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SUMMARY

In this paper, we address shortcomings of the method of exponential basis functions (EBF) by extending it

to general linear and non-linear problems. In linear problems, the solution is approximated using a linear

combination of exponential functions. The coefficients are calculated such that the homogenous form of

equation is satisfied on some grid. To solve non-linear problems, they are converted to into a succession of

linear ones using a Newton-Kantorovich approach. While the good characteristics of EBF are preserved, the

generalized exponential basis functions method (GEBF) developed can be implemented with greater ease,

as all calculations can be performed using real numbers and no characteristic equation is needed. The details

of an optimized implementation are described. To study the performance of GEBF, we compare it on some

benchmark problems with methods in the literature, such as variants of the boundary element method, where

GEBF shows a good performance. Also in a 3D problem, we report the run time of the proposed method

compared to Kratos, a parallel, highly optimized finite element code. The results show that to obtain the

same level of error in the solution, much less computational effort and degrees of freedom is needed in

the proposed method. Practical limits might be found however for large problems because of dense matrix

operations involved. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Meshless methods have received much attention from scientists and engineers in last decades. This

can be related to difficulties of mesh-based methods due to efforts needed to create a suitable mesh.

The development of a mesh generator program, especially for 3D problems, is a very delicate and

time-consuming task. On the other hand, human expertise can never be completely eliminated from

the process. From the early works on the smoothed particle hydrodynamics (SPH) [1, 2] in 1977,

there has been much progress in this regard. The element-free Galerkin method (EFG) [3], meshless
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2 F. MOSSAIBY ET AL.

local Petrov-Galerkin (MLPG) [4], finite point method (FPM) [5–8], among others, can be named.

Recently, methods based on the radial basis functions (RBFs) have been used by researchers to

solve a wide range of problems [9–18]. The method of fundamental solutions (MFS), stemming

from the boundary element method (BEM), is another method used successfully in a variety of

problems [19–27]. Trefftz family of methods which try to approximate the solution using a T-

complete set of basis functions have also been employed in many applications [28–35]. The main

problem of MFS, BEM, and Trefftz family of methods is their dependency on fundamental solution

and/or T-complete functions for the operator of interest. Obtaining such functions can be next to

impossible in certain problem. Recently a Trefftz-like method was proposed by Boroomand and

coworkers [36] which reduced the problem of obtaining T-complete like functions to solution of an

algebraic equation. The main idea of this method is to use exponential basis functions where the

exponents of the functions are chosen such that they satisfy the homogenous form of the differential

equation, leading to an algebraic characteristic equation. The exponential basis function method

(EBF) has been successfully applied in a wide range of problems, from heat conduction and elastic

wave propagation to moving boundary problems and non-local elasticity [37–49].

The major limitation of EBF and other methods which rely upon it (like [50, 51]), is that they

can only solve problems with linear, constant-coefficient operators. While EBF has proved to

perform very well in certain cases such as high-frequency problems, a wide range of popular

problems, e.g. those involving materials with variable properties, cannot be handled. In this paper

we generalize and extend the EBF method to linear problems with variable coefficients, as well

as non-linear problems, using a Newton-Kantorovich scheme. Also, we drop completely the

need for complex-valued calculations, even in wave propagation problems, which increases the

simplicity and adoptability of the method. The formulation of the method in linear problems can

be symbolically obtained from the one in [52, 53]. The major difference is the use of exponential

basis functions in a collocation approach, which eliminates the integrations in the former approach.

This leads to simpler formulation and implementation. The method is then compared, in terms

of errors and convergence rate to some of the methods found in the literature, like various BEM

variants. To check the performance of the method with other well-established methods like the

finite element method (FEM), we compare run time of the method with that of a parallel, highly

optimized FEM code, Kratos [54] in a 3D problem, when both methods exhibit the same level of

error. The comparison performed proves that, for the cases at hand, the computational cost needed to

reach the same level of accuracy is much lower than for the FEM. One shall however acknowledge

that the proposed method, similar to other alternatives of the same category, implies performing

some time-consuming dense matrix operations. While such operations are very efficient and can be

easily performed in parallel on commonplace or emerging hardware platforms such as CPUs and

GPUs, their cost and memory requirements grows rapidly with the problem size. This implies that

a practical limit might be found for very large problems. To show the possibilities of the method in

problems with singularities, we solve the well-known Motz problem. We show that highly accurate

results can be obtained by adding a few singular bases. This paves the road to solving 3D singular

problems.

