
Implementation of a framework for deploying AI
inference engines in FPGAs

Ryan Herbst, Ryan Coffee, Nathan Fronk, Kukhee Kim, Kuktae Kim, Larry
Ruckman, and J.J. Russell

SLAC National Accelerator Laboratory, Menlo Park, CA 95024, USA,
rherbst@slac.stanford.edu

Abstract. The LCLS2 Free Electron Laser (FEL) will generate x-ray
pulses to beamline experiments at up to 1Mhz. These experimentals will
require new ultra-high rate (UHR) detectors that can operate at rates
above 100 kHz and generate data throughputs upwards of 1 TB/s, a
data velocity which requires prohibitively large investments in storage
infrastructure. Machine Learning has demonstrated the potential to di-
gest large datasets to extract relevant insights, however current imple-
mentations show latencies that are too high for real-time data reduction
objectives. SLAC has endeavored on the creation of a software framework
which translates MLs structures for deployment on Field Programmable
Gate Arrays (FPGAs) deployed at the Edge of the data chain, close to
the instrumentation. This framework leverages Xilinx’s HLS framework
presenting an API modeled after the open source Keras interface to the
TensorFlow library. This SLAC Neural Network Library (SNL) frame-
work is designed with a streaming data approach, optimizing the data
flow between layers, while minimizing the buffer data buffering require-
ments. The goal is to ensure the highest possible framerate while keeping
the maximum latency constrained to the needs of the experiment. Our
framework is designed to ensure the RTL implementation of the network
layers supporting full re-deployment of weights and biases without re-
quiring re-synthesis after training. The ability to reduce the precision of
the implemented networks through quantization is necessary to optimize
the use of both DSP and memory resources in the FPGA. We currently
have a preliminary version of the toolset and are experimenting with
both general purpose example networks and networks being designed for
specific LCLS2 experiments.

Keywords: Aritifial intelligence, machine learning, FPGA, HLS, Xilinx,
Inferrence

1 Introduction

New detectors for science and other applications have exponentially increased
their pixel count and their frame rate, resulting in ever larger data rates. Some
of these ultra-high rate (UHR) detectors can operate at rates above 100 kHz

ar
X

iv
:2

30
5.

19
45

5v
1

 [
ph

ys
ic

s.
in

s-
de

t]
 3

0
M

ay
 2

02
3

2 Ryan Herbst et al.

and generate data throughputs upwards of 1 TB/s, a data velocity which re-
quires prohibitively large investments in storage infrastructure. [Abb+15] Ma-
chine Learning has demonstrated the potential to digest large datasets to extract
relevant insights, however current implementations show latencies that are too
high for real-time data reduction objectives. We intend to use machine learn-
ing inference models entirely deployed on a network of interconnected FPGAs
allowing data to be pipelined for high throughput with ultra-low latency.

Edge Computing systems will receive the raw detector output and will pre-
process, veto and classify the frame before sending the compressed information
downstream for further analysis and/or storage. The re-programmability of FP-
GAs makes it possible to have a custom ML inference model for each detector
and experiment. To facilitate the development and deployment of models for
diverse experiments, we have created a framework (SNL) which will translate
ML structures in FPGA code and deploy it to the FPGA network.

1.1 The SNL Framework

The primary goal of SNL is to produce a high-performance, low latency FPGA
implementation of an AI inference engine that can accommodate reasonably
sized networks and be robust enough to adapt to changes when deployed in a
real-time environment. A secondary goal is to make this as easy to use as possible
without sacrificing those primary goals.

C++ templates used within the Xilinx Vitis HLS development environment
and modeled after the Python Keras layer procedures were chosen as the imple-
mentation method to address the performance goals and the ease of use. Dynamic
loading of weights and biases was chosen to achieve robustness by avoiding re-
synthesizing the network when a new set of weights and biases were needed.
Once verified, deployment of a new set of weights and biases is procedurally the
same as any other restart of the system.

The next two sections attempt to justify or at least explain the pluses and
minuses of these decisions and how they help achieve the primary goal.

1.2 Why C++ Templates?

FPGAs work best the more that is statically known at compile/build time afford-
ing the compiler the best opportunity to optimize resources and latency/thru-
put. This matches well with the target SNL application, e.g. the topology of the
inference engine is fixed, with known data sizes and loop iteration counts. Us-
ing C++ templates provides a mechanism to define this topology and, together
with Xilinx HLS’s palette of pragmas, allows the effective mapping of software
concepts onto the FPGA resources.

