs until 106

mallocs (the number of free operations is a bit lower due to the holding time effect). Considering
all the tests carried out, the total number of malloc operations executed is 3×108.
Depending on the characteristic to be compared, the code of the simulator has been instrumented

to measure: (1) the execution time required to perform each malloc and free, which is measured in
processor cycles; (2) processor instructions, to obtain a measure of the cost of the algorithm, which
is independent of the system interferences; and (3) the amount of fragmentation.
For each test, the average, the standard deviation, the maximum and minimum number of

processor cycles or instructions are obtained. Tables IV–VI present a statistical summary of all tests
performed for each profile.
In both the first tables (cycles and instructions), we have measured individual malloc and free

operations. Consequently, Avg represents the average of all malloc and free operations carried out
in all tests in a profile (100 tests, 1̇06 mallocs or free operations of each test). Std shows the standard
deviation of these measures. Max and Min indicate the absolute maximum and minimum measures
observed, respectively.
In the fragmentation table, we are interested in the fragmentation at the end of a test. In this case,

we have 100 fragmentation measures. Avg shows the average fragmentation in these 100 tests. Std
shows the standard deviation of these measures. Max and Min indicate, respectively, the absolute
maximum and minimum fragmentation observed in a profile evaluation.

Table IV. Temporal cost of the allocator operations measured in processor cycles: (a) malloc and (b) free.

Profile 1 Profile 2 Profile 3

Allocator Avg Std Max Min Avg Std Max Min Avg Std Max Min

(a)
BB 165 42 3252 126 145 31 2817 99 167 49 3558 102
DL 316 79 3573 99 265 94 2592 72 365 96 2877 72
HF 210 45 816 126 151 30 783 108 213 47 699 111
TLSF 194 40 651 123 176 34 957 111 210 48 663 111

(b)
BB 200 116 2490 93 164 89 2256 93 314 155 3087 93
DL 220 97 2295 84 181 108 2184 75 235 116 2247 81
HF 182 57 1401 93 170 45 1461 93 197 63 1266 93
TLSF 192 55 1833 111 179 53 1722 102 204 64 1908 102

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

M. MASMANO ET AL.

Table V. Temporal cost of the allocator operations in processor instructions: (a) malloc and (b) free.

Profile 1 Profile 2 Profile 3

Allocator Avg Std Max Min Avg Std Max Min Avg Std Max Min

(a)
BB 175 19 653 155 146 28 819 106 171 27 2574 106
DL 278 43 473 98 214 80 453 58 284 57 489 58
HF 114 2 118 112 113 3 118 78 114 2 118 62
TLSF 138 13 151 102 125 20 151 89 135 14 151 89

(b)
BB 68 21 402 66 68 30 317 66 68 29 321 35
DL 173 56 341 68 144 89 318 68 172 69 347 68
HF 106 19 144 72 106 19 144 72 106 19 144 72
TLSF 109 23 159 83 99 27 159 80 107 24 159 80

Table VI. Fragmentation results (in %): factor F.

Profile 1 Profile 2 Profile 3

Allocator Avg Std Max Min Avg Std Max Min Avg Std Max Min

BB 53.8 8.0 76.3 36.7 48.6 7.8 78.4 31.3 52.3 6.3 68.6 39.7
DL 8.9 1.5 13.1 5.8 8.9 1.7 16.6 6.1 8.5 1.9 15.4 4.8
HF 83.4 13.4 120.2 52.7 85.0 12.1 115.0 59.3 89.2 13.9 143.4 62.3
TLSF 9.9 1.5 14.3 5.9 9.7 1.7 16.1 6.3 9.6 1.9 16.4 6.7

When a test is executed, each allocator is initialized with a free block of size 16Mb. The DLmalloc
allocator is initialized by allocating a block of this size and then releasing it. This way, the allocator
will have enough memory to run the whole test without requesting more memory from the operating
system (via sbrk or mmap system calls). Note that we are interested in allocators that rely neither
on virtual memory nor on operating system facilities.
All measurements were obtained on an Intel® Pentium (Celeron) 1600MHz with 512Mb of main

memory and 1024 kb cache memory: GCC 3.4.6 compiler with ‘-O2-fomit-frame-pointer’ flags.
Processor caches are not disabled, although they were invalidated on the worst-case tests.

