
Received March 4, 2019, accepted March 27, 2019, date of publication April 18, 2019, date of current version April 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2911979

Implementation of a Large-Scale Platform for
Cyber-Physical System Real-Time Monitoring

MIKEL CANIZO 1, ANGEL CONDE 1, SANTIAGO CHARRAMENDIETA1,
RAÚL MIÑÓN2, RAUL G. CID-FUENTES3, AND ENRIQUE ONIEVA 4
1Ikerlan Technology Research Centre, 20500 Arrasate-Mondragón, Spain
2Tecnalia Research and Innovation, 01510 Vitoria-Gasteiz, Spain
3Global IoT and Eleven Paths & Telefónica Investigación y Desarrollo, 28050 Madrid, Spain
4Deusto Institute of Technology (DeustoTech), University of Deusto, 48007 Bilbao, Spain

Corresponding author: Mikel Canizo (mcanizo@ikerlan.es)

This work was supported by the Basque Government through the Elkartek Program under the TEKINTZE Project under

Grant KK-2018/00104.

ABSTRACT The emergence of Industry 4.0 and the Internet of Things (IoT) has meant that the manufac-

turing industry has evolved from embedded systems to cyber-physical systems (CPSs). This transformation

has provided manufacturers with the ability to measure the performance of industrial equipment by means

of data gathered from on-board sensors. This allows the status of industrial systems to be monitored and

can detect anomalies. However, the increased amount of measured data has prompted many companies to

investigate innovative ways to manage these volumes of data. In recent years, cloud computing and big

data technologies have emerged among the scientific communities as key enabling technologies to address

the current needs of CPSs. This paper presents a large-scale platform for CPS real-time monitoring based

on big data technologies, which aims to perform real-time analysis that targets the monitoring of industrial

machines in a real work environment. This paper is validated by implementing the proposed solution on a real

industrial use case that includes several industrial press machines. The formal experiments in a real scenario

are conducted to demonstrate the effectiveness of this solution and also its adequacy and scalability for future

demand requirements. As a result of the implantation of this solution, the overall equipment effectiveness

has been improved.

INDEX TERMS Anomaly detection, big data, cyber-physical system, industry 4.0, real-time processing.

I. INTRODUCTION

In recent years, industrial manufacturing has advanced due

to the fourth Industrial Revolution (Industry 4.0) and the

Internet of Things (IoT) [1]. This evolution has been boosted

by the specific needs of the industrial manufacturing sec-

tor [2]. Thus, companies have experienced a technological

transformation by adopting Cyber-Physical Systems (CPSs)

rather than traditional embedded systems [3]. Although the

term CPS is applied to a wide variety of domains, it is

assumed in this article to refer to an Industrial Cyber-Physical

System (ICPS) because the scope of this work covers the

manufacturing domain.

ICPSs enable new advanced strategies to be implemented

to improve and optimize the manufacturing processes in the

The associate editor coordinating the review of this manuscript and
approving it for publication was Yuedong Xu.

entire lifecycle of the manufacturing system and, therefore,

of the product [4], [5]. This would lead to higher qual-

ity products and improvements in productivity and energy

savings. This has encouraged the European Monitoring and

Control (M&C) market to invest e143 billion in this area

by 2020, making a total ofe500 billion invested by the world

wide M&C market [6].

An ICPS can be made up of many different devices. Some

of these devices can communicate with each other to make

decisions while the system is in operation, leading to smart

manufacturing [7], [8]. Thus, it is necessary to capture all

data coming from ICPSs to cost-effectively monitor the oper-

ation of these industrial systems to timely detect anomalies

and avoid production shutdowns. The captured data allows

anomalies in the system to be found. This anomaly detection

helps to find errors at an early stage. However, to do so,

all information received from an ICPS must be captured

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

52455

https://orcid.org/0000-0001-8888-2375
https://orcid.org/0000-0003-3725-8446
https://orcid.org/0000-0001-9581-1823


M. Canizo et al.: Implementation of a Large-Scale Platform for CPS Real-Time Monitoring

and processed. Note that an ICPS can be composed of many

devices and, consequently, the data volume received is large.

Hence, the data volumes that are currently generated are too

large to be processed with traditional technologies [9], which

often means delays and may cause non-functioning. This

can be critical for decision-making processes, since obtaining

correct information at the correct moment is a key issue [10].

Late detection of a fault can also be critical for an industrial

machine and, consequently, for productivity. In an industrial

scenario, the system needs to be in operation 24/7. Therefore,

the devices, the network, and so on in a smart manufacturing

system cannot be interrupted, since this would cause a drop

in production and a loss of money. This is typically mea-

sured by the Overall Equipment Effectiveness (OEE), which

identifies the percentage of manufacturing time that is truly

productive.