The structure of the paper is as follows: In the next section we review formulation of the

EBF method. Afterwards, we present a generalized exponential basis function method (GEBF) for

linear and non-linear problems. In Section 4 efficient implementation of the method is discussed.
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IMPLEMENTATION OF A GENERALIZED EXPONENTIAL BASIS FUNCTIONS METHOD 3

Numerical examples and comparison with other methods are presented in Section 5. Section 6

concludes the paper.

2. BRIEF OVERVIEW OF THE EBF METHOD

In this section we briefly review the EBF method for solving partial differential equations. Consider

a 2D or 3D bounded domain Ω with boundary Γ = ∂Ω. A general linear problem can be stated as

LΩu = fΩ inΩ (1a)

LΓu = fΓ onΓ (1b)

in which u is the vector of field variables and LΩ and fΩ represent, respectively, the linear differential

operator and the specified right hand side function in Ω. Also, LΓ and fΓ are the boundary operator

and right hand side functions on Γ. In problems with mixed Dirichlet / Neumann boundaries, they

take the form

LΓ =







LD onΓD

LN onΓN

, fΓ =







fD onΓD

fN onΓN

(2)

where LD and LN represent, respectively, the Dirichlet and Neumann boundary operators. Also, ΓD

and ΓN are Dirichlet and Neumann part of Γ and fD and fN are defined respectively on them. The

solution of (1) can be decomposed into a homogenous and a particular part as

u = uh +up (3)

where uh and up are chosen such that

LΩuh = 0 (4a)

LΩup = fΩ (4b)

From the linearity of LΓ one may conclude that

LΓu = LΓ(u
h +up) = LΓuh +LΓup = fΓ (5)

For brevity, we consider only the case fΩ = 0, in which we may take up = 0. The general case can

be found in [36] and is similar to the way we obtain the particular solution in the proposed method.

The homogeneous part of the solution may be assumed as

uh ≈ ûh =
mh

∑
i=1

ψψψh
i ch

i = ΨΨΨhch (6)

in which mh is the number of bases, ΨΨΨh contains the exponential basis functions and ch contains

the respective coefficients. For example, in 2D problems these bases functions take the form of

exp(αix+βiy) where αi and βi can take on complex values, i.e. αi,βi ∈ C. In EBF, ΨΨΨh is chosen

such that it satisfies the homogenous governing partial differential equation. Substitution of the (6)
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4 F. MOSSAIBY ET AL.

in (4a) results in the following relation

LΩûh = LΩΨΨΨhch = HΨΨΨhch = 0 (7)

In order to obtain a non-trivial solution for the above homogenous equation, the determinant of H

must vanish

detH = 0 (8)

The above equation is referred to as the characteristic equation for the desired domain operator

and plays an important role in the EBF method. From the above characteristic equation one may

find, for example, αi in terms of βi or vice versa. The reader may note that the equation (7) is only

valid when LΩ is a linear operator with constant coefficients. The characteristic equation (8) is an

algebraic equation, and it can be solved, analytically or numerically, for all constant coefficients

operators. The characteristic equations for the solution of a variety of engineering problems can be

found in the recent papers [40, 42, 43, 45–49].

Remark 1

The EBF method can be regarded as a generalization of the solution method used for constant

coefficient ordinary differential equations. The term ‘characteristic equation’ is used with the same

meaning in both contexts. The EBF method leads to exact solution in homogenous one-dimensional

cases.

3. THE PROPOSED METHOD

In this section we present generalization of the EBF method. We will first describe the formulation

of the proposed method for solving linear problems. Then we will employ an iterative scheme to

solve non-linear problems.

3.1. Linear problems

Starting again from (1), we approximate u with a linear combination of basis functions as

u = uh +up ≈ û = ûh + ûp =
m

∑
i=1

ψψψ ici =
m

∑
i=1

ψψψ i(c
h
i + c

p
i ) (9)

in which m is the number of bases used. In matrix notation, (9) can be written as

u ≈ û = ΨΨΨc = ΨΨΨ(ch + cp) (10)

The particular part can be calculated as in [36]. To this end, a series of points, xΩ, j, j = 1, . . . ,nΩ are

chosen in the solution domain, Ω. Then (4b) is applied in these points as

LΩûp|xΩ, j
= LΩΨΨΨ|xΩ, j

cp = fΩ|xΩ, j
(11)
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IMPLEMENTATION OF A GENERALIZED EXPONENTIAL BASIS FUNCTIONS METHOD 5

In matrix notation, (11) can be written as

Qcp = h (12)

in which j-th row of Q and h are defined as

(Q) j = LΩΨΨΨ|xΩ, j
(13a)

(h) j = fΩ|xΩ, j
(13b)

From (12) the coefficients cp can be calculated as

cp = Q+h (14)

where the ‘+’ superscript denotes the Moore-Penrose generalized inverse.