7.3.1. Execution time

Execution time is measured as the number of processor cycles needed for both allocation and
deallocation operations.
Each test is executed with interrupts disabled. However, there are still some factors (e.g. cache

faults, TLB misses, etc.) that can produce significant variations in the execution. To reduce these

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

IMPLEMENTATION OF A CONSTANT-TIME DYNAMIC STORAGE ALLOCATOR

effects, each test has been executed three times (replicas) using the same workload and selecting
the minimum number of cycles incurred by each individual malloc or free operation in these
replicas (voting system). We have observed that increasing the number of replicas does not decrease
significantly the quality of the measurement.
Table IV shows a summary of the processor cycles spent for each allocator for both operations:

malloc and free.
Although the average values of all of the allocators have similar results, with low deviation in

all tests, the worst case (maximum value) of half-fit and TLSF are significantly lower than those
of others.
Although the half-fit’s data structure and its algorithm are simpler than those of TLSF (note that

half-fit can be considered as a reduced version of TLSF, with just one level of segregated lists), the
average response of both allocators is fairly similar. This is due to the round-up policy of the TLSF,
which reduces the chances of having to split free blocks. Splitting a block is a costly operation
because it involves an insertion in the data structure of the remaining memory. This is observed in
profile 2, where most of the blocks are small and no split operations are performed, giving half-fit
lower cycles than TLSF.
In general, the behaviour of the four allocators is quite similar. All of them achieve better results

for small blocks than for large blocks. When small-size blocks are requested (profile 2) all of them
require a lower number of cycles than are required for the other profiles. This is due to the different
data structures and policies used for large and small blocks (DLmalloc, TLSF and half-fit). This
is not the case with the binary-buddy allocator. Also, the combination of small and large block
sizes produces a small increase in the number of cycles with respect to profiles 1 and 2. The main
reason of this result is due to the wide range of sizes requested, which reduces the possibility of
free blocks reutilization and increases the number of coalesced blocks.
In order to see in more detail these results, Figure 8 shows the histogram of all malloc operations

executed in all tests for profile 1. The x-axis plot range is [50 . . .600] (minimum value obtained
was 99 by DLmalloc allocator) and, although there are measurements higher than 600, these have
been accumulated at the end of the histogram (x=599). The y-axis represents multiples of 106

number of mallocs.
Analysing these plots and Table IV, we can conclude the following:

• Half-fit’s plot shows three peaks that can be associated with the three main execution paths in the
algorithm. Small variations around these peaks could correspond to minor system interferences
such as clock granularity, TLB misses, etc., not completely filtered by the voting system used
for this test.

• Binary buddy presents two different situations. Bottom part (area lower than 4 in the y-axis)
corresponds to the tree traverse and block split with the above-mentioned interferences, and
the peaks can be associated with block reutilization (neither block merging nor splitting is
required).

• Dlmalloc’s plot shows the most uniform behaviour. It can be interpreted as the result of
performing an exact search in the bintree each time a large (>256) block is required in addition
to the heuristic applied and the already-mentioned system interferences.

• TLSF presents a behaviour that matches the detailed analysis carried out in Section 6.2. Bands
described in that analysis are displayed as peaks in the plot. Again, system interferences produce
a flattened response.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

M. MASMANO ET AL.

0

2

4

6

8

10

12

14

100 200 300 400 500 600

N
um

be
r

of
 m

al
lo

cs
 (

x
10

^6
)

0

2

4

6

8

10

12

14

N
um

be
r

of
 m

al
lo

cs
 (

x
10

^6
)

Time (in processor cycles)
100 200 300 400 500 600

Time (in processor cycles)

0

2

4

6

8

10

12

14

100 200 300 400 500 600

N
um

be
r

of
 m

al
lo

cs
 (

x
10

^6
)

0

2

4

6

8

10

12

14

N
um

be
r

of
 m

al
lo

cs
 (

x
10

^6
)

Time (in processor cycles)
100 200 300 400 500 600

Time (in processor cycles)

(a) (b)

(c) (d)

Figure 8. Distribution of the malloc processor cycles: (a) binary buddy; (b) DLmalloc; (c) half-fit; and (d) TLSF.

