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ABSTRACT LoRa is a popular communication technology in the Internet of Things (IoT) domain, providing
low-power and long-range communications. Most LoRa IoT applications use the LoRaWAN architecture,
which builds a star topology between LoRa end nodes and the gateway they connect to. However, LoRa
can also be used for the communication between end nodes themselves, forming a mesh network topology.
In this paper, we present a library that allows to integrate LoRa end nodes into a LoRa mesh network,
in which a routing protocol is used. Thus, an IoT application running on these nodes can use the library to
send and receive data packets to and from other nodes in the LoRa mesh network. The designed routing
protocol is proactive, and maintains the routing table at each node updated by sending routing messages
between neighboring nodes. The implemented library has been tested on embedded boards featuring an
ESP32 microcontroller and a LoRa single-channel radio. By using our LoRa mesh library, nodes do not need
to connect to a LoRaWAN gateway, but among themselves. This opens the possibility for new, distributed
applications solely built upon tiny IoT nodes.

INDEX TERMS LoRa, mesh network, IoT routing.

I. INTRODUCTION
LoRa is a wireless communication technology designed for
the interconnection of Internet of Things (IoT) devices. Its
main features are its long range (hence its name), which
can transmit data over several km of distance, low power
consumption and low data rate. Configuration parameters
like the Spreading Factor (SF) can extend the communication
distance, although at the expense of lower data rates [1].

Most IoT applications that use the LoRa communication
technology adhere to the LoRaWANnetwork architecture [2].
LoRaWAN defines a star topology where IoT end nodes,
e.g., LoRa-equipped sensor nodes, transmit their data to a
LoRaWAN gateway. Typically, a gateway covers an area with
many end nodes, and listens for incoming LoRa packets from
them. The gateway has two network interfaces: on the one
hand, a multi-channel LoRa radio; on the other hand, a wired
or a wireless connection to the Internet throughwhich to com-
municate the received data to a higher layer of the application
usually hosted in the cloud.While a gateway is expected to be
always powered and operational, end nodes typically spend
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most of the time in sleeping mode, and periodically wake up
to send a LoRa packet to the gateway. In LoRaWAN there is
no direct communication between the end nodes.

In the last few years, a number of proposals have beenmade
to extend the LoRaWAN star topology by means of multi-hop
communication, which are reviewed in the form of a survey
in [3]. Multi-hop in LoRaWAN allows extending the distance
between the end nodes and the gateway, without increasing
the density of gateways. The underlying principle is that LoRa
end nodes far away from the gateway can communicate with
intermediate end nodes, which act as forwarders of their mes-
sages towards the gateway. Overall, multi-hop for LoRaWAN
provides mostly an extension of the geographical reach of
the IoT layer, while it mostly maintains the principles of a
LoRaWAN-based IoT application.

We identify several motivations for considering amore rad-
ical shift towards true LoRa mesh network-based solutions,
which address 1) the architectural limitations of LoRaWAN,
2) the opportunity for application decentralization, and 3) the
need for saving cost and energy consumption.

Applications following the LoRaWAN architecture typi-
cally consider the situation where end nodes are able to reach
a LoRaWAN gateway with one hop. This condition can be
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a problem in scenarios where the geographic scale of the
end nodes is large and the density of gateways is low. While
increasing the number of gateways can be considered as a
solution to the problem, it is not always possible due to the
economic cost or the geographic conditions.

Devices used for event-based or periodic data transmission
to the gateway are categorized as class A end node [4]. There-
fore, the LoRa traffic from applications using devices of such
class is mostly on the uplink channel, i.e., LoRa packets from
the data sources (end nodes) sent via radio to the LoRaWAN
gateway and, from there, over the Internet towards the cloud.
After sending a LoRa packet, these end nodes open two short
reception windows to get any downlink messages from the
gateway, which are optional. Since in LoRaWAN the down-
link messages from the gateway are linked to the uplink mes-
sage from the sensor, instantaneous pushes of notifications to
the sensor node are not immediately available. Also, the fact
that in LoRaWAN the field for the Cyclic Redundancy Check
(CRC) of the payload is only available in the uplink LoRa
packet makes the downlink packet less of a reliable element
in the data transmission. IoT application based on LoRaWAN
often aim at centralized decision-making, with the purpose
of the sensor nodes solely being to send data to cloud-based
services. Decisions are taken after the cloud-based processing
of the sensor data. Other application scenarios, however, con-
ceive more autonomous IoT nodes where decisions need to be
taken at the device. Indeed, the current trend in performing
machine learning on low capacity devices only increases this
need [5]. For such autonomous IoT nodes, a certain asyn-
chronous communication capacity is needed, e.g., for being
able to inform a node about a current application context to
be taken into account for local decision-making. LoRa point
to point communications between end nodes, as delivered by
a LoRa mesh networks, can be a solution. However, this type
of communication is not considered in LoRaWAN.