The rapid growth and widespread use of a wide range of

information technologies, from individual sensors to cloud

computing and cloud services, has led to an increase in the

volume of data that needs to be processed. As the data volume

increases, the ICPS must be horizontally scaled up to add

more computational resources to ingest, process and store the

data. However, other issues can arise as more computational

nodes are added to the existing server to spread the load

across them, such as data partitioning [11] or the manage-

ment of the computational resources, among others. Hence,

scalability is one of the main challenges to these systems.

In this context, Big Data frameworks and cloud computing

are particularly important since they provide fast, scalable

and fault-tolerant data processing capabilities for ICPSs [5].

Cloud-based approaches are especially suitable for small and

medium enterprises since they provide on-demand services,

which require lower barriers and initial investments [12].

This work presents a Big Data approach for ICPSs to per-

form a real-time analysis of the operational state of industrial

systems in the manufacturing industry. This will enable the

ICPS to take advantage of the benefits of Big Data in a

cloud computing environment. This work is validated in a real

industrial scenario where various press machines are used.

The validation comprises the implementation of this solution

to improve the performance and reliability of its monitor-

ing and anomaly detection systems, since they required a

new platform that is faster to process efficiently the data

volume they currently generate and scalable to meet future

needs. Consequently, this approach has helped to improve

the OEE of their industrial systems. Moreover, the monitor-

ing system developed here can be easily deployed on third-

party cloud infrastructures such as Amazon EMR,1 Microsoft

HDInsight2 or Cloud Dataproc.3

The main contribution of this work is the design and the

implementation of a large-scale ICPS for monitoring indus-

trial machines in a real work environment, where digitization

1https://aws.amazon.com/es/emr/
2https://azure.microsoft.com/es-es/services/hdinsight/
3https://cloud.google.com/dataproc/

is not yet very advanced. Specifically, the novelty of this work

lies in: (i) the use of a Big Data solution to satisfy the needs

of real industrial scenarios, both currently and in the future;

and (ii) addressing the challenges identified in the literature

review.

The rest of this article is structured as follows: Section II

presents the state of the art. Section III describes the proposed

Big Data architecture. Section IV details the configuration

of the experimentation as well as the industrial case study.

Section V analyzes the results of the scalability tests that we

have performed. Section VI presents conclusions and future

work. However, due to confidentiality, it is not possible to

show specific details about the anomaly detection process or

the OEE.

II. STATE OF THE ART

The term cyber-physical system was first coined by Helen

Gill at the National Science Foundation. Briefly, it can be

referred as a new generation of systems with integrated com-

putational and physical capabilities that can interact with

humans through many new modalities [13]. In fact, CPSs

can be defined as ‘‘physical, biological and engineered sys-

tems whose operations are monitored, coordinated, con-

trolled and integrated by a computing and communication

core’’ [14], although more definitions can be found in the

literature [15]–[18].

The communication between physical and digital elements

has come to play an important role in various industrial

domains [16], [19], [20]. Within a manufacturing context,

the use of ICPSs has led to smart manufacturing. According

to the National Institute of Standards and Technology (NIST),

these are ‘‘fully-integrated, collaborative manufacturing sys-

tems that respond in real time to meet changing demands

and conditions in the factory, in the supply network, and

in customer needs’’ [21]. However, an ICPS by itself is

not sufficient for efficient monitoring of industrial systems.

The gathered data must go through four IoT stages to gain

enough knowledge to make an accurate decision [22]–[25].

These stages start from the device’s connectivity to transmit

the data, followed by real-time monitoring that enables the

operational state of the systems to be visualized, and even-

tually leading to desired business outcomes. A data analytics

stage then delivers insight, predictions, and optimization for

the performance of the ICPS. Finally, an enhanced on-board

intelligence that provides themaximum business benefit from

the information obtained in the previous stages is required.

This allows companies to gather data from their industrial

systems and then process it to extract useful information

to help make relevant decisions, failure diagnoses and to

introduce predictive maintenance.

Given the necessity to analyze the data coming from the

physical elements as fast as possible and the huge volume of

captured data, Lee et al. [26] conclude that algorithms are

required to draw conclusions and avoid anomalies. Conse-

quently, data analysis can bemore efficient than analyzing the

data manually. As Niggemann et al. [27] show, humans are
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unable to draw conclusions in a fast and efficient way when

a huge amount of data is involved. They also claim that

systems managed by humans are hard to maintain, besides

being incomplete.