Remark 2

The generalized inverse of Q is not formed explicitly. Instead, the singular value decomposition

(SVD) of the matrix, computed using LAPACK library is employed. More details on the

implementation will be presented in Section 4.

From the above equation, ûp can be calculated as

ûp = ΨΨΨcp = ΨΨΨQ+h (15)

Applying (4a) in xΩ, j one may conclude

LΩûh
∣

∣

∣

xΩ, j

= LΩΨΨΨ|xΩ, j
ch = 0 (16)

or, in matrix notation

Qch = 0 (17)

where Q is defined in (13a). For a non-trivial solution, ch must be in the null space of the matrix Q

ch ∈ null(Q) (18)

More details on the subject of calculating the null space of Q will be presented in Section 4. If

ch satisfies the above equation, it can be written as a linear combination of the bases of the space,

namely ti

ch =
b

∑
i=1

tidi = Td (19)

where di are unknown coefficients, b is the number of bases spanning the space, and T is a matrix

with its columns being the bases, ti.

Remark 3
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6 F. MOSSAIBY ET AL.

The null space bases are calculated from the SVD of the matrix Q used previously in equation (14)

as will be discussed in Section 4.

Inserting (19) into (10) one obtains

ûh = ΨΨΨTd (20)

To apply the boundary conditions, a series of points, xΓ, j, j = 1, . . . ,nΓ are chosen on the boundary

and a collocation approach is used. From (5) one may conclude that

LΓûh
∣

∣

∣

xΓ, j

= fΓ|xΓ, j
− LΓûp|xΓ, j

(21)

Combining (15) and (20), the above equation can be written as

LΓΨΨΨ|xΓ, j
Td = fΓ|xΓ, j

− LΓΨΨΨ|xΓ, j
cp (22)

from which d can be obtained as

d = (PT)+(g−Pcp) (23)

In the above equation, j-th row of P and g are defined as

(P) j = LΓΨΨΨ|xΓ, j
(24a)

(g) j = fΓ|xΓ, j
(24b)

Remark 4

Equation (23) is mathematically equivalent to a linear least squares problem, and can be solved

with a single call to LAPACK function, DGELSD. More details will follow in Section 4.

Remark 5

As can be seen, the formulation is general in the sense that any kind of basis functions, ΨΨΨ, could

be used. However, we choose the exponential basis functions as used in EBF. This has proved to

be very efficient in terms of approximation capabilities in smooth problems. As the bases no longer

have the constraint of satisfying the homogenous form of the differential equation, we use real and

imaginary parts of the aforementioned functions separately, so that all of the calculations can be

performed using real numbers. Consider for example an exponential basis function in a 3D scalar

problem as

ψ = exp(αx+βy+ γz), α = a+ ib,β = c+ id,γ = e+ i f , a,b,c,d,e, f ∈ R (25)

We use the real and imaginary parts of it as

ψ1 = ℜ(ψ) = exp(ax+ cy+ ez)cos(bx+dy+ f z)

ψ2 = ℑ(ψ) = exp(ax+ cy+ ez)sin(bx+dy+ f z)
(26)
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IMPLEMENTATION OF A GENERALIZED EXPONENTIAL BASIS FUNCTIONS METHOD 7

as one of the basis functions in (9). In 3D examples we take a,b,c,d,e, f ∈ {−1,0,+1} or

{−1,−1/3,+1/3,+1} for 1458 and 8192 basis functions respectively.

Remark 6

For problems with non-smooth or high-gradient solution, usual approaches can be employed. One

approach can be a domain-decomposition scheme which, if used correctly, can reduce the effects of

the singularities (see for example [55]). Reducing the size of sub-domains leads to a local form of

the proposed method. In this form the domain is discretized into ‘clouds’, similar to conventional

meshless methods. Each cloud is treated as a single domain formulated using the proposed method.

All resulting equations are solved together in a system of equations. This approach has been

employed in [50, 51], implementing a local form of EBF. In this case the final coefficient matrix

will be sparse, and could be solved using various available techniques.

On the other hand, one may employ specially crafted functions with appropriate singularity

shape and position. These functions absorb the effects of the singularities and leave the (rather)

smooth parts to exponential basis functions. Such bases has been used in a variety of methods, such

as collocation Trefftz methods [56–58] and EBF [59]. We employ this approach in Section 5 to

solve a singular problem.