The energy consumption of ICT applications has become
a raising concern [6]. LoRaWAN-based IoT applications
address a full software and hardware stack that covers from
the IoT device to the cloud. Therefore, it involves the oper-
ation of a huge software and hardware infrastructure, which
translates in significant environmental costs due to the bill of
materials and the energy consumption. Nonetheless, most ser-
vices forming an IoT application can be obtained from shared
cloud-based computing infrastructures, which reduces the
operational cost per application. IoT applications can lever-
age the already deployed components for LoRaWAN-based
solutions, where providers often offer enterprise and com-
munity partnerships, such as The Things Network,1 among
others. Still, we can envision applications of interconnected
LoRa devices which only use the computing infrastructure
available on the devices themselves. Such gateway-less IoT
applications, in terms of infrastructure costs, are much more
affordable in regard to the needed hardware and their energy
consumption.

1https://www.thethingsnetwork.org/

In this paper, we aim to make a significant step forward
in the public availability of ready to use code that allows to
deploy LoRa mesh networks. In particular, we present our
library code-named LoraMesher, which we have developed
in order to deploy LoRa mesh networks operating a rout-
ing protocol as proposed in [7]. The library is implemented
in C++ and is conceived to be a part of an application
code that runs on an IoT node consisting of an embedded
microcontroller and a LoRa radio. Having the LoRaMesher
library integrated within the IoT code running on such a node,
an application is able to connect to a LoRa mesh network and
send, route and receive LoRa packets from the nodes within
the network.

The main contributions of this paper are:
• We describe the design and implementation of the
LoRaMesher library for deploying LoRa mesh networks
which include a routing protocol.

• We evaluate the library performance in experiments with
different topologies using real hardware nodes.

The main potential of this library, which is freely available
as open source code,2 is to enable a new class of distributed
applications that can run only at the IoT layer using LoRa
interconnected nodes.

II. DESIGN AND IMPLEMENTATION
A. OVERVIEW
The LoRaMesher library is a C++ implementation of a
proactive distance-vector routing protocol for enabling the
communication among LoRa nodes that form a mesh net-
work, as proposed in [7]. The target hardware for which the
library is compiled is an embedded board with a System
on a Chip (SoC) and a single-channel LoRa radio, like the
popular ESP32 SoC-based development boards featuring an
SX1276 LoRa transceiver. LoRaMesher uses FreeRTOS3 to
implement the task handlers of the receiver, sender, packet
processing, routing protocol and application data bidirec-
tional transmission.

For the interaction with the LoRa radio chip, LoRaMesher
leverage RadioLib,4 a versatile communication library which
supports the SX1276 LoRa series radio available on the hard-
ware we use. Features of RadioLib include an easy configura-
tion of LoRa parameters, and the addition of CRC verification
of the LoRa payload, if enabled.Moreover, LoRaMesher uses
RadioLib to define an Interrupt Service Routine (ISR) which
is executed every time a LoRa packet is detected.

In the following section, we describe in detail the design of
the LoRaMesher library.

B. PACKET STRUCTURE
LoRa belongs to IoT communication technologies for build-
ing Low Power Wide Area Networks (LPWANs). LoRa
targets applications in which remote sensors communicate

2https://github.com/LoRaMesher/LoRaMesher
3https://www.freertos.org/
4https://github.com/jgromes/RadioLib
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FIGURE 1. Standard LoRa packet Structure using the Explicit Header
Mode (top) and the LoRaMesher packet frame inside the payload section
(center). The two types of messages the library supports are also depicted
(bottom).

data with low data rates. A LoRa packet is limited
to 255 B. [8].

Figure 1 shows the structure of a LoRa packet and that of
a LoRaMesher packet. It can be seen that the LoRaMesher
packet is encapsulated within the payload field of the LoRa
packet. The LoRaMesher packet itself contains a header and
a payload. Following the design in [7], this header consists
of 4 Bwhich hold the address of the destination and the source
node, 1 B to specify the message type and 1 B to indicate the
payload size.

LoRaMesher is a library that implements a proactive rout-
ing protocol. Thus, it sends two types of messages, namely
routing messages which allow nodes to update their routing
table, and datamessages, which contain the actual application
data that is sent from one node towards another.

C. ROUTING AND DATA MESSAGES
A routing message in LoRaMesher contains one or multiple
routing entries of the sender node’s routing table. A data
message contains an additional field of 2B to indicate the next
hop, and the actual application data as payload (Figure 1).

Routing messages are broadcasted by each node at config-
urable periods. The purpose of sending routing messages is
to allow neighboring nodes to update their routing tables with
the information from other nodes around (and, in turn, from
those nodes beyond their direct reach). A routing message
sets the broadcast address 0×FF as the destination address.
Thus, a node receiving a LoRaMesher routing packet can
distinguish it from a data message. The received routing
messages are not forwarded by the nodes, but are processed
to update their local routing table.

Figure 2 describes the algorithm that processes a received
routing packet. Once a received message is identified as a
routing message, it is necessary for the node to check if the
sender is already annotated in the routing table. The next
step is to process the routing table entries received from the
neighboring node and update the local routing table. After the

FIGURE 2. Routing message received diagram (based on [7]).

processing, the LoRaMesher packet containing the routing
message is deleted.