However, acquiring data and processing it involves high

levels of computational requirements. Colombo et al. [6]

claim that these systems should be based on process control

algorithms, architectures, and platforms that are scalable and

modular (plug and play), and which are applicable across

several sectors. Consequently, the application of cloud com-

puting and Big Data technologies to ICPSs has attracted

the interest of several researchers. Thus, the literature has

identified the challenges of cloud-based ICPSs [28]–[31], and

which agree on the need for an ICPS with the following

characteristics:
• Cloud-based distributed file systems for ubiquitous

access to data.

• Open-source programming frameworks to process and

analyze Big Data.

• Large-scale, fast and fault-tolerant data processing.

• Real-time data collection from cyber-physical devices

and storage in the cloud.

• Remote monitoring and control capabilities.

• Software as a Service (SaaS), Hardware as a Service

(HaaS), Platform as a Service (PaaS), and Infrastructure

as a Service (IaaS).

• An intelligent search engine to answer queries.
Although researchers have recently focused on achieving

some of these challenges, to the authors’ knowledge, none

have addressed these characteristics embedded in a single

solution.

III. BIG DATA ARCHITECTURE FOR AN INDUSTRIAL

CYBER-PHYSICAL SYSTEM MONITORING

This section details the proposed Big Data architecture for

ICPS real-time monitoring. First, the components of the

architecture are introduced (Section III-A). The technologies

that are used to implement this architecture are then described

(Section III-B). Finally, the workflow followed by the archi-

tecture to assess the monitoring of the ICPSs is detailed

(Section III-C).

A. ARCHITECTURE

The goal of this architecture is to process the data generated

by the industrial machines to monitor in real-time their opera-

tional state, providing key information to maximize the OEE.

However, when many industrial machines are continuously

sending data, a Big Data architecture is required to manage

the large volume of data that is generated by the ICPSs. At this

stage, a number of technological requirements arise, which

must be analyzed in depth [27], as follows:
• Data acquisition: a system that is capable of gathering

data from the industrial machines and sending it to

the cloud is required. Consequently, a system that is

capable of managing all of the data sent to the cloud

is also required. These systems must efficiently manage

thousands of messages per second without forming a

bottleneck. They must also be scalable to be able to

handle data volume increments. Finally, data loss must

be prevented since the monitoring cannot be properly

carried out without all of the relevant data. Thus, it must

be fault-tolerant [32].

• Data processing: a data processing engine that is capa-

ble of processing the streaming data coming from the

industrial machines is required. It must also enable batch

processing for advanced analytics purposes. To detect

anomalies as early as possible, the data processing

engine must be fast in terms of processing data and exe-

cuting calculations. It must also be able to manage data

volume increments (scalability) and to handle system

failures (fault-tolerant).

• Data persistence: there is a need to store huge vol-

umes of data with high throughput. Consequently, stor-

age flexibility is required as the data volume increases.

Moreover, an efficient search engine is required to query

the database without excessive delays. Fault-tolerance is

also required to miss no data in case a system failure

occurs.

• Data serving: a system that provides services to

query/push information from/to a user interface is

required to easily check in real-time the operational

status of the industrial machines. This system must

provide mechanisms to handle immediate information

(i. e., anomaly alerts or current machine status), and

medium to long-term information (i. e., advanced analyt-

ics). In other words, it manages the connections between

the cloud and the user interface.

With these requirements in mind, as depicted in Figure 1,

the architecture is divided into three main blocks: a local data

acquisition, a cloud platform, and a front-end. The former

is located physically on the manufacturing factory, that is,

it is deployed in the servers of the company (on-premise).

It is responsible for gathering data generated by the industrial

machines and then sending it to the cloud. The local data

acquisition system is composed of a database where the

data coming from the industrial machines is stored and a data

publisher pushes the new data to the cloud. This is part of the

data acquisition system; concretely, the local side.

The cloud platform is the core block of the architecture

since it is in charge of managing, processing, persisting, and

serving all of the data sent to the cloud. To give support

to all of the previously described requirements, according to

lambda architecture [33], the cloud platform is divided into

three layers: serving, speed, and batch layers. The serving

layer encompasses all services related to the data acquisition

in the cloud side, the data persistence, and the data serving.

The speed layer includes real-time data processing services;

that is, it is responsible for processing in real-time the data

coming from the industrial machines. The batch layer pro-

vides batch processing services, which means that the data
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FIGURE 1. Architecture of the proposed ICPS real-time monitoring system.

is processed periodically with a long time interval. This is

responsible for performing advanced analytics by aggregat-

ing historical data stored in the database.