The C++ templates are modeled as closely as possible in their form and
function with the Python Keras layer methods. Given that a FPGA has a very
different computational model from a CPU or GPU, there are necessarily dif-
ferences. The design goal was not to eliminate or hide these differences, but to
limit their number to what was necessary to achieve the primary goals. One of

SLAC SNL Framework 3

the important differences is the interface between layers is a streaming, not a
memory interface. See section 1.4

This approach can be contrasted with what could be called a code that writes
code approach. The following is not meant to be promoting one over the other.
As with many things, one approach’s strengths are the other’s weaknesses. Users
should pick the approach best suited to their problem and skill set.

In general, the code that writes code approach is more turnkey and easier for
users with minimal C++, Xilinx HLS and FPGA experience. The downside is
that it is fairly rigid in its implementation and when things go wrong, even if
it the user’s mistake, it is often hard to track down the origin of the mistake.
Even with good tools, the made-up names and layout of the generated code can
become confusing and intractable.

On the flip side, while care has been taken to make SNL as easy to use as
possible, it does demand more expertise on the user’s part. This is a deliberate
design decision. It is believed that the target application, AI at the edge, will be
matched by users who have commensurate expertise in these areas. The hope
is that by being just standard C++ code augmented with HLS pragmas, this
gives the user greater control over the code and will allow greater performance,
flexibility and the ability to track down errors when they inevitably occur. This
flexibility is particularly useful when dealing with larger networks, for example
allowing the user to trade performance with the finite FPGA resources.

1.3 Why Dynamic Loading Of Weights and Biases?

There are two tactics one can take with the weights and biases that are calculated
from the machine learning training.

– Build them into the code at synthesis time
– Load them at runtime

Building the weights and biases into the code during the synthesis allows
the compiler the very real and tangible opportunity to better optimize the code.
For example, weights that have little impact on the results may be pruned. It is
noted that loading these at run-time eliminates this possible optimization and
is at odds with the stated premium SNL places on performance. However, as
in most engineering endeavors, there are trade-offs. There are two downsides to
building the weights and biases into the FPGA image. Both involve operational
time penalties

– The time to re-synthesize the FPGA image
– The small, but not negligible, chance that the re-synthesis will fail

An assumption is that SNL’s use will be in the high stakes real-time envi-
ronment of running a facility or experimental data taking, where downtime is
to be minimized. Presumably a new set of weights and biases is being deployed
because changing conditions demand it, i.e a set of new weights and biases must
be deployed.

4 Ryan Herbst et al.

The first issue is just the reality that the time to re-synthesize networks for
an FPGA can run into the multiple hours. This time is somewhat predictable
and generally accepted as just the cost of using FPGAs. Said another way, it
can be properly factored into the operational and scheduling,

The second entertains the possibility of the re-synthesis failing. An example
of such a failure is if the previous set of weights was heavily pruned, there is
no guarantee that the new set can. This could result in either FPGA resources
being exhausted (admittedly less likely) or the latency drastically changing. In
such a failure, the only recourse is developing a new set of viable weights and
hoping they succeed. The time to do this is not predictable and certainly not
welcomed if it delays operations. Using a dynamically loaded set of weights and
biases will cost efficiency and the FPGA resources needed to support it may
be greater but, since the FPGA image is unchanged and SNL is architected for
deterministic behavior, this is a safe procedure with very predictable deployment
times. It only has to be successively built once with neither the FPGA resources
nor the latency changing.

When changes need to be made, many times it is in the face of multiple
unrelated problems. Redeploying a new set of weights should not add to the
problem list. Robustness in a real-time environment is part of good systems
engineering.

1.4 Why Streaming?

A streaming interface connects the input of the current layer with the output
of the previous layer. A memory interface delays the calculations of the current
layer until all values of the previous layer are completed. The resulting latency
accumulates though each layer using a memory interface.