In the case of the free operation, the results obtained by all allocators are very similar in average,
maximum and minimum values. Half-fit and TLSF have lower standard deviations.

7.3.2. Processor instructions

One way to eliminate the interferences caused by cache faults, TLB misses, etc. is to measure the
number of instructions that each allocator executes. In order to achieve this, the test program has
been instrumented using the ptrace system call. This system call allows a parent process to control
the execution of its child process (test). The single-step mode permits the parent process to be
notified each time a child instruction is executed.
Table V summarizes the results obtained in terms of the number of instructions executed per

allocator according to previously designed tests.
The main conclusion from the results presented in this table is the bounded maximum number

of processor instructions needed by the malloc operations of half-fit and TLSF, and the very low

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

IMPLEMENTATION OF A CONSTANT-TIME DYNAMIC STORAGE ALLOCATOR

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000

M
em

or
y

(K
B

yt
es

)

Time (in mallocs)

T1 Live memory

Binary Buddy

Half-Fit

DLmalloc

TLSF

First 5000 mallocs Last 1000 mallocs
of 10^6

Figure 9. Memory used during one of the simulations of profile 3.

standard deviations. They have a constant cost (117 and 150 instructions observed in all profiles)
and the best average values. Similar results can be seen for free operations.
Note that the difference between the instructions required by TLSF (malloc and free) is slightly

lower than that shown in Figure 6(b) due to the additional instructions required to instrument the
code and detect all paths in the algorithm execution.

7.3.3. Fragmentation

To measure the fragmentation incurred by each allocator, we have calculated the factor F, which
is computed as the point of the maximum memory used by the allocator relative to the point of the
maximum amount of memory used by the load (live memory).
Table VI shows the fragmentation obtained with each allocator. As it was previously described,

factor F has been measured at the end of each scenario. This factor provides information about
the percentage of additional memory required to allocate the application requests.
On the whole, results show that TLSF and DLmalloc require less memory (lower fragmentation)

to allocate the requested load. Again, both allocators have a very good response in most of the tests
(very low standard deviations).
Binary buddy and half-fit produce very high fragmentation (50 and 80%, respectively). As

expected, the high fragmentation caused by binary buddy is due to the excessive size round up
(round up to power of 2). All wasted memory of binary buddy is caused by internal fragmentation.
Half-fit’s fragmentation was also expected because of its incomplete memory use. As it can be seen,

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

M. MASMANO ET AL.

both allocators are quite sensitive to request sizes that are not close to the power of 2, thus causing
a high fragmentation (internal fragmentation in the case of the binary buddy and external one in
the half-fit case).
Figure 9 shows the variation of fragmentation as a function of the number of mallocs requested.

The plot labelled as Live Memory corresponds to the amount of memory requested by the appli-
cation, which is the same for all allocators. Other plots show the memory needed by each allocator
during execution. In this figure we have plotted the first 5000 mallocs (in order to observe the initial
variation) and the last 1000 mallocs of the test (106 mallocs). As the previous table showed, TLSF
and DLmalloc have similar variations. Higher fragmentation is obtained with binary buddy and
half-fit.

8. CONCLUSIONS

TLSF is a good-fit DSA designed to meet real-time requirements. TLSF has been designed as a
compromise between constant and fast response time and efficient memory use (low fragmentation).
In this paper, we have detailed the design and the implementation criteria to fulfil the initial
requirements.
TLSF uses segregated lists and bitmaps of the segregated lists, which can be directly reached

through the size of the blocks. The use of both data structures permits constant and fast search
operations to access the appropriated lists. The tree structure has been implemented more efficiently
with a two-dimensional array, where the first dimension (first-level directory) splits free blocks into
size ranges of a power of 2 apart from each other. The second dimension splits each first-level range
linearly into a number of ranges of equal width. Low fragmentation is achieved with this second
dimension, which allows the definition of small ranges of block size.
TLSF has been evaluated from the perspective of both temporal and spatial costs. A detailed