By obtaining d (and hence ch) and cp, the unknown function u can be computed in any

desired location in the domain.

3.2. Non-linear problems

To extend the proposed method to non-linear problems, we employ a Newton-Kantorovich (NK)

[60] scheme to linearize the PDE. The resulting linear equations are solved using the proposed

method in Section 3.1 in an iterative manner. To this end, consider a general non-linear problem as

NΩu = fΩ inΩ (27a)

NΓu = fΓ onΓ (27b)

where NΩ and NΓ represent non-linear operators on the domain and boundary, respectively. To

satisfy the above equation, we may set the appropriate residuals in the domain and on the boundary

to zero

rΩ = NΩu− fΩ (28a)

rΓ = NΓu− fΓ (28b)

Taking variation from the above equations, one gets

δrΩ = δ (NΩu− fΩ) = δ (NΩu) = L̄Ωδu (29a)

δrΓ = δ (NΓu− fΓ) = δ (NΓu) = L̄Γδu (29b)
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8 F. MOSSAIBY ET AL.

where L̄Ω and L̄Γ are the so called Fréchet derivative operators and represent respectively the

linearized operators on the domain and boundary. The residuals and the unknown function u can

be approximated as

u(k+1) = u(k)+δu(k) (30)

and

r
(k+1)
Ω = r

(k)
Ω +δr

(k)
Ω (31a)

r
(k+1)
Γ = r

(k)
Γ +δr

(k)
Γ (31b)

Setting the residuals in (k+1)-th step to zero will yield to

δr
(k)
Ω =−r

(k)
Ω (32a)

δr
(k)
Γ =−r

(k)
Γ (32b)

or equivalently

L̄
(k)
Ω δu(k) =−r

(k)
Ω (33a)

L̄
(k)
Γ δu(k) =−r

(k)
Γ (33b)

The operators depend on the unknown function in the (k)-th step, i.e. u(k). Equations (33) are linear

equations which may be solved using the aforementioned method to obtain δu(k) and update u in

equation (30). The reader may note that

δ û = δ ûh +δ ûp = ΨΨΨδc = ΨΨΨ(δch +δcp) (34)

Hence, one only needs to obtain δch and δcp and update ch and cp respectively.

Remark 7

The iteration scheme described above resembles the Newton-Raphson method in algebraic

equations. Other variations like the modified Newton-Kantorovich method (MNK) are also

available and could be employed; see [60] for more information. We will discuss this in more detail

in the numerical examples section.

Remark 8

The linearization approach described is quite general, and can be used to solve a wide class of

non-linear problems, including large deformation and materially non-linear problems. For example,

in case of large deformation problems, a Total Lagrangian scheme can be used. To do so, one may

start by linearizing the equilibrium equations in terms of second Piola-Kirchhof (PK2) stresses and

proceed as usual to formulate the linearized equations in terms of variations of displacements. We

aim to present this specific case in a separate study.
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IMPLEMENTATION OF A GENERALIZED EXPONENTIAL BASIS FUNCTIONS METHOD 9

4. IMPLEMENTATION

Calculating the null space bases of Q, as well as the calculation of the coefficients for homogenous

and particular parts of the solution are the most important parts of the solution procedure.

These parts take the most of execution time, and hence, should be carefully implemented. Other

optimizations, like parallelizing the construction of Q, are possible and will be discussed.

4.1. Efficient implementation of the proposed method

A brief look at the formulation presented in Section 3 reveals that both the Moore-Penrose

generalized inverse and null space bases of Q are required. The most robust way to calculate both

of these for a matrix is known to be the SVD. The SVD of a given matrix Q can be written as

Q = UΣΣΣV∗ (35)

in which U and V are called left and right singular vectors, and ΣΣΣ is a diagonal matrix, containing

the singular values, σk, i.e.,

(ΣΣΣ)kk = σk, no sum on k (36)

The superscript ‘∗’ stands for conjugate-transpose of a matrix. The Moore-Penrose generalized

inverse (or pseudo-inverse) of a matrix is defined as [61]

Q+ = VΣΣΣ+U∗ (37)

where the diagonal matrix ΣΣΣ+ is defined as

(ΣΣΣ+)kk =







(σk)
−1 σk 6= 0

0 σk = 0
, no sum on k (38)

The columns of V where the corresponding singular value are zero have no effect in the construction

of Q+; on the other hand, these columns form the null space bases of Q. Hence, by calculating the

SVD of Q, both its pseudo-inverse and null space bases can be robustly calculated. We use this point

to decrease the needed calculations. One may also note that as we only need the product of Q+ with

a vector, we can avoid forming Q+ explicitly, and do the calculations such that we always have a

matrix-vector product. This not only decreases greatly the time required to do the calculations, but

also reduces the round-off errors.