Data messages contain the data from the application layer.
The data message has a specific destination in the LoRa mesh
network.When a node using the LoRaMesher library receives
a data message, the following outcomes are possible: 1) the
receiving node is the destination and thus the library will pass
this data message to the application layer, 2) the node is not
the destination, but it is the one specified in the next hop
field, meaning that it is expected to forward the data message
(for doing this, it will update the next hop field with the
address found in its local routing table), 3) the node is not the
destination of the data message nor the next hop and, in both
cases, the node will delete the data message. A corner case
might be found in the second situation above, where a node
is expected to forward a data message headed to a destination
not present in its routing table; in that case, the data message
will also be deleted.

D. QUEUES
As explained before, a LoRaMesher packet can contain be
a routing or a data message. Furthermore, received data
messages may be re-routed to its destination or delivered
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to the node’s application, while received routing messages
are processed locally and generated routing messages at the
node are broadcasted. This packet processing creates the
need for having local structures where to store these packets.
LoRaMesher implements for this purpose a set of Packet
Queues.

Queues are also a means for the tasks in the LoRaMesher
library, i.e., routines that carry out a certain type of processing
of a packet, to have a data structure for sharing packets. Every
time a packet is received and needs to be shared between
tasks, the library creates aPacket Queue element that contains
a priority number, the memory address of the packet and the
next element. When adding this element to the queue, it is
added at the first position such that its priority is higher than
the next Packet Queue element.

The LoRaMesher library implements three different
queues with the following purposes:

• Received Packets (Q_RP): This queue is used for stor-
ing packets received from the LoRa radio and have them
ready for local processing. A task is needed to fetch the
received packet and add it to this queue.

• Send Packets (Q_SP): This queue is implemented to
store the packets that the node will send via the LoRa
radio interface. A task is needed to take out the packets
from this queue and transmit them.

• User Received Packets (Q_URP): This queue is used
by the application code of the node. When a packet is
received and the destination is the application layer of
the node itself, a task adds the packet to this queue.

E. TASKS
LoRaMesher is designed with six tasks to perform the dif-
ferent processing duties for the LoRa packets. Each task is
implemented by a specific routine. The routines leverage the
queues introduced in the previous section to operate with the
packets. Thus, packets are added and deleted from the queues
according to the operation of the task. Through the operations
on the packets in the queues, tasks indirectly communicate
with each other, and make requests between them.

1) RECEIVE TASK
The duty of the Receive Task is to receive a LoRa packet,
get the LoRa packet payload, transform it into a LoRaMesher
packet, create a Packet Queue element and add the previous
packet to it, add this Packet Queue element into the Q_RP and
finally notify the Process Task that a new packet needs to be
processed.

This task works with an ISR. Thus, the microcontroller is
switched to the Receive Task every time that a LoRa packet
is detected. The ISR is provided by the RadioLib library and
allows notifying the task upon every reception of a LoRa
packet.

The Receive Task is designed to have the highest prior-
ity among the six tasks of LoRaMesher. This implies that
the Receive Task is invoked whenever a packet is received,

FIGURE 3. Receiver task diagram. When receiving a LoRa packet, this is
converted to a LoRaMesher packet and added to the Received Packets
Queue.

no matter whether the device is busy or idle, hence max-
imizing the number of received packets. Nevertheless, the
time spent in this task is critical since, during its execution,
no other packet can be received. Therefore, the operations
performed by this task determine the maximum amount of
packets that can be received in a certain period of time.
Taking advantage of the queues, in LoRaMesher, the opera-
tions of the Receive Task consists of only the following steps
(Figure 3).

1) Receive LoRa packet.
2) Get the LoRa packet payload and transform it into a

LoRaMesher packet.
3) Create a Packet Queue element and add the received

LoRaMesher packet to it.
4) Add the Packet Queue element to the Q_RP queue.
5) Notify the Process Task.

2) SEND TASK
The duty of this task is to get a Packet Queue element from
Q_SP, send it and delete the Packet Queue element. In addi-
tion, if the packet contains a data message, it checks if the
destination is inside the routing table; if so, it will update the
next hop of the Data Message.

This task is notified and starts running every time a packet
is added to Q_SP. In order to comply with the duty cycle
regulations, every time a packet is sent, the library calculates
the time on air depending on the payload size and the con-
figuration of the library, and adds a mandatory delay before
sending successive packets.

Before sending a packet, the task will start a Channel
Activity Detection (CAD) routine, which will listen for LoRa
preambles. If a LoRa preamble is detected, the task will wait
a random delay and then start the CAD routine again. Only
when no preamble is detected, the packet will be sent. This
operation is an approximation to the Carrier Sense Multiple
Access / Collision Avoidance (CSMA/CA) algorithm.

The Send Task is designed to have the second highest
priority. Furthermore, every time and before a packet is sent,
the ISR of the Receive Task is disabled, and thus it cannot
receive any messages. Once the packet is sent, the ISR of the
Receive Task is enabled. Figure 4 summarizes the following
steps of the Send Task.

1) Notification that a packet has been added to the Q_SP.
2) Get the Packet Queue element from the Q_SP queue.
3) If the packet contains a Data Message and the destina-

tion is found in the routing table, update the Next Hop
field.

4) Wait for a random delay.
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FIGURE 4. Send Task diagram. Automatic duty cycle calculation between
packets and CSMA/CA.

FIGURE 5. Routing Protocol Task diagram. It creates a routing message
with the actual routing table and adds it to the Q_SP to be sent as soon
as possible.