In contrast, a streaming interface allows the current interface to start its
calculations as soon as the necessary data values are available, thus decreasing
the latency. In real-time applications, like triggering and feedback, latency is
more valued than thru-put. The caveat is that some AI layer types are more
amenable to streaming than others. For example, a Conv2D layer can, depending
on options, begin when roughly the number of rows and columns equal to 1/2
kernel dimensions are available. Given most kernels are small, this delay will be
small compared to the total data size. Other layers, such as the Dense layers,
can only output their first data value when all the data have been processed.
Thus Dense layers incur a heavy latency penalty. While proper coding of such
layers can provide high thru-put, no coding cleverness can avoid this latency
penalty. This penalty should be taken into consideration when designing a low
latency network.

1.5 Overview of SNL Usage

The SNL user is presented as a collection of C++ templates that define the layer
types and activators by specifying their parameters. In today’s parlance, it is a
header only package.

SLAC SNL Framework 5

Current layers include among others, Conv2D, MaxPooling, AveragePooling,
Dense, etc. The template parameters follow as closely as possible, in naming,
ordering and meaning, the Python Keras methods for that layer. Thus, users
familiar with the Keras layer methods, should recognize their C++ template
counterparts. This also has the upside that the very good documentation of the
Keras layers can be referenced by the SNL user.

The user selects the layer and activator type and defines its parameters using
the appropriate C++ templates. Where possible, sensible defaults are provided.
These defaults are, by design, explicitly not hidden. This acts as a conspicuous
prompt for the user to notice and change defaults when deemed necessary.

Finally, in strictly a mechanical step and again with the philosophy of being
as transparent to the network builder as possible, the layers are gathered, in the
form of a simple list, by another C++ template to form the network.

1.6 SNL Limitations, both Correctable and Intrinsic

It is appropriate to be transparent about what SNL can and cannot do.
First SNL is not a finished product. The basic architecture is sound but

missing the following (ordered from the easier to harder to address)

– Only a subset of all the Keras layers and activators are currently imple-
mented

– Quantization of the weights and biases needs to be added
– Lack of global optimization across the network

New Layers and Activators: Adding new layers and activators is tedious,
but it is a well-defined procedure. This includes a defined testing and verifica-
tion method when implementing new layers. Admittedly, the somewhat obscure
syntax and style of C++ templates and meta-programming is off-putting. How-
ever, this is confined to the implementer who is expected to have the necessary
skills and (considering the above critique of C++ syntax) the stamina to do this.
From the user’s perspective, the resulting C++ templates are easy and straight-
forward to use. That is, the pain is confined to the few (the implementers), not
the many (the users).

Quantization: The quantization of the weights and biases has been shown
to greatly reduce the latency and FPGA resource usage in AI inference engine
implementations. Floating point are expensive in FPGAs. Quantization replaces
these with the much cheaper arbitrary precision integers and scaled integers. As
an extreme case, the literature includes implementations using 1-bit integers.
Adding quantization is a matter of allocating the manpower and resources..

Global Optimization: The lack of global optimization is not as easily ad-
dressed as the above two. The streaming interface defined between layers is a
form of global optimization, but there are other types that, at the level SNL is

6 Ryan Herbst et al.

implemented, fundamentally cannot be. The balancing of FPGA latencies and
resources across layers is only marginally addressed by judiciously specifying
pragmas that, for example, unroll loops. Consider a layer that has minimal im-
pact on the latency, but uses a disproportionate share of FPGA resources,e.g.
LUTs, DSPs.

A solution may be in a company Xilinx recently acquired and will soon
be integrated into the HLS workflow. The product, SLX, can be described as
an post-processor to the FPGA synthesis stage. Its promise is the user can
specify global constraints on the resources including, not only logic resources,
but also thru-put and latency. SLX will attempt to add pragmas that satisfies
these constraints by considering the code in its entirety. How well this works in
practice remains to be seen, but is an example of the needed solution.

2 SNL For Convolution Networks

This section is meant to give a flavor of the SNL implementation strategy using
some of the layers typically found in a Convolution Network as examples. It also
illustrates some of the challenges and techniques for implementing low-latency
optimized code.

2.1 Data Widening

A feature common, but not exclusive to Convolution Networks, is that many
times, the input is a 3D tensor. In actual usage (i.e. real hardware, delivering
data in real-time) frequently two of these dimensions are presented serially, while
the third dimension is parallelly available. An example would be an RGB image.
The rows and columns are readout serially and the three colors in parallel. The
pattern is a number of sensors or channels each delivering distinct serial streams
in parallel. A simple scheme would be to present each value as separate data
items in the input serial stream. Instead, SNL reflects the structure of the input,
presenting all the channels in parallel, so instead of getting just a single data
value in one FPGA clock, multiple values are fetched.