The SVD was calculated unsing the DGESDD function of LAPACK [62] library. To obtain high

performance in this step, LAPACK was used along with OpenBLAS [63]. This paved the road to

harness the power of modern multi-core CPUs. OpenBLAS is an optimized parallel implementation

of the BLAS [64] which is freely available. Both LAPACK and BLAS are well established libraries,

and many vendors provide optimized versions of them along with their hardware.

The product of the pseudo-inverse of a matrix with a vector is equivalent to a linear least-squares

problem, e.g.

x = A+b ⇔‖Ax−b‖2 = min . (39)
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10 F. MOSSAIBY ET AL.

If the null space bases of a matrix is not needed, such as the case in (23), this can be readily done

with LAPACK function, DGELSD. This is slightly faster than calculating a truncated SVD and

performing the multiplication. The configuration described above ensures that high performance

can be obtained using this method.

Remark 9

As we use standard LAPACK functions, leveraging the code to benefit from other high performance

LAPACK implementations seems to be possible. As an example, one might try to employ emerging

high performance platforms such as GPUs. This may be important recalling the fact that the

matrices used in the proposed method are dense. These type of matrices are very suitable for GPU

platform, and the calculations can be done much faster on them. There are already several LAPACK

implementations available for this purpose, however, investigation of performance of the proposed

method on such platform is beyond the scope of this work.

The construction of Q offers complete granularity, and hence, is a good candidate for

parallelization. Here we used OpenMP to achieve a good speedup in this operation. The

parallelization can be easily performed in FORTRAN or C/C++, just by adding appropriate

statements in the code that instructs the compiler to generate appropriate parallel code. Extra care

should be taken to avoid race-condition scenarios. The complete source code of the implementation

used can be accessed freely at BitBucket [65].

4.2. Step-by-step procedure of the proposed method

The steps needed to solve a linear problem using the proposed method are summarized below.

1. Build the matrix Q using (13a)

2. Obtain the SVD of matrix Q

3. Calculate cp from (14)

4. Calculate ch from (19) by first obtaining d using (23)

5. Form the final solution û

In case of non-linear problems, the following approach could be used.

1. Linearize the equation and boundary conditions using (29)

2. Consider an initial guess for ch and cp; use 0 if no better information is available, e.g. from a

previous increment in an incremental solution

3. Solve (33) for δch and δcp using the method described for linear equations

4. Update c using (30) and δch and δcp calculated above

5. While some convergence criteria are not met, go to Step 3

If the MNK method is to be used, in Step 3 one can use the SVD calculated in a previous step

to decrease the computational cost. In highly non-linear problems, calculating the SVD every few

iterations might help convergence.
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L

P

1

H

Figure 1. Cantilever beam under end load

5. NUMERICAL EXAMPLES

In this section we present some numerical examples to demonstrate the capability of the proposed

method in the solution of a range of problems. To report the deviation of the numerical solutions

from the exact solutions, we choose the L2 error norm as

eL2
=

√

∑
n
i=1[(φ̂)i − (φ)i]2

∑
n
i=1(φ)

2
i

(40)

where n is the number of points selected inside the domain and on its boundaries for calculation

of the errors. Also (φ̂)i and (φ)i are the approximate and exact solutions at the i-th selected point,

respectively.

Example 1

As the first example, we aim to solve a two dimensional cantilever beam problem. Consider a beam

of length L and height H subjected to traction at the free end (viz. Figure 1). The beam has a unit

thickness and hence a plane stress problem is considered. The exact solution can be found in [66] as

ux =
Py

6EI

[

x(6L−3x)+(2+ν)

(

y2 − H2

4

)]

uy =− P

6EI

[

3νy2(L− x)+(4+5ν)
H2x

4
+ x2(3L− x)

]
(41)

where ux and uy are displacement components along x and y directions, ν is the Poisson ratio, E

is the elasticity modulus and I is the moment of inertia of the beam given by I = H3/12. Also the

stresses corresponding to the above displacements are

σx =
Py(L− x)

I
, σy = 0, τxy =− P

2I

(

H2

4
− y2

)

(42)