5) Start CAD listening for LoRa preambles.
6) If a preamble has been detected, repeat 4.
7) Disable the Receive Task ISR.
8) Send the packet that is contained in the previous Packet

Queue element.
9) Enable the Receive Task ISR.

10) Delete the packet and the Packet Queue element.
11) Calculate the time on air for the packet, calculate duty

cycle and wait for it.

3) ROUTING PROTOCOL TASK
TheRouting Protocol Task is periodically executed and builds
a packet containing a Routing Message. This Routing Mes-
sage is used to share the node’s routing table with the neigh-
boring nodes and to build the routing table in each node.
ARoutingMessage contains the sending node’s routing table,
consisting of the addresses of nodes and a metric given by
the number of hops with which the node can be reached. The
priority of this task is less than that of the Send Task, but
higher than that of the Process Task.Moreover, the periodicity
of execution can be modified changing a variable named
HELLO_PACKETS_DELAY. In the current implementation,
the routing table maintains only the path with the least num-
ber of hops to reach a destination. Figure 5 summarizes the
Routing Protocol Task.

4) PROCESS TASK
The execution of this task is triggered by the Receive Task.
Every time a packet is received, the Receive Task notifies
the Process Task. After receiving the notification from the
Receive Task (Figure 3), the Process Task takes the first
Packet Queue element of the Q_RP queue and determines
whether the LoRaMesher packet is a Routing Message or
a Data Message (Figure 6). In case it is a Routing Mes-
sage, it will be processed as shown previously in Figure 2.

FIGURE 6. Packet Process Task diagram. When the Receiver task notifies
the Packet Process task, then this task processes the first packet inside
the Q_RP queue.

Otherwise, in the case of a Data Message, it will be processed
as shown in Figure 7.
The Data Message process function will check first if the

destination address match the address of this node. If that
is the case, the Process Task will add this message into the
Q_URP and will notify the User Receive Task; the user (i.e.,
the application layer) is ultimately responsible for deleting
the packet. If the address of the LoRaMesher packet does not
match the address of this node, it will check if the next hop is
the address of this node; if it does not match, the packet and
the Packet Queue element will be deleted. If it matches, it will
be checked if the destination address is inside the routing
table. In that case, it will add the Packet Queue element into
the Q_SP to be forwarded. Otherwise, when the entry in the
routing table with the destination of the packet does not exist,
it will be deleted. Regarding the task’s priorities, the Process
Task has a lower priority than the Routing Protocol Task.

The following steps of the Process Task are summarized in
Figure 6.

1) Get a notification from the Receive Task.
2) Get a Packet Queue element from Q_RP.
3) Process the packet by type.

Routing Message case: if the source address is not
inside the routing table then add a new route, otherwise,
update the entry. If the packet contains a Routing Mes-
sage, process each route. If the destination is contained
in the node’s routing table, update its cost. If the route
does not exist, create it. Finally, delete the LoRaMesher
packet.
Data Message case: if the destination address is the
node, add the packet to the Q_URP queue and notify
the application level. Once processed, the application
code needs to delete the LoRaMesher packet from the
queue. If the destination is not the node, but the address
in the next hop field exists as a destination address in
the routing table, then the packet is added to the Q_SP
queue and forwarded. In any other case, the packet is
deleted.

5) USER SEND TASK
This task is implemented at the application level and cor-
responds to the code that is responsible for sending data
using the LoRaMesher library. Every time the application
wants to send a Data Message to another node, it needs to
call the function createPacketAndSend, where it specifies the
destination, the payload memory address and the number
of bytes that have to be sent. If the application code uses
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FIGURE 7. Data Message received diagram.

FIGURE 8. Example of a User Send Task. In this example, the application
code sends every 120 seconds a userPayload to a node contained in the
node’s routing table.

structs or classes in C++, which contain the payload data,
it is recommended to work with a one byte alignment in the
payload data to prevent empty bytes inside it.
If the nodes available in a LoRa mesh network are

not known beforehand and need to be discovered, then
LoRaMesher offers to the application level the possibility to
read the node’s routing table. This way, an application can
select among the valid addresses of nodes to which Data
Messages will be sent to. The code fragment of Figure 8

FIGURE 9. Example of a User Receive Task. Every time the application
receives a packet, it gets the first Packet Queue element from Q_URP
queue and processes it. Finally, it deletes the packet.

shows how the application gets an address from the routing
table and sends a specific payload to the corresponding node.

6) USER RECEIVE TASK
The objective of this task is to get the elements inside
the Q_URP queue and process the LoRaMesher packets as
requested from the application level. The User Receive Task
is notified by the library every time the Process Task receives
and identifies a DataMessage for the node. This task is imple-
mented in the application code and needs to contain ulTas-
kNotifyTake(pdPASS, portMAX_DELAY), which is a function
of the FreeRTOS operating system that allows the task to stay
in sleep mode until it is notified.

The application code has to take care of deleting the mes-
sages from the queue that are no longer needed. This deletion
of messages is important for a correct memory management
of the device. The LoRaMesher library provides the appli-
cation with the function deletePacket(packet) to delete the
packet.

The code example in Figure 9 shows how to integrate the
User Receive Task into the application layer.