In more than one network that has been implemented, the latency is a small
number of fixed cycles associated with pipeline overheads plus a larger number of
cycles proportional to the input data access time. Thus the time spent accessing
the input data is often a significant contribution to the total latency, so handling
this efficiently is important.

The practice of widening the data path is very common in FPGA program-
ming and fits naturally with Convolution Networks where often each channel of
the initial layers is processed independently. Only latter, after the size of the data
has been reduced by the initial layers, do these invoke a layer(s) that combines
the channels.

Of course there are practical limits on the width. In FPGAs, a reasonable
limit on the total width is 1-4K bits. Thus, inputting 3 8 bit RGB values (24 bits
total) or even 64 channels of 12 bit ADCs is permissible. Given that the number

SLAC SNL Framework 7

of physical sensors/channels in a system is usually small, SNL currently assumes
the third dimension can be always widen. Clearly there will be exceptions and
one of the challenges facing SNL is how to handle this.

2.2 Controlling the Resource and Latency

The selection of which FPGA used is often determined by

– Using a familiar FPGA family
– Given the cost of a FPGA, using the smallest one capable of meeting the

requirements

This translates into demanding the code squeezes as much performance using
the fewest resources. High quality FPGA programming starts with selecting an
algorithm and implementation that maps onto what an FPGA does well, then
tuning the implementation, trying to find the sweet spot between performance
and resource usage.

SNL can help in the former, selecting and carefully coding the implementa-
tion of the layers and activators to be FPGA friendly, The latter, tuning the
implementation, is a challenge to do in a user blind way. In HLS, specialized
pragmas1 are the vehicle that allows the mapping of the code to hardware re-
sources. It is through these pragmas that the performance/resource trade-off is
realized. Two common pragmas determine the amount of array partitioning and
loop unrolling. Both affect performance and resource usage. A future strategy
will be for SNL to provide reasonable defaults, but also a user accessible method
to modify these if necessary.

2.3 Scalability

The above is one of a class of scalability problems. When programming a CPU,
data array sizes and loop counts can be liberally increased with the only impact
being execution time. This is not true for FPGAs which have finite resources.
So the challenge for SNL is how to handle cases when the finite size of an FPGA
becomes a limitation. This came be summarized as

– How much can and should SNL do under-the-hood
– What control and how to expose that control to the user

Each path has its pitfalls.

– Can this truly be done without user input?
– Does giving the user tools to control this risk exposing details of the un-

derlying implementation which, if the implementation needs to be modified,
breaks user code?

1 Pragmas are a standard C/C++ feature used to communicate information directly
to the compiler

8 Ryan Herbst et al.

2.4 Activators

The last step of an AI layer is the Activator. SNL provides class templates for
the common activators such as RELU. From an implementation viewpoint these
activators are divided into two orthogonal classes

– Natural Floating Point
– One vs two pass

Natural Floating Point: These are activators whose calculations are most
naturally done in floating point and typically involve transcendentals, such as
exponentials. An example would be the Sigmoid activator. These are computa-
tionally more expensive. Work is needed to understand their usage when doing
quantized integer implementations. A look-up table would be a possible approach
in this case.

One vs two pass: Many activators, e.g. Relu, can process the data in a stream-
ing fashion. Such activators are simple functions, when handed a data value, the
function immediately returns a new value. Some activators, e.g. SoftMax, require
two passes. In the case of SoftMax, the sum of all the values from the first-pass
is used to normalize the output.

Providing a standard interface for these is future SNL goal. The interface
should allow activators to be used interchangeably. The challenge will be for SNL
to avoid a lowest common denominator solution that unduly penalizes simple
activators like Relu just to accommodate the more involved two-pass types.

However the reality is, independent of providing a clean interface, layers using
two-pass activators are incapable of streaming. Add to this that many of two-
pass activators also involve floating point operations, makes them latency-cost
expensive. The take-away is, similar to certain layer types, network designers
should be aware of the unavoidable cost of using such activators.