analysis of the TLSF execution permits an in-depth study of the allocator, identifying the different
parts of the algorithm and extracting the cost of each internal operation. The analysis has
been completed with an exhaustive evaluation of the fragmentation incurred by TLSF. This has
included all possible combinations of power of 2 subranges in a wide block-size spectrum. This
evaluation shows that worst-case fragmentation is lower than 30%, while average values are
around 15%.
When TLSF is compared with other well-known allocators, the results obtained can be considered

as good as the best. Whereas all allocators present good results in response time, there is a significant
difference in the total amount of memory needed to allocate a workload. Half-fit and binary-buddy
fragmentation are not appropriate for embedded systems when memory is limited. On the other
hand, DLmalloc and TLFS reach similar results in fragmentation. Considering both measurements
(temporal and spatial), we can conclude that TLSF has the best performance of all compared
allocators under the synthetic workload generated.
There are still some open issues, and in particular the determination of appropriated workloads

for evaluation purposes. It is difficult to find examples of real-time systems using dynamic memory
(because of the unpredictability of current allocators). Also, calculating the maximum live memory
of a program is difficult, although it can be integrated withWCET analysis techniques which already
perform dataflow analysis of programs.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

IMPLEMENTATION OF A CONSTANT-TIME DYNAMIC STORAGE ALLOCATOR

APPENDIX A: SPECIAL BITMAP FUNCTIONS

If the processor does not provide the operations ffs and fls, they can be implemented with no loops
as shown below‡‡

int generic_ffs(int x) { | int generic_fls(int x) {
int r = 1; | int r = 32;
if (! x) | if (! x)

return 0; | return 0;
if (!(x & 0xffff)) { | if (!(x & 0xffff0000u)) {

x >>= 16; | x <<= 16;
r += 16; | r −= 16;

}; | };
if (!(x & 0xff)) { | if (!(x & 0xff000000u)) {

x >>= 8; | x <<= 8;
r += 8; | r −= 8;

}; | };
if (!(x & 0xf)) { | if (!(x & 0xf0000000u)) {

x >>= 4; | x <<= 4;
r += 4; | r −= 4;

}; | };
if (!(x & 3)) { | if (!(x & 0xc0000000u)) {

x >>= 2; | x <<= 2;
r += 2; | r −= 2;

}; | };
if (!(x & 1)) { | if (!(x & 0x80000000u)) {

x >>= 1; | x <<= 1;
r += 1; | r −= 1;

}; | };
return r; | return r;

} | }

ACKNOWLEDGEMENTS

This work has been partially supported by the following projects: FRESCOR (IST/5-034026), ARTIST2 (IST
NoE 004527) and Thread (TIC2005-08665).

REFERENCES

1. Tofte M, Talpin J-P. Region-based memory management. Information and Computation 1997; 132(2):109–176.
2. Borg A, Wellings A, Gill C, Cytron RK. Real-time memory management: Life and times. ECRTS, Dresden, Germany,

2006; 237–250.

‡‡More efficient solutions can be found in http://hackersdelight.org/.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

M. MASMANO ET AL.

3. Wilson PR, Johnstone MS, Neely M, Boles D. Dynamic storage allocation: A survey and critical review. Proceedings
of the International Workshop on Memory Management, Kinross, Scotland, U.K. (Lecture Notes in Computer Science,
vol. 986), Baker HG (ed.). Springer: Berlin, Germany, 1995; 1–116.

4. Brent RP. Efficient implementation of the first-fit strategy for dynamic storage allocation. ACM Transactions on
Programming Languages and Systems 1989; 11(3):388–403.

5. Grunwald D, Zorn B. Customalloc: Efficient synthesized memory allocators. Software—Practice and Experience 1993;
23(8):851–869.