F. RELATIONSHIP BETWEEN TASKS AND QUEUES
There are a few different situations where LoRaMesher pack-
ets are created. Every time a Packet Queue element is added
to a queue, a LoRaMesher packet must have been created
previously. First, every time a packet is received, the library
will create a LoRaMesher packet containing the payload of
the packet. Second, when the application layer or the user
wants to send a Data Message, the library will create a
LoRaMesher packet with the payload specified by the appli-
cation. Finally, every time the Routing Protocol Task is exe-
cuted, a LoRaMesher packet containing a Routing Message
will be created. Moreover, every time a packet shall be added
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FIGURE 10. Queues diagram. The Receive task adds to the Q_RP queue,
the Process Packet task gets from the Q_RP queue and adds to the Q_SP
and Q_URP queue. The Routing Protocol task and User Send task add to
the Q_SP queue, the Send task gets from the Q_SP queue and finally the
User Receive task gets from the Q_URP queue.

inside a packet queue, a Packet Queue element will be created
containing the packet to be shared.

Figure 10 illustrates how the three queues introduced in
section II-D are used by the different tasks. All packets from
any origin that are received by the library are added to the
Received Packets Queue. They are taken by the Process
Packet Task for further packet classification. The Send Task
periodically takes messages from the Send Packets Queue to
transmit them to the LoRa radio. Packets to be sent can consist
of new data messages created by the application at the node,
routing messages created by the library itself, or received data
messages which according to the routing protocol need to
be forwarded by the node. Data messages that are received
being the node itself the destination are added to the User
Received Packets Queue, and these data messages pushed to
the application layer.

Figures 11 and 12 show examples of task sequences that
are executed when receiving a DataMessage. It can be seen in
Figure 11 that after performing the Receive task, the Process
Packet task determines that the Data Message received is for
the node itself. Therefore, the User Receive task is notified in
order for the application to process the packet. In Figure 12
the Process Packet task determines that the Data Message
received needs to be routed by the node. Therefore, the packet
is added into the Q_SP queue. It is processed by the Send task
that is periodically called to get and send the packets of this
queue.

III. EVALUATION
A. METRICS
In this section, we describe a set of experiments that we have
conducted with the LoRaMesher implementation flashed on

FIGURE 11. LoRaMesher task sequence example when receiving a data
message whose destination is the application of this node.

FIGURE 12. LoRaMesher tasks sequence when routing a received data
message.

real devices. In the experiment, we focus on the following
metrics:

Packet Delivery Ratio (PDR): The ratio of the total number
of packets received to the total number of packets sent from a
source to the destination. This metric is obtained by logging
at each node the number of received packets. The monitored
packet information allows determining the PDR of each node.

Control Overhead: The ratio of the control information sent
over the data received at each node. This metric is influenced
by the configured periodicity for the sending of the routing
messages. Dynamic networks require a higher number of
routing messages in order to keep the routing tables up to
date, while for stable networks this periodicity can be low.
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FIGURE 13. Boards with LoRa radio used for the experimentation. Top
board: TTGO T-Beam V1.1 LoRa ESP32. Bottom board: LoRa V1.3 ESP32.

To determine the Control Overhead, we measure the total
number of bytes of routing and data messages sent. We treat
the headers of the two packet types as control information.
Since both the periodicity of the routing message and that
of the data messages is configurable, the metric reflects the
specific experimental setting.

The following formula is used to calculate the Con-
trol Overhead: ControlOverehead = (RoutingPacketSize +
HeaderDataMessages)/DataMessagesPayload

End-to-End Delay (EED): It is the time that it takes for
an message from the source to completely arrive at the des-
tination. This metric accumulates the time the LoRa packet
is held at each node in the path to its destination. The time at
each node is influenced by the timer configuration of the Send
Task in the LoRaMesher library at each node. As detailed in
section II-E, the Send Task is a periodic task and every time
it is executed, it will send the next packet inside the Q_SP.

Hops: It is the number of nodes a packet passes from
the source to the destination. This metric is relevant for
validating the path of the data messages, but not for the
routing messages, which are not forwarded by the nodes
(see section II-C).

B. EXPERIMENTAL FRAMEWORK
For the experimentation, we use eight TTGO T-Beam
V1.1 LoRa ESP32 boards and two LoRa V1.3 ESP32
(Figure 13). Both boards are equipped with the ESP32 SoC
and a SX1276 LoRa transceiver. The boards are flashed with
the developed LoRaMesher library.

In Table 1 the setting of the LoRa parameters common to all
our experiments is shown. The parameters are configurable in
RadioLib.

We evaluate the LoRaMesher library with different net-
work topologies. In order to conduct controlled experi-
ments, we chose to implement the geographic deployment
of the nodes of each topology by software. Therefore,

TABLE 1. LoRa parameter setting for the experiments with LoRaMesher
(EU863-870).

we determined for each node a set of visible nodes corre-
sponding to the evaluated topology. When starting an exper-
iment, upon receiving routing messages, the node constructs
its routing table from the messages obtained by the visible
nodes, while the routing messages received from other nodes
are ignored.

The experimental configuration includes varying the num-
ber of LoRa packets sent from each node and the payload
size of these LoRa packets. Both parameters influence in the
number of collisions of the LoRa packets, which grows with
an increasing number of packets and larger payloads.