The front-end is the visual component of the architecture.

It shows in real-time the status of the industrial machines

and it enables advanced analytics to be displayed to support

decision making. The front-end is also deployed within the

cloud platform.

B. CLOUD MANAGEMENT AND USED TECHNOLOGIES

Of the requirements that we have described, the management

of volume, velocity, scalability, and fault-tolerance are the

most important issues. The first two are already addressed

by adopting a Big Data paradigm since they are implicit [34].

In addition, the multi-node design of Big Data frameworks

provides scalability [35] and fault-tolerant features. There-

fore, the selection of these technologies was made in view

of the requirements and issues described above.

Since data persistence is required, Elasticsearch4 was

selected Elasticsearch is a distributed, document-oriented,

RESTful search and analytics engine that is capable of per-

sisting data and fulfilling the established requirements [36].

Besides satisfying our requirements, Elasticsearch is also

a mature and robust technology that has been successfully

adopted in other domains [37]–[40]. InfluxDB was also suit-

able for this use case although it was discarded as it must be

paid in case more than one node is used.

Apache Flume5 and Apache Kafka6 were selected to meet

the data acquisition requirements. Flume is a distributed,

reliable and available service that can efficiently collect,

aggregate and move large amounts of logged data. It is

used as a data publisher to send the data generated by the

industrial machines to the cloud. Its potential is demonstrated

in [41]. Kafka is a distributed messaging system that uses

the publisher/subscriber communication pattern [42]. It is in

4https://www.elastic.co/products/elasticsearch
5https://flume.apache.org/
6https://kafka.apache.org/

charge of passing the data sent by the data publisher into the

cloud. Furthermore, Kafka minimizes the loss of messages

by means of its fault-tolerant design. Apache Kafka has also

been adopted in similar use cases [43]–[45].

Apache Spark Streaming7 was adopted to process the data.

Spark Streaming is a scalable, high-throughput, fault-tolerant

stream processing for live data streams. For streaming data

processing, a short batch interval was defined while a long

batch interval was defined for batch processing. The main

advantage of Spark Streaming is its in-memory data pro-

cessing, which provides a faster engine than those using

disk I/O. This allows data to be processed 100 times faster

than traditional Big Data technologies [46]. In addition, it is

supported by a huge developer community and is powered

by companies such as IBM, Hortonworks or Cloudera, which

means that the framework is mature and resilient over time.

Two components are used to manage messages between

the application and the dashboard: a generic REST API to

query the database from the dashboard, and a WebSocket

that enables direct messages to be sent to the dashboard.

These are responsible for data serving, which is located

in the cloud within the serving layer. To provide fault-

tolerant and scalability capabilities to the dashboard, a micro-

service solution based on the 12-factor app approach8 was

adopted.

To carry out the management of cloud resources Apache

Mesos9 and Apache Zookeeper10 are used. Among other

computational resources, Apache Mesos abstracts CPU,

memory, and storage away from the machines (physical or

virtual), enabling fault-tolerant and elastic distributed sys-

tems [47]. Mesos is in charge of dynamically managing the

resources used by the frameworks within the cloud, specify-

ing where and how they have to be executed. In the same

way, it allows to dynamically add or reduce the resources

7https://spark.apache.org/streaming/
8https://12factor.net/
9https://mesos.apache.org/
10https://zookeeper.apache.org/
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FIGURE 2. Configuration of the cloud platform.

that a framework can use at run-time. Apache Zookeeper is a

centralized service that is used to maintain the configuration

information and naming, to provide distributed synchroniza-

tion and group services [48].

The design of the cloud management is shown in Figure 2.

Mesos has three master nodes and three agent nodes. The

former are responsible for managing the cloud and the latter

for executing the scheduled tasks. Only one of the master

nodes is active (the leader) while the others are in standby

mode as a replica in case the leader fails.

Zookeeper, Mesos, Elasticsearch, and Kafka have a master

node and two slave nodes. This allows a threefold replication

of the services. Therefore, if an error were to occur in one of

the nodes, then the data would still be available in the remain-

ing live nodes. Furthermore, this avoids the single point of

failure problem [49]; that is, there is no point at which if

something fails, the entire system stops working. In addition,

if anymaster node fails, then Zookeeper would be responsible

for selecting a new master node. Thus, the application could

continue working properly.

It is worth pointing out that Flume is deployed locally.

Thus, if network problems were to arise, the gathering of new

data would continue and submission of the data to the cloud

would take place when the network was able to recover its

normal behavior. Despite not being deployed on the cloud,

Flume can restart itself at the point it had reached before

failure occurred. To do this, it uses a checkpointing mech-

anism to ensure that no events are lost. Moreover, Flume

itself is a scalable framework. This guarantees scalability and

fault-tolerant services.