2.5 Layer Implementations: Conv2D

This section uses Conv2D as a concrete example of a typical SNL layer implemen-
tation. Two other layer types AveragePooling and Dense are used to illustrate
other issues that occur.

Conv2D is an almost complete implementation of the equivalent Keras method.
The following gives a flavor of the correspondence between the C++ template
and Keras method. Here is the Keras method’s interface:

keras . l a y e r s . Conv2D(f i l t e r s ,
k e r n e l s i z e ,
s t r i d e s = (1 , 1) ,
padding = ’ va l id ’ ,
data format = None ,
d i l a t i o n r a t e = (1 , 1) ,

SLAC SNL Framework 9

groups = 1 ,
a c t i v a t i o n = None ,
u s e b i a s = True ,
k e r n e l i n i t i a l i z e r = ’ g lo ro t un i f o rm ’ ,
b i a s i n i t i a l i z e r = ’ zeros ’ ,
k e r n e l r e g u l a r i z e r = None ,
b i a s r e g u l a r i z e r = None ,
a c t i v i t y r e g u l a r i z e r = None ,
k e r n e l c o n s t r a i n t = None ,
b i a s c o n s t r a i n t = None)

This is the corresponding C++ template with the equivalent Keras parameter
specification.

template<typename SRC STREAM, −− data source

s i z e t NFILTERS, −− f i l t e r s

s i z e t KERNELNROWS, −− k e r n e l s i z e
s i z e t KERNEL NCOLS,
typename KERNEL TYPE,

s i z e t STRIDE NROWS, −− s t r i d e s
s i z e t STRIDE NCOLS,

Padding PADDING, −− padding (Same or Val id)

s i z e t DILATION NROWS, −− d i l a t i o n r a t e
s i z e t DILATION NCOLS,

s i z e t GROUPS, −− groups

typename ACTIVATOR, −− a c t i v a t o r
typename BIAS TYPE,

typename DST TYPE,
s i z e t DST AXIS TID = 0 ,
s i z e t DST AXIS TDEST = 0> c l a s s Conv2D

The differences fall into two categories

– General differences due to differences in Python and C++ syntax
– Differences in specifying specific parameters

Parameter Defaulting: Python, with its named parameters, as opposed to
C++ templates’ positionally based parameters, offers much cleaner defaulting.
Having said that, by design SNL avoids, though not religiously, defaulting.

10 Ryan Herbst et al.

Since defaults are specified in the interface, what the defaults are or even their
existence is not immediately apparent when reading the code. This leaves the
code vulnerable to changes in the defaults which may cause mysterious changes.
SNL favors a bit more typing for the transparency it affords.

Permissible Parameter Types: Python parameters can be any legitimate
Python type. C++ template parameters are limited to boolean, integer types
and class types. In particular, floating point types are not permitted. To get
around this, classes with purely constexpr’s are used. Examples of this include
the stream types (SRC STREAM, DST STREAM) and the ACTIVATOR. 2

Omitted parameters: The greatest noticeable difference is the absence of
the xxx initializer and xxx constraint parameters. These are only used for the
machine learning phase, so, having no use during the inference phase, are omitted
in the C++ template.

Data Types: Python deduces the data types of all the objects. For the most
part this means a floating point type. With quantization and the ability to specify
a wider palette of data types (half-precision, arbitrary precision integers, etc.),
SNL must give control to the user via the XXX TYPE parameters.

SRC STREAM, DST STREAM: This specifies the source and destination
data stream as a SNL template class. It can viewed as a combination of Python’s
numpy shape and a HLS stream 3.

Only the source stream for the initial layer needs to be defined by the user.
For subsequent layers, the source stream must be the previous layer’s destina-
tion stream which can be easily referenced 4. Furthermore, SNL can deduce the
destination stream, with its stream shape being fixed by the layer type and its
parameters. While the destination’s stream data type can be overridden, it will
default to that of the ACTIVATOR.

ACTIVATOR: The activator is specified as class type. SNL provides templates
for the common activators such as RELU. See the section 2.4 on activators for
a more complete discussion.

2 Classes can be passed by reference. This technique is used to make some of the
weights and biases directly available at synthesis time in the Reservoir layer.