C. RESULTS
For the experimentation, the ten nodes are started at the same
time. This induces the worst case scenario for the PDR in
which each node periodically sends the messages. We add
an identifier attribute of 1 byte in the generic packet which,
together with the source address, allows identifying a packet.
This additional identifier attribute is included in the payload.

The packet size is calculated from the payload size and
the header. In the experiments we use three different pay-
loads: a 5 bytes payload (4 bytes of payload + 1 byte of the
packet identifier), 105 bytes and 213 bytes. All three payloads
have an 8 bytes header (6 bytes of the LoRaMesher Packet
Header + 2 bytes of Next Hop of the Data Message type).

1) EXPERIMENT 1
We experiment the LoRaMesher library for a topology where
the ten nodes are at one hop distance to each other (Figure 14).
This experiment aims to assess from the results the correct
operation of the queues and tasks in the implementation. The
configuration of the experiment is presented in Table 2. All
nodes send data messages to each other every 120 seconds.

Figure 15 shows the PDR obtained for the different pay-
loads. It can be seen that the PDR decreases for larger sizes
of the payload. This can be explained by the larger time on air
of these packets, which increases the probability of collision
with other packets.

Figure 16 looks at the detailed PDR of each of the ten
nodes. A similar PDRpattern can be observed for the different
nodes.

In Figure 17 the EED is compared for the different pay-
loads. It can be seen that the EED depends on the payload
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FIGURE 14. Topology of the first experiment, where all ten nodes are
interconnected by one hop, as illustrated for node 0 × C5FC.

TABLE 2. Settings of the first experiment.

FIGURE 15. PDR by payload (experiment 1).

size. The larger packets have a larger time on air, which
increases the EED.

Since all the nodes send the same amount of data, both in
terms of routing and data messages, all nodes have the same
Control Overhead, which is 19% in this experiment.

2) EXPERIMENT 2
We experiment a topology in which the nodes form a chain
(Figure 18). This experiment aims to assess whether the rout-
ing tables built represent the given topology and that the rout-
ing of data messages at each node performs correctly. Only

FIGURE 16. PDR by source node (experiment 1).

FIGURE 17. EED by payload (experiment 1).

FIGURE 18. Topology of the second experiment with a chain of nodes.

the first node 0× 5728, at one end of the chain, creates data
messages that are sent to the last node 0×C5FC at the other
end of the chain. The experimental settings are described in
Table 3. It needs to be mentioned that, before node 0 × 5728
can start sending data messages, it needs to wait for at least
nine routing message exchanges between the neighboring
nodes in order to have in its routing table the entry of the last
node 0×C5FC. With the configured periodicity of 300s for
routing table exchanges, it adds 45 minutes to the experiment
for the routing table updates to travel through the 9 hops of
the middle nodes.

In Figure 19 it can be seen that, similar to the first experi-
ment, the PDR is lower for the larger packets, which can be
attributed to a higher number of collisions. Different to the
first experiment, however, the number of data messages sent
in the second experiment is lower since only the first node
creates data messages. The reduced number of packets sent
results in a higher PDR for the different payloads.

Figure 20 shows the obtained EED. The dependence
between the payload size and the EED can be observed,
where the time of the packet in the network increases with the
payload size. In the configuration used in this experiment, the
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TABLE 3. Settings of the second experiment.

FIGURE 19. PDR¸ by payload (experiment 2).

FIGURE 20. EED by payload (experiment 2).

EED is not affected by delays due to duty cycle limitations.
The reason is that even the largest payload of 221 bytes
can be sent every 48 seconds fulfilling duty cycle require-
ments, while the nodes are configured to send packets every
120 seconds.

The Control Overhead is shown in Figure 21. Compared
to the first experiment, an increase of the Control Overhead
in all nodes is observed. The reason is that in the topology of
experiment 2 an additional 9 routing message exchanges are
done to construct the routing tables before the data messages
can be sent. The last node, 0×C5FC, shows a 100% Control
Overhead, which is due to the fact that it is the destination of
the data messages and does not send any data message itself.

3) EXPERIMENT 3
We experiment with a topology that integrates different con-
nectivity situations of nodes (Figure 22). We configured that
five nodes, i.e., 0× 63AC, 0×C5FC, 0× 4E58, 0× 96A0
and 0× 8C20, operate as hosts. Their application creates data
messages to be sent to each of the other host nodes in the

FIGURE 21. Control Overhead (experiment 2).

FIGURE 22. Topology of third experiment with incremental number of
hops.

TABLE 4. Settings of third experiment.

network. The software of the other five nodes, i.e., 0× 5728,
0× 9234, 0× 56C4, 0× 62D8 and 0× 6D4C, consists of
the LoRaMesher library without application code. Therefore,
these nodes operate as routers only.

The experimental configuration for this experiment is indi-
cated in Table 4. The host nodes increases the payload size
of the data packets every thirty messages. Specifically, the
first payload is 5 bytes, the second 105 bytes and the last
one is 213 bytes. This experiment first aims to gain insight
in the performance of the middle node, i.e., 0× 56C4, which
is exposed to the maximum traffic, and secondly, present
the case of a distributed application hosted on IoT devices
interconnected over a LoRa mesh network.