In this example we use E = 3.0× 107, ν = 0.3, H = 12, L = 48 and P = 1000. The conditions at

the boundary points are as shown in the figure. Figure 2 shows the L2 error norm for displacements

and stresses versus the average distance between nodes, h, in logarithmic scale. Figure 3 shows a

comparison between the exact solution, other numerical methods [67] and present method in case

of shear stress τxy along x = 24 for this problem with 120 boundary nodes. The results show an

excellent agreement between the exact solution and present method.
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Figure 2. Convergence plot for Example 1: (a) displacements and (b) stresses
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Figure 3. Comparison the shear stress distribution with 120 boundary nodes along x = 24 for Example 1

Example 2

In this example we consider a non-homogeneous Helmholtz equation with variable coefficients in a

square domain, namely

∂

∂x

(

a(x)
∂u

∂x

)

+
∂

∂y

(

a(x)
∂u

∂y

)

+ k(x)u = f (43)

where a(x) and k(x) are known variable material coefficient and known variable wave number,

respectively. Taking these material parameters as

a(x) = exp(x+ y), k(x) = sinx+ siny (44)
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Figure 4. The geometry and boundary conditions of Example 2; ‘D’ and ‘N’ stand for Dirichlet and Neumann
boundaries respectively
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Figure 5. Convergence plot for non-homogeneous Helmholtz equation of Example 2

the analytical solution of this problem available in [68] will be

u = x2 + y2 (45)

The problem domain and the defined boundary conditions for this example are illustrated in Figure

4. The source term f and the boundary conditions are determined from the analytical solution.

The convergence of the solution is shown in Figure 5. For a quantitative comparison, we used

the results from various boundary element methods in [68]. Table I demonstrates the computed

values of u along the middle line of the domain using boundary-domain integro-differential

equation (BDIDE), radial integration boundary integro-differential equation (RIBIDE), boundary-

domain integral equation (BDIE), radial integration boundary integral equation (RIBIE), as well

as analytical solution and present method. The results show an excellent agreement between the

proposed method and the exact solution.
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Table I. Computed values of u with 32 boundary nodes along line of y = 1.5 in Example 2

x BDIDE RIBIDE BDIE RIBIE GEBF Exact

1.000 3.23907298 3.32246311 3.24875134 3.24996383 3.25000000 3.25000000
1.125 3.50510973 3.57286266 3.51593634 3.51652295 3.51562500 3.51562500
1.250 3.80153097 3.85513479 3.81314959 3.81320922 3.81249999 3.81250000
1.375 4.12948095 4.17133413 4.14165412 4.14125138 4.14062499 4.14062500
1.500 4.48895221 4.51957143 4.50149612 4.50063760 4.49999999 4.50000000
1.625 4.87992777 4.89980552 4.89272494 4.89135856 4.89062499 4.89062500
1.750 5.30237464 5.31223044 5.31538789 5.31340484 5.31249999 5.31250000
1.875 5.75625542 5.75675965 5.76951472 5.76675756 5.76562499 5.76562500
2.000 6.24013358 6.23692919 6.25374388 6.25000002 6.24999999 6.25000000

Example 3

In this example we aim at employing the proposed method in solution of the Motz problem. The

problem was first introduced by Motz [69]. Since then, many researchers selected it as a prototype

of singular problems to verify the efficiency of numerical methods. The governing equation is the

Laplace equation on a rectangular domain with the mixed Dirichlet/Neumann boundary conditions

(viz. Figure 6) where, there is a sudden change in the boundary conditions at the origin. The

asymptotic solution of this problem can be found in [35, 56] as

u(r,θ) =
∞

∑
i=0

dir
i+1/2 cos(i+1/2)θ (46)

where di are the expansion coefficients, and (r,θ) are the polar coordinates with the origin at (0,0).

In numerical solutions, one may use the above expansion with finite terms as

u∗(r,θ) =
ns

∑
i=0

Dir
i+1/2 cos(i+1/2)θ (47)

In this regard, to elucidate the accuracy of the present method for this problem, we use the Di

coefficients reported in [56] for ns = 34. Due to the smooth and global nature of basis functions

used in the proposed method, efficiency of the proposed method can be decreased in problems

with singularities. However, we address this issue by adding a few singular functions to original

bases (see [59] for more information). This has been done for a variety of methods, including

the collocation Trefftz method (CTM) [35, 56] and EBF itself [59]. Figure 7 illustrates the results

obtained. Figure 8 indicates the error norm variation versus the number of degrees of freedom and

the number of the singular bases. To get more insight into the performance of the proposed method in

satisfaction of the boundary conditions, Figure 9 presents the errors on Neumann (y= 1,−1≤ x≤ 1)

and Dirichlet (x = 1,0 ≤ y ≤ 1) boundaries, respectively. It can be concluded that boundary

conditions are satisfied accurately in the proposed method.
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Figure 6. The geometry of Motz problem; u and un are prescribed values on Dirichlet and Neumann
boundaries respectively
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Figure 7. Contour plot of (a) numerical solution with 119 boundary nodes and (b) exact solution for Motz
problem
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Figure 8. Convergence plot for the Motz problem of Example 3 based on; (a) average distance of nodes with
50 singular bases, (b) number of singular bases with h = 0.05