3 A HLS stream is the standard interface used to stream data between layers. It
behaves like a FIFO. For technical reasons, the initial and final streams must be an
AXI stream.

4 The name of the class of the previous layer’s destination stream is well-defined, for
example, presuming the previous layer parameter definition is layer2::Parameters,
then layer2::Parameters::DstStream.

SLAC SNL Framework 11

2.6 Layer Implementations: AveragePooling

The average pooling layer is very similar to Conv2D. One could simply view this
as a kernel with all entries equal to 1/Kernel Size. So, e.g. if it were a 2x2 pool,
then the entries would all be 1/4.

The reason this is included in the discussion is that the division by the kernel
size raises two important issues

– Division in FPGAs can be expensive in resources and time
– If using integer arthimetic, the division can result in bits being lost

Because this is division by a fixed value, the usual trick of multiplying by
precomputed reciprocal (if floating point) or by a binary scaled factor followed
by removing the scale factor with a simply shift (if integer) addresses the first
issue. However, if integer arithmetic, the loss of bits still remains.

This is an issue SNL will have to be addressed when doing quantization.

2.7 Layer Implementations: Dense

The dense layers are an example of a layer that kills streaming. By definition,
all source data values must be available before an output value can be fully
computed.

The SNL implementation does calculate partial results based on the available
source data. This helps increase the thru-put and at least minimize the latency,
but the minimum baseline latency is set by the number of source data values.
As stated previously, no amount of clever coding can be avoid this penalty. One
practical consideration helps; Dense layers generally occur as the final layers in a
network when the data sizes have been reduced. The only other option available
is to avoid using layers similar to the Dense layers.

2.8 Adding New Layers and Activators

In implementing SNL, a standard prescription for defining new layers and acti-
vators has slowly developed. While, making no claims that it is easy, this pre-
scription is well defined. A suite of support functions and template classes are
available to assist. At the risk of becoming too meta, SNL now becomes not
only a set templates to define an arbitrary network, but also a set of rules with
compile-time support methods for extending the palette of layers and activators.
To use an overused phrase, this make SNL more amenable to open sourcing.

Example of a support method: As an illustration of how similar writing a
new layer is to writing a compiler, consider an implementation for a 3x3 2D con-
volution using arbitrary precision integers. This involves multiplying and adding
9 data values by 9 kernel weights, i.e. a common dot product. The question is:
What is the data type of the dot product sum?

The compiler can easily determine the size of each multiplication. It is simply
the sum of the number of bits of the two multipliers. However the data type of

12 Ryan Herbst et al.

the sum must be wide enough to avoid overflows. In usual CPU destined code,
this is solved by overkill ; either doing things in floating point or using very wide
integers. However, to minimize resource costs in an FPGA, the type and size of
the data types should be kept at a minimum.

The compiler is not equipped to do this. To help, SNL uses meta-programming
features of C++ to the define a compile time method that takes the two input
types and the number of summed elements and returns the appropriate data
type.

s n l : : datatype : : DotType<Type0 , Type1 , Count>

For example, consider a 3x3 kernel of 8-bit signed integer weights with 12-bit
unsigned data types. The minimum output data type of this convolution is a
24 bit signed integer, 20 bits from the multiple and 4 bits to cover the 9 sums.
Using the above

// Def ine the dot product type
us ing DotProduct t = sn l : : datatype : : DotType (ap uint <12>,

ap int <8>,
9>;

// Do a (ove r l y) s imple implementation o f a dot product
DotProduct t sum = 0 .
f o r (i n t i = 0 ; i < 9 ; i++) sum += kerne l [i] ∗ data [i] ;

3 Implementation Results: BES Network

Fig. 1. BES network model

SLAC SNL Framework 13

Layer(type) Output Shape Activator

Maxpooling2D 14x14 -
Flatten 196 -
Dense 10 Leaky ReLU
Dense 40 Leaky ReLU
Dense 10 Leaky ReLU
Table 1. BES network layers.

The BES network consists of one MaxPooling2D layer and three dense layers
with the Leaky-ReLU activation function. In this paper, the MNIST dataset
is used to test and verify the BES network. The configuration of the network
is described in Fig. 1 and Table 1. The weights and biases of each layer are
calculated using the Keras and extracted for the SNL framework. The framework
is verified by comparing the result of the network output with the Keras.