We configured the nodes to discard those messages which
the radio receives but which are not part of the topology of the
experiment. The PDR per payload is shown in Figure 23 and
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FIGURE 23. PDR by payload (experiment 3).

FIGURE 24. PDR by source node (experiment 3).

that by node in Figure 24. In comparison with experiment 1,
the PDR is lower, which can be explained by the fact that data
messages are routed over several hops. Compared to experi-
ment 2, there aremore devices that create datamessages. Both
situations contribute to a higher number of collisions, which
reduce the PDR.

Figure 25 shows the Send Packets Queue (Q_SP) of the
router nodes that have more traffic, i.e., 0× 5728, 0× 62D8,
0× 56C4 and 0× 9234. As a consequence of the topology
and from how the routing table is being built, node 0× 5728
is used to forward the packets between the nodes 0× 56C4
and 0×C5FC. It can be seen in the figure how the packets
are becoming hold in the queue of the nodes as the payload
grows. That happens since the nodes that do forwarding of
messages need to take into account the duty cycle. Every
time a packet is prepared for sending, the nodes needs to wait
for the duty cycle limitation to end before sending the next
packet.

In Figure 26 the EED by payload is shown. We observe
a much higher delay in comparison with Figures 17 and 20
of experiment 1 and 2, respectively. The reason is the duty
cycle that affects the nodes with more traffic in the high
payload scenario, in which packets need to be hold. With
the low payload of 13 bytes packet (5 bytes of payload and
8 bytes of header) a packet can be sent every 6 seconds
while fulfilling the duty cycle. However, if all the five host
nodes send the packet through the node 0× 56C4, one of the
packets will need to wait for up to 35 seconds, which is what
we experimented at some points in time. For the 113 bytes
payload (105 bytes of payload and 8 bytes of header), the duty
cycle allows the nodes to send this packet every 26 seconds.
However, this already represents a situation that the nodes
have more packets to send than the network can process
without delays, and the time of the EED starts to increase.

FIGURE 25. Number of packets inside the Q_SP to be sent to each node
in the third experiment.

FIGURE 26. EED by payload (experiment 3).

The increase is even more visible for the payload of 221 bytes
(213 bytes of payload and 8 bytes of header), which the duty
cycle allows sending every 48 seconds. In Figure 25 we can
see for the higher traffic nodes that these packets are stored
before being forwarded, which in some cases led to an EED
of as much as 1400 seconds (∼ 23.33 minutes).
Figure 27 shows the Control Overhead of each node. It can

be seen that the five nodes that create data message have
the highest Control Overhead. This is due to the fact that,
in this topology, these nodes actually send a lower amount
of data messages compared to the nodes that route these data
messages. Compared to experiments 1 and 2, when having
finished sending the data messages, these nodes send only
routing messages (which in the experiments is for a duration
of more than 2 hours). The nodes 0× 62D8, 0× 6D4C and
0× 9234 have a similar Control Overhead due to having
similar data traffic. In comparison, the node 0× 5728 has
more data traffic due to how the routing table was built,
resulting in that the packets of nodes 0× 56C4 and 0×C5FC
pass through this node. Finally, node 0× 56C4 has the highest
data traffic in the network. Therefore, its Control Overhead is
less than that of the other nodes.

IV. RELATED WORKS
Several proposals regarding multi-hop, mesh and routing for
LoRa and LoRaWAN have been made in recent years. They
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FIGURE 27. Control Overhead (experiment 3).

have been thoroughly classified and analyzed by researchers
from different points of view: taking the application scenarios
into account [9], focusing on the LoRaWAN architecture [3],
or on specific implementation aspects like topology and rout-
ing [10]. Thematurity and technology readiness level of these
works are heterogeneous, and range from theoretical con-
tributions to experimentally validated proposals in testbeds
or real-world deployments. In this section, we analyze the
proposals that are most relevant to our work.

Ebi et al. implemented a synchronous LoRa mesh proto-
col to extend LoRaWAN networks for end nodes monitor-
ing underground infrastructures [11]. Their approach adds
repeater nodes that bridge a synchronous LoRa mesh net-
work segment with the regular LoRaWAN gateway. The
results outperform a standard LoRaWAN network regarding
the reliability of packet delivery when transmitting from
range-critical locations like underground areas. The solution
enhances transmission reliability, efficiency, and flexibility,
but requires a precise time reference (e.g., using GPS or
DCF77 time signaling) for synchronization.

Another work which investigates LoRaWAN with
multi-hop is presented by Pueyo Centelles et al. [12]. Their
work considers the scenario of an earthquake where principal
communication infrastructures fail, and a communication
system based on the LoRaWAN architecture extended by
LoRa mesh networking provides an emergency network
for end users. The performance of the system is evaluated
extensively by simulations.

Osorio et al. [13] extended LoRaWAN with a multi-hop
forwarding mechanism, which is based on a gossip algo-
rithm. The solution improves the efficiency and flexibility of
transmission, but requires intensive use of the communication
channel due to the duplicated messages caused by the gossip
algorithm. The number of messages is one of the limitations
of LoRa and LoRaWAN, and the duty cycle further reduces
the number of messages. The performance of the system was
evaluated by means of a simple experiment with 8 nodes.