C. REAL-TIME MONITORING

This section describes the data-flow followed to perform the

real-time monitoring of the industrial systems and to early

detect anomalies. This process starts when data is gathered

from industrial machines through a data acquisition system.

At this stage, data is provided by a Programmable Logic Con-

trollers (PLCs) installed on each industrial machine; this data

is then persisted in a local database. Concurrently, the data

publisher periodically queries11 the local database to check

11https://github.com/keedio/flume-ng-sql-source

whether new data is available. If so, then it publishes new data

within Kafka topics (Kafka publisher role). Note that various

types of data are gathered from industrial machines and thus,

there is one topic for each data type.

Once the local side of the data acquisition system publishes

data on Kafka, the real-time processing service subscribes to

the corresponding topics to read themessages. It uses asmany

data streams as topics, which means that it can process the

sent data concurrently through these topics. It is noteworthy

that if the data volume increases in the future, then the number

of partitions per topic can be increased. Therefore, more data

streams can be created for each topic and, as a consequence,

the data ingestion throughput can be increased. Subsequently,

the tasks of Apache Spark are twofold and are executed

concurrently: 1) to persist the received data into Elasticsearch,

and 2) to process data and perform calculations to detect

anomalies.

Based on expert advice and experience, three flags were

defined to model the different states resulting from the cal-

culations: green, yellow and red. These colors indicate the

criticality of the anomaly, with the red flag representing the

most critical state and the green flag indicating normal behav-

ior. Each industrial machine has its own flag. Two boundaries

were defined to measure the criticality of the anomaly: a low

and a high boundary. These boundaries are static and were

set by experts. Hence, if the result of a calculation is higher

than the low boundary, then a yellow flag is generated. If it

is higher than the high boundary, then a red flag is generated.

Otherwise, the flag is set to green. The color of the flags can

only be modified to increase the criticality of the anomaly,

and an alert is generated only in this case. The state of the

alarms is reset to green by executing a specific mechanism

for resetting the alarms.

Within this use case, there are two types of calculations

to detect anomalies: in the first, cataloged as Single Data

Anomaly Detection (SDAD), a calculation is performed for

each received measurement. In the second, classified as Mul-

tiple Data Anomaly Detection (MDAD), multiple measure-

ments are required to execute a single calculation. Following

the computations, the criticality of each is verified using the

boundaries described above. At this point, critical anomalies

are detected and an alert is sent to the dashboard.

The current state of the alarm is compared with a newly

detected anomaly since an alert is only sent to the dashboard

if the anomaly is more critical than the current state. However,

Spark does not support the persistence of values between

batches as a default. Consequently, a stateful method was

adopted. In this way, the previous states are available within

each batch, for comparison purposes. This method takes into

consideration a key, a value, and a state as input parameters.

The key is a unique identifier for classifying the data; the

value is the data received within a batch, classified by key;

and the state is the parameter through which data can be

persisted in memory between batches.

Algorithm 1 shows the method followed for SDAD. First,

the data is received by means of data streams and it is then
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Algorithm 1 Single Data Anomaly Detection algorithm

1: receive data from kafka

2: group received data by key ⊲ key=machineNumber

3: execute statefulMethod;

4:

5: procedure statefulMethod(key, value, state)

6: calculations = doCalculations(value)

7: currentState = checkCurrentState(calculations)

8: previousState = getPreviousState(state)

9: if currentState > previousState then

10: update the current state

11: send an alert to the dashboard

12: end if

13: end procedure

Algorithm 2 Multiple Data Anomaly Detection Algorithm

1: receive data from kafka;

2: group received data by key; ⊲ key=machineNumber

3: execute statefulMethod1;

4: if statefulMethod1 returns some value then

5: execute statefulMethod2;

6: end if

7:

8: function statefulMethod1(key, value, state)

9: arrayData = getPreviousState(state);

10: fill arrayData with new received data;

11: check if all data is received;

12: if all data received then

13: remove state;

14: return arrayData;

15: else

16: update the current state;

17: end if

18: end function

19:

20: procedure statefulMethod2(key, value, state)

21: calculations = doCalculations(value);

22: currentState = checkCurrentState(calculations);

23: previousState = getPreviousState(state);

24: if currentState > previousState then

25: update the current state;

26: send an alert to the dashboard;

27: end if

28: end procedure

grouped by key. Subsequently, a stateful method is applied.