Example 4

In order to test the method in the solution of non-linear PDEs, we consider a generalized non-linear

Poisson problem in the square domain whose governing equation is defined by

∂ 2u

∂x2
+

∂ 2u

∂y2
+

(

∂u

∂y

)2

= f (48)
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Figure 9. The boundary conditions satisfaction error in the Motz problem with 119 boundary nodes; (a)
Neumann boundary (y = 1,−1 ≤ x ≤ 1) (b) Dirichlet boundary (x = 1,0 ≤ y ≤ 1)
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Figure 10. Convergence plot for generalized non-linear Poisson problem of Example 4

The exact solution of this problem can be found in [70] as

u = x2y (49)

The boundary conditions are assumed to be of Dirichlet type on all edges. The source term f and

the boundary conditions are obtained from the exact solution. Here, both NK and MNK methods are

employed with a zero initial guess. The convergence history of the solution with 80 boundary nodes

is shown in Figure 10. Figure 11 demonstrates the contour plot of the numerical results obtained

from proposed method and the exact solution. Again, for a quantitative comparison we used the

virtual boundary collocation method results discussed in [70]. Table II demonstrates the computed

values of u in various points of the domain, from the virtual boundary collocation method (VCBM),

the analytical solution and the present method using NK approach.

Example 5

In this example we solve a 2D steady-state heat conduction problem over a non-homogeneous

media. To this end, we consider a single anisotropic material in the square domain [−1,1]× [−1,1]

representing a non-linear FGM with exponential heterogeneity. This problem is discussed in [71,72]
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Figure 11. Contour plot of (a) numerical solution with 16 boundary nodes and (b) exact solution for Example
4

Table II. Comparison of numerical results for Example 4 with 32 boundary nodes

(x,y) VBCM GEBF (NK) Exact

(0.00,0.00) 0.0000 0.000000 0.000000
(0.25,0.25) 0.0159 0.015642 0.015625
(0.50,0.50) 0.1251 0.124996 0.125000
(0.75,0.75) 0.4222 0.421847 0.421875
(1.00,1.00) 1.0000 1.000000 1.000000
(1,00,0.50) 0.5000 0.500000 0.500000

with heat conduction coefficients varying as functions of the temperature inside the material. The

governing equation for steady-state heat conduction in heterogeneous media is defined by

∇ · (K∇T ) = 0 (50)

where K denotes the thermal conductivity matrix. A FGM is supposed to make a composite material

by varying the microstructure from one material to another with a specific gradient. In practice,

FGMs usually serve in the high-temperature environments. Therefore, we consider the thermal

conductivity as a non-linear function of temperature, such as

α(T ) = exp(T ) (51)

To cope with non-linear behavior of the above term, the Kirchhoff transformation is employed

(see [73] for more information). The thermal conductivity matrix K defined as

(

k1 0

0 k2

)

=

√

1− c/r

2r
sinh(r)exp(y)

(

2 0

0 1

)

(52)
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Figure 12. Convergence plot of steady-state heat conduction problem in Example 5
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Figure 13. The isothermals throughout the FGM in Example 5 (a) from the numerical solution with 32
boundary nodes and (b) from the analytical solution

where c and r are taken as x/
√

2− 1 and
√

c2 + y2, respectively. The analytical solution for this

problem is expressed as

T = ln

(
√

1− c/r

2r
sinh(r)exp(−y)

)

(53)

The problem has been solved with two types of boundary conditions. First, the boundary conditions

are assumed to be of Dirichlet type on all edges (D-D-D-D). Again, the mixed Dirichlet/Neumann

boundary conditions (N-D-N-D) are considered on boundaries. Figure 12 shows the convergence of

the solution. Figure 13 illustrates isothermal contours of the FGM plate under Dirichlet boundary

conditions with 32 boundary nodes. It can be seen from Figure 13 that the numerical solution is in

excellent agreement with the analytical solution.
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Figure 14. A 3D axletree base