There are several proposals for multi-hop networks using
LoRawhich do not belong to, or extend, the LoRaWANarchi-
tecture. Using different strategies like routing, Time-Division
Multiple Access (TDMA), clustering techniques, etc. they
create tree and mesh topologies to build more decentralized
and flexible networks. Most often, systems are built with
single-channel radio nodes only, but some also combine them
with multi-channel gateway hardware.

Sartori et al. addressed the LoRaWAN coverage exten-
sion topic with RLMAC, a Medium Access Control (MAC)
layer protocol that enables Routing over Low Power and
Lossy Networks (RPL) multi-hop communications based on
LoRa [14]. They argue that the star topology is convenient
for the ease of deployment and from a business perspective,
though multi-hop could be the only option for covering very
large areas with few base stations.

Lee and Ke designed and implemented a LoRa mesh net-
working system to ensure that indoor nodes can communicate
with network servers without deploying more gateways [15].
Their design consists of a data sink broadcasting beacons
to invite nodes to join the network. The authors state that
while their solution extends the coverage of a network with-
out installing more gateways, the number of serviced nodes
would be smaller than with a conventional star topology
because of the latency introduced by successive packet for-
warding.

Zhu et al. improved the capacity of a multi-hop LoRa
network by off-loading traffic into several subnetworks with
different SFs [16]. This clustering technique results in a
multiple-access dimension network where each subnetwork
is rooted at a sink node with a specific SF. This enables packet
transmission in parallel with multiple SFs to become feasible.
The authors present a Tree-based SF Clustering Algorithm
(TSCA) that conducts node allocation. Their solution requires
a coordinated effort for the clustering decision-making tasks.

Mai and Kim proposed a collision-free multi-hop LoRa
network protocol with low latency [17]. In their network,
the sink node exchanges packets with the other nodes to
construct a tree topology and assign a timeslot and a channel
to each link. The authors state that their protocol provides
high reliability, parallel transmissions, low latency and a
minimized number of timeslots and packet size. However,
it is only suitable for networks with static topology where
all the collected data are targeted towards a single sink
node.

Duong and Kim designed and implemented a protocol with
multi-hop communication for LoRa networks covering large
distances [18]. Their solution was intended for deployments
where every monitoring node is placed along a line, such as a
gas pipe or a high voltage line. Devices are synchronized and
wake up at specific moments in time to receive data packets
from their neighbors, which they can combine with their own
data packets and send further along the line.

Similarly, Abrardo and Pozzebon designed a multi-hop
LoRa linear network for underground environments, optimiz-
ing the nodes’ sleep/wake cycles to reduce battery consump-
tion [19]. They opted for a data propagation model with sen-
sor nodes forming a transmission chain towards the gateway,
including a synchronization mechanism when propagating
data between pairs of nodes to maximize the sleep cycles’
duration.

In regard to practical implementations, there are very few
readily available commercial or open source products offer-
ing LoRa multi-hop and mesh possibilities.
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Hester and several other contributors work on Meshtas-
tic [20], a project for using inexpensive development boards
with GPS, battery and a LoRa chip as secure mesh communi-
cators. Meshtastic is intended for outdoor sport activities or
any other situation with no Internet access. Users create a pri-
vate mesh to exchange their location and send text messages
to a group chat. Devices forward packets using a flooding
algorithm to reach the furthest member.

Pycom provides commercial development boards and
OEMproducts for IoT projects in the Python language. These
devices can run Pymesh, a firmware for flexible LoRa mesh
networking [21]. It provides encrypted ad-hoc communica-
tion over raw LoRa, implements Listen-before-talk (LBT)
MAC, and supports multiple node roles (leader, router, child,
and border router). The firmware also has some routing
capabilities, as it claims to forward packets via the best link
available. Unfortunately, Pymesh can only run on Pycom’s
products, making it incompatible with other vendors.

NiceRF commercially offers the SV-Mesh and LoRaS-
tar range of LoRa transceivers. These products, available
as embedded boards or packaged devices, provide serial
TTL, RS232, or RS482 communication over LoRa links.
They consist of a low power microcontroller and a regular
LoRa transceiver. The manufacturer developed the propri-
etary LoRa-Pro mesh networking protocol, which defines a
2 byte addressing scheme, three network roles (node, router,
node plus router), and a virtually unlimited number of routes.

Based on this review of related works, we can conclude
that most of the works that propose a LoRa mesh network do
not implement it, they are limited to simulations or analytical
calculations. The few works that implement a network focus
on addressing very specific and particular use cases. They do
not perform a general implementation as the one done in this
paper.

V. CONCLUSION
This paper presented the development of the LoRaMesher
library, which implements a routing distance-vector protocol
for the communication of nodes in a LoRa mesh network.
The design of the library is explained in detail. The imple-
mentation is deployed on real devices, showing the library as
ready to use code. The experimentation with LoRaMesher is
done with different topologies and payloads and evaluates the
packet delivery ratio, end-to-end delay and control overhead.
The implementation of LoRaMesher is open source.

The results obtained from the experimentation showed that
the LoRaMesher library worked correctly in the different
topologies and for small, medium and