In this case, the key is the machine identifier, the value is the

data received in the actual batch, grouped by key, and the state

is a string containing the current color of the flag for each

machine. Following this, calculations are performed to check

whether a more critical anomaly is found. If so, then the value

of the state is updated with the corresponding color, and an

alert is generated and sent to the dashboard for visualization.

Finally, it returns to receive new data.

Algorithm 2 shows themethod followed forMDAD. In this

case, two stateful methods are used: the first waits until all

required data is received, and the second measures the criti-

cality of the calculations. In the first method, data received

within a batch is grouped by key. The value is the data

received within a batch grouped by key, while the state refers

to an array whose size is determined by the amount of data

required. Thus, this array is filled each time that a batch is

processed. If not all of the data is received, then it returns

to receive new data. The calculation can be performed when

all of the required data is received. At this point, the state is

removed to free memory space, since this data is not used

again in this context. The result is then sent to the second

stateful method, where the criticality of the given result is

measured. This second method performs the same process as

that described for SDAD. Finally, it returns to receive new

data.

To correct the maintenance process, alerts are also sent to

the Technical Assistance department where a maintenance

assistant analyzes the failure and plans the corresponding

corrective actions to be made, if needed. If the failure can be

remotely fixed, then the assistant will start the process using a

Virtual Private Network (VPN). Otherwise, the assistant will

launch a maintenance order, in which the assistant will have

to physically fix the fault.

This solution can be implemented in any industrial domain

as it is composed of generic frameworks. Regarding the

architecture, it must be equal for any domain. However, since

industrial systems in each domain have their own character-

istics and requirements, the way in which ICPSs gathers data

from the physical machines and how they send the data to the

local database must be changed. This is an ad-hoc process.

As the data flow is regarded, the data ingestion, the data

processing, and the data persistence are also ad-hoc processes

and, therefore, they must be adapted to the corresponding

requirements of the specific domain. Consequently, the data

structure and how the data is processed and modeled must be

modified.

IV. EXPERIMENTAL FRAMEWORK

This section describes the configuration and properties

related to the experimentation followed in this article. Note

that the experimentation only covers the performance and

scalability of the real-time processing side of the architecture.

This is due to the fact that it is themost demanding and critical

part of the entire system. We first describe the industrial

case study (Section IV-A). We then define a hypothesis in

order to rigorously define the objective (Section IV-B). Next,

we describe the used evaluation metrics (Section IV-C), and

the conducted scalability tests (Section IV-D).

A. INDUSTRIAL CASE STUDY

This work is validated in a real industrial scenario where press

machines are used. Although this work can be applied to other

domains (see Section III), the rest of the article is focused on

this particular use case. Press machines are industrial systems
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FIGURE 3. Composition of a press machine (main components).

that are capable of changing the shape of a workpiece by

applying pressure on it. The main components of a press

machine are shown in Figure 3. A press is composed of a

mechanism, two rigid platforms (head and base), a bed, a ram

and two dies (upper and lower). The die gives shape to the

workpiece. During this process, a workpiece is introduced

between two dies to mold it into the corresponding shape by

applying a specific pressure. The mechanism is responsible

for moving the head and, in turn, the ram and the upper die to

apply the required pressure to the workpiece. The complete

action of pushing down the mechanism to change the shape

of the workpiece is called a stroke.

Press machines have to work 24/7 and they must withstand

huge amounts of pressure at each stroke. Furthermore, their

components continuously grind against each other. There-

fore, structural failure can be critical for both the press

machine and the product. This can lead to unplanned down-

times, and consequently to expensive repair work. There are

three main indicators that can cause critical operation for

press machines [50]: (i) mechanismmisalignment, which can

lead to friction between components and thus to malforma-

tions of components that can cause imperfections in the final

workpiece; (ii) oil degradation is another indicator because

poor lubrication can indicate friction between the compo-

nents, which can also increase the temperature of the press;

and (iii) temperature is another key indicator that should

be taken into account. Any problem from these indicators

may cause a significant impact on any of the OEE scores

(Availability, Performance, and Quality).

These industrial systems are equipped with a number of

sensors that offer relevant measures related to the working

performance (i.e., temperature, pressure, inductive or flow-

meter sensors), which can be useful in monitoring the pre-

viously described indicators. However, processing the data

gathered from these sensors raises three issues. First, the data

volume generated may be too large to be processed in

real time. Second, the calculations required to detect anoma-

lies are generally expensive in terms of computational cost.

Finally, the industrial context is prone to failures (i.e., net-

work or power downtimes), which can lead to several unex-

pected errors that must be managed effectively.