Example 6

In this example the proposed method is applied to solve a 3D problem. Three-dimensional problems

are usually not easy to deal with partly due to the high effort in the mesh generation for mesh-

dependent methods such as FEM. The goal of the following experiment is to demonstrate the

accuracy and efficiency of the present method to solve 3D problems. We study the heat conduction

over a 3D axletree base. The geometry of this problem is depicted in Figure 14. The 3D axletree

base has also been used previously in [74], and is regenerated here. The governing equation for this

example given by (50). Here, we consider the homogenous and isotropic steady-state characteristics

of heat conduction with given thermal conductivity matrix K as an identity matrix. The problem has

been solved under Dirichlet boundary conditions. The exact solution for this example is chosen as

a 3D harmonic polynomial as

T = x10 +10x9y+45x8y2 −90x8z2 +120x7y3 −720x7yz2 +210x6y4 −2520x6y2z2+

840x6z4 +252x5y5 −5040x5y3z2 +5040x5yz4 +210x4y6 −6300x4y4z2+

12600x4y2z4 −1680x4z6 +120x3y7 −5040x3y5z2 +16800x3y3z4 −6720x3yz6+

45x2y8 −2520x2y6z2 +12600x2y4z4 −10080x2y2z6 +720x2z8 +10xy9−
720xy7z2 +5040xy5z4 −6720xy3z6 +1440xyz8 + y10 −90y8z2 +840y6z4−
1680y4z6 +720y2z8 −32z10

(54)

Table III demonstrates the numerical results obtained along with other assumptions. The numerical

results show the desirable performance of the present method to deal with the three-dimensional

problems.
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Table III. The results obtained for Example 6

Domain nodes (nΩ) Boundary nodes (nΓ) Bases (m) Null space bases (b) eL2

751 614 1458 848 5.27405×10−3

751 614 8192 7441 4.83870×10−9
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Figure 15. Contour plot of (a) numerical solution and (b) exact solution for Example 7

Table IV. Total CPU time spent for obtaining the numerical results of the same accuracy in eL2
∼= 1.2×10−7

Methods Total CPU time (s) Ratio

FEM 65.69 1
GEBF 0.39 1/167.59

Example 7

Finally, to demonstrate the relative computational cost of the present method, we solve a Laplace

equation over a cube with unit side length. The governing equation for this is defined as

∇ ·∇u = 0 (55)

The exact solution to this problem is taken to be

u = sin

(

3

5
x

)

sin

(

4

5
y

)

sinh(z) (56)

Dirichlet boundary conditions are assumed on all sides of the cube. Figure 15 demonstrates the

contour plot of the numerical results obtained from proposed method along with the exact solution.

We compare the run time of the proposed method with that of Kratos, a parallel, highly optimized

finite element code [54]. In Kratos we employ a regular mesh of 8 node linear brick elements.

The tests are carried out on a Intel Core i7 2700K CPU at 2.80GHz with 8 GB of DDR3 RAM

running Ubuntu 14.04 64 bit. We refined the mesh in the FEM until almost the same level of error

eL2
∼= 1.2×10−7 earned in both methods. Total CPU time spent are reported in Table IV. It is found

that the GEBF in this specific case is more efficient than the FEM by a factor of 167.
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6. CONCLUSION

A generalized exponential basis functions method was proposed. The proposed method addresses

the shortcomings of the original exponential basis function method by leveraging the method to

general linear and non-linear problems. A Newton-Kantorovich scheme used in non-linear problems

to establish an iterative, linear set of equations which is solved using the proposed method in linear

problems. Details of an efficient implementation is discussed. The method is shown to perform well

in some benchmark problems, compared to a variety of the methods in the literature. Also, we show

that the proposed method can solve 3D problems with complex geometries. The performance of

the proposed method is compared to a parallel, highly optimized finite element code, Kratos. The

method fully shows its potential when applied to 3D problems. For the test case considered, which

represents a simple yet representative benchmark case, the proposed method is over 167 times more

efficient, when the same level of error is targeted. Similar gains can be expected in other problems

of similar characteristics, where the enhanced properties of the GEBF allow reaching the same level

of accuracy as the FEM using a much lower degrees of freedom. Practical limits might be found

however for large problems because of dense matrix operations involved. It is noted that domain

decomposition and local schemes are possible and the method can be extended to large deformation

and materially non-linear cases in the future. 3D singular problems is another topic which may be

investigated, taking into account the characteristics of the proposed method.
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5. Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL. A finite point method in computational mechanics. Applications

to convective transport and fluid flow. International journal for numerical methods in engineering 1996;

39(22):3839–3866.
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