6. Knuth DE. The Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison-Wesley: Reading, MA,
U.S.A., 1973.

7. Peterson JL, Norman TA. Buddy systems. Communications of the ACM 1977; 20(6):421–431.
8. Lea D. A memory allocator. Unix/Mail, 6/96, 1996.
9. Bonwick J. The slab allocator: An object-caching kernel memory allocator. USENIX Summer, Boston, MA, U.S.A.,

1994; 87–98.
10. Berger ED, Zorn BG, McKinley KS. Composing high-performance memory allocators. SIGPLAN Conference on

Programming Language Design and Implementation, Snowbird, UT, U.S.A., 2001; 114–124.
11. Sedgewick R. Algorithms in C (3rd edn). Addison-Wesley: Reading, MA, U.S.A., 1998.
12. Robson JM. Bounds for some functions concerning dynamic storage allocation. Journal of the ACM 1974; 21(3):491–499.
13. Robson JM. Worst case fragmentation of first fit and best fit storage allocation strategies. The Computer Journal 1977;

20(3):242–244.
14. Garey MR, Graham RL, Ullman JD. Worst case analysis of memory allocation algorithms. Proceedings of the 4th Annual

ACM Symposium on the Theory of Computing (STOC’72). ACM Press: New York, 1972.
15. Ogasawara T. An algorithm with constant execution time for dynamic storage allocation. Second International Workshop

on Real-Time Computing Systems and Applications, 1995; 21.
16. Masmano M, Ripoll I, Crespo A, Real J. TLSF: A new dynamic memory allocator for real-time systems. Sixteenth

Euromicro Conference on Real-Time Systems, Catania, Italy, July 2004. IEEE: New York, 2004; 79–88.
17. Stephenson CJ. Fast fits: New methods of dynamic storage allocation. Operating Systems Review 1983; 15(5). Also in

Proceedings of Ninth Symposium on Operating Systems Principles, Bretton Woods, NH, October 1983.
18. Atienza D, Mamagkakis S, Leeman M, Catthoor F, Mendias JM, Soudris D, Deconinck G. Fast system-level prototyping

of power-aware dynamic memory managers for embedded systems. Workshop on Compilers and Operating Systems for
Low Power, New Orleans, LA, U.S.A., 2003.

19. Berger ED, Zorn BG, McKinley KS. Reconsidering custom memory allocation. OOPSLA, Seattle, WA, U.S.A., 2002;
1–12.

20. Neely MS. An analysis of the effects of memory allocation policy on storage fragmentation. Master’s Thesis, 1996.
21. Johnstone MS, Wilson PR. The memory fragmentation problem: Solved? Proceedings of the International Symposium

on Memory Management (ISMM’98), Vancouver, Canada. ACM Press: New York, 1998.
22. Shore JE. On the external storage fragmentation produced by first-fit and best-fit allocation strategies. Communications

of the ACM 1975; 18(8):433–440.
23. Rezaei M, Cytron RK. Segregated binary trees: Decoupling memory manager. MEDEA’00. ACM Press: New York, 2000.
24. Masmano M. Gestion de memoria dinamica en sistemas de tiempo real. Technical Report, PhD Thesis, Real Time

Research Group, Universidad Politecnica de Valencia, 2006. http://rtportal.upv.es/rtmalloc [May 2006].
25. Robson JM. An estimate of the store size necessary for dynamic storage allocation. Journal of the ACM 1971;

18(2):416–423.
26. Nielsen NR. Dynamic memory allocation in computer simulation. Communications of the ACM 1977; 20(11):864–873.
27. Zorn B, Grunwald D. Evaluating models of memory allocation. ACM Transactions on Modeling and Computer Simulation

1994; 107–131.
28. Bollella G, Gosling J. The real-time specification for java. IEEE Computer 2000; 33(6):47–54.
29. Weiderman NH, Kamenoff NI. Hartstone uniprocessor benchmark: Definitions and experiments for real-time systems.

Real-Time Systems 1992; 4(4):353–382.
30. Marchand A, Balbastre P, Ripoll I, Masmano M, Crespo A. Memory resource management for real-time systems. ECRTS,

Pisa, Italy, July 2007; 201–210.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