The productivity of these press machines is measured by

the OEE, which is a relevant metric used in this domain

to identify the percentage of planned production time that

is truly productive [51]. The OEE is calculated as the mul-

tiplication of availability, performance and quality scores.

Availability takes into account unplanned and planned stops.

An availability score of 100% means that the process is

constantly running during planned production time. Perfor-

mance represents the percentage of the speed at which the

industrial system is running considering the speed for which

it was designed to run in optimal conditions, and takes into

account slow cycles and small stops. A performance score

of 100% means that the process is running as quickly as

possible. Quality takes the manufactured pieces that do not

meet quality standards into account, including pieces that are

later reworked. A quality score of 100% means there are no

defects (i.e., only good parts are being produced).

Therefore, Big Data and cloud computing can help to min-

imize the gap between the current situation of the companies

and the ideal production scenario; that is, manufacturing only

good parts (quality), as fast as possible (performance), with

no unplanned stop time (availability). In fact, some studies

have already demonstrated that a company can increase their

productivity by using Big Data frameworks [46].

B. HYPOTHESIS

To measure the suitability of the proposed monitoring system

and to determine whether it successfully passes the estab-

lished tests, we defined the following hypothesis:

‘‘The developed real-time monitoring system is capable of

detecting anomalies by processing data generated by press

machines in a stable way, when the data volume is equal to the

data generated in the current scenario and under conditions

considered for future scenarios.’’

In this context, stable means that the application needs less

time to process data than the duration of a batch (i.e., five

seconds). Therefore, as the data received from the press

machines increases in volume, the monitoring system would

have to maintain stable by scaling its computational resources

and, consequently, processing more data within the same

period of time.

C. EVALUATION METRICS

In this section, we analyze the metrics used to measure the

performance and the scalability of the developed real-time

monitoring system. Different parameters provided by Spark

Streaming have been used to validate the hypothesis:
• Input rate: the number of messages received

per second.

• Scheduling delay: the time for which a batch waits

in a queue until the processing of previous batches
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is finished. For example, assuming that the monitor-

ing agent reads from the source with a frequency of

five seconds, and that the given batch took seven sec-

onds to compute, then means the agent is two seconds

behind (7 − 5 = 2), thus making the scheduling delay

two seconds long.

• Processing time: the time to process each batch of data.

• Delay time: the time spent to complete all the streaming

jobs of a batch. This is calculated by summing the

scheduling delay and the processing time. Following

the same example, if the agent is already two seconds

behind and the processing of the next batch takes a

further seven seconds, then the data will be processed

with a total delay of nine seconds (2 + 7 = 9). These

metrics are calculated for each batch. Therefore, since

this parameter is calculated from the previous ones, it is

used to measure the success of the test.

D. SCALABILITY TEST

To verify our hypothesis, three tests were conducted. Each

test varied from the others in terms of the input rate. In addi-

tion, in the last test, the computational resources provided

were also modified. The details of each test follow:

• Test 1: simulates the current scenario. This means that

the same data volume as that generated by the sensors of

the press machines in a normal scenario was used as the

input rate. This implies a data ingestion of 40 messages

per second.

• Test 2: currently, the number of press machines is low,

although it is expected to grow significantly. Thus, data

volume was increased to bring the monitoring system to

its limit. The input rate was progressively increased until

the processing time reached the duration of a batch and

the total delay started to increase. The objective of this

test was to find the maximum input rate supported by the

application.

• Test 3: the same input rate as used as for Test 2 was

established. However, the computational resources of

the application were increased. Therefore, verification

could be made as to whether or not the application

is scalable and, consequently, whether it could process

more data in a stable manner solely by adding computa-

tional resources.

For Tests 1 and 3, the total delay must be lower than a

threshold of 20 s to be considered successful. The duration

of each test was one day; that is, 17.280 batches. Table 1

shows the configuration used for executing the tests. More

specifically, the resources used in the drivers and executors

are as follows:

TABLE 1. Computational resources used for Tests 1, 2 and 3.

TABLE 2. Results of Tests 1, 2 and 3.

FIGURE 4. Test 1: a) input rate, b) scheduling delay, c) processing time,
d) total delay.

V. RESULTS AND DISCUSSION

The results of Test 1 are shown in Figure 4 and summarized

in Table 2. These results demonstrate that the monitoring

system is stable during the computation for the gathered data

(Figure 4a). It is worth pointing out that the used system

to push data to the cloud was not designed for real-time

purposes. Therefore, the input rate was not stable throughout

time due to system overheads. As shown in Figure 4b, the

processing time remains lower than the batch period. More-

over, as depicted in Figure 4c, the scheduling delay is almost

zero, which means that almost no batches are enqueued

before being processed. This implies that data processing is

performed in real time and that the total delay (Figure 4d)

is made up of processing time. Overall, the monitoring sys-

tem requires 1.71 s, on average, between gathering the data

coming from press machines and providing a result indicating

their status. Taking into account the condition defining suc-

cess and the obtained results, Test 1 was passed satisfactorily.