We were able to compile the BES network into a Xilinx KCU1500 device
using the Xilinx HLS synthesis followed by a separate place and route with the
HLS output included as a module in a larger VHDL based design. We used
a python based software framework to load the FPGA, configure the weights
and bias and to DMA image data into the FPGA in a streaming fashion. The
inference results are then received via DMA using this same software.

Our python framework is able to read in the weight and bias data generated
by the Keras tool directly and then formats this data to match the memory
layout in the FPGA. Similarly the image data itself is read using this tool in
its native format and streamed into the Xilinx FPGA. The FPGA results are
stored in a custom data file and later compared to the results set generated by
Keras. Our testing found perfect correlation between the results generated by
Keras and the results received from the firmware in the Xilinx KCU1500.

The table 2 outlines the resource usage of the compiled BES network module:

Resource Usage KCU1500 Total

DSPs 298 5,520
FFs 36,901 1M
LUTs 26,016 663,360
BRAM 38 (0.7MB) 75Mb
Table 2. BES network Ulilization.

In its current use the network runs at a clock rate of 250Mhz. Based upon
compilation results be believe this can be raised higher possibly to 300Mhz or
more. Further testing will allow us to determine how fast we can run this network.
Given a clock rate of 250Mhz we were able to achieve a total latency for each
image frame’s inference of 1.1015uS. This is well within the target requirement
for the initial application we are targeting.

14 Ryan Herbst et al.

The results reflect the fact that when moving an image from a dense layer to
a dense layer in our current implementation does not include a pipelining stage.
This saves memory in that it does not introduce additional registers at the output
of each computation engine. We plan to allow a flag which will enabling the user
to determine if they want to introduce pipelining at each dense layer output.
The advantage of a pipeline is that it would allow a frame interval which is less
than the total inference latency of the network. This will be required for larger
inference networks running at higher frame rates.

4 SNL For Reservoir Networks

The Reservoir Network is included here because it uses a layer that is fairly
different from other layers in the following ways

– It carries state information in the form of the previous reservoir vector
– It has two classes of weights

• a fixed, built-in set. They are randomly initialized in the training phase,
but they themselves are not trained.

• a traditional set of weights and biases that are trained and downloaded

The other salient feature is that, because it connects all neurons, it cannot be
streamed. An example network using 2 Reservoir layers has been implemented. A
feature of these networks is the reservoir vector is large, in the 1000s. The weight
matrix connecting all the neurons of the reservoir network is thus this dimension
squared. This results in a very large memory to hold it and a corresponding large
number of DSPs to achieve the necessary low-latency. Such networks will need a
correspondingly large FPGA. In the Xiinx series of FPGAs, choosing one with
URAM is advantageous.

Again because of the large sizes involved, whereas SNL’s typical target net-
work latency is ˜10 usecs, realistic Reservoir networks are in ˜.1-10 msecs.

5 Conclusion

While SNL is still a work in progress, it has shown promise in implementing
very low-latency networks. These latencies are very close to the best that can
be expected based on the input data sizes and the unavoidable pipeline delays
of the layers. The data does nicely stream through the layers.

In the future we intend to continue to add the necessary new layers and
activators as stated in this document and study how their used impacts resource
utilization and latency of the networks they are used in. We also plan to start
implementing quantization in the models, including some novel techniques being
studied by other groups such as non linear quantization. Our key concern here
is to ensure we handle the overflow cases in a way which preserves the accuracy
of the inference and does not introduce additional complexity in the activators.

Also now that we have a baseline framework in place we want to compare
the resource usage of this framework with other frameworks that are available.

SLAC SNL Framework 15

Previous experience with these other frameworks indicates that they do not scale
well to the network sizes we are looking at, but we intend to do direct compar-
isons of various size networks, starting small and scaling up to larger networks to
see where the various frameworks no longer scale and how the implementation
latencies compare.

References

[Abb+15] P. Abbamonte et al. “New Science Opportunities Enabled by LCLS-
II X-Ray Lasers”. In: (June 2015). doi: 10.2172/1630267. url: https:
//www.osti.gov/biblio/1630267.

https://doi.org/10.2172/1630267
https://www.osti.gov/biblio/1630267
https://www.osti.gov/biblio/1630267

	Implementation of a framework for deploying AI inference engines in FPGAs