Similarly, the results of Test 2 are represented in Figure 5

and summarized in Table 2. These results show that the

limit of the monitoring system, for the given computational

resources, is 4,000 messages per second, as can be seen
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FIGURE 5. Test 2: a) input rate, b) scheduling delay, c) processing time,
d) total delay.

FIGURE 6. Test 3: a) input rate, b) scheduling delay, c) processing time,
d) total delay.

in Figure 5a. As shown in Figure 5b, the processing time bor-

ders on the batch time, as its average is 5.56 s. Each time the

processing time exceeds the batch time threshold, this implies

a delay time. Moreover, the scheduling delay (Figure 5c)

increases due to the execution of other data processing tasks,

such as persisting data. This combination makes the total

delay (Figure 5d) too large to be considered to be a fast

response, since detecting an anomaly so late would be critical.

Otherwise, the scale of the graph would have been too large

to observe these values. The rest of the representation follows

the same pattern.

Once the maximum input rate for the given computa-

tional resources was known, Test 3 was executed. The results

are presented in Figure 6 and summarized in Table 2.

These results confirm the scalability of the developed moni-

toring system, as it was able to process the volume of data

forming the limit in the previous test (Figure 6a) in a sta-

ble way. As shown in Figure 6b, the increase of computa-

tional resources implied faster data processing than in Test 2.

Therefore, almost no batches are enqueued (Figure 6c) and,

consequently, the total delay is almost equal to the processing

time, as shown in Figure 6d. Thus, according to the condition

defined for success, Test 3 was passed successfully.

These tests show that the monitoring system satisfies all

of the requirements of the hypothesis: first, the system is

capable of detecting anomalies; second, the data processing

is stable under the current and future scenarios, as shown in

Tests 1 and 2; and finally, the monitoring system is scalable,

as it can handle future demand for data volume by scaling its

computational resources, as shown in Tests 2 and 3.

The implementation of this solution, for this particular use

case, has led to several enhancements in the maintenance

service. The combination of a fast, scalable, and fault-tolerant

real-time monitoring system with an effective feedback sys-

tem to manage the anomalies has improved the OEE. How-

ever, as it has only been a short time since this solution

was implemented, there is an absence of qualitative and

quantitative results from an empirical application and/or val-

idation. Therefore, it is difficult to evaluate the potential of

the proposed solution with respect to its usability and/or

usefulness for industry adoption. This is a general problem

when implementing this type of solution in the industry [52].

Preliminary studies made by the clients show the adequacy

and the correctness of this implementation. Nonetheless,

an exhaustive analysis of the monitoring system will be done

once the system has been in production long enough to obtain

sufficient quantitative data to measure the real gain.

VI. CONCLUSIONS AND FUTURE WORK

This work presents a Big Data solution for the real-time

monitoring of for ICPSs which is validated on a real industrial

scenario where several press machines are monitored. The

proposed solution demonstrates the potential of Big Data

technologies in an industrial scenario where the volumes

of data generated are very large, and unexpected failures

must be managed without affecting the proper operation

of the monitoring system. Therefore, this work uses fast,

scalable and fault-tolerant data acquisition and data process-

ing systems. In addition, a dashboard is developed to visu-

alize the performance of industrial machines and detected

anomalies.

The experimental results obtained in the industrial use

case show that the application exceeds the current needs of

the monitoring system, since the data processing remains

stable for the data volume generated in the current scenario.

Although the limit of this application was reached in Test 2,

its scalability is demonstrated in Test 3, since it allows this

volume (or more) of data to be processed simply by adding

more computational resources. Furthermore, this implemen-

tation has improved the OEE.
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In this work, a platform is developed where data related to

the performance of industrial machines is processed. Hence,

machines can be monitored to effectively detect anomalies.

However, this platform opens new possibilities to improve the

maintenance strategy, from fault diagnosis to failure progno-

sis [53], [54]. This is made possible by applying data mining

algorithms to the historical data that is already stored on

the database. Thus, instead of detecting an imminent failure,

it can be predicted and early repair work can be done. This

will increase the lifespan of the company’s systems, improve

their availability and reliability, and this will directly affect

productivity [55]. In addition, these strategies will reduce

operational and maintenance costs.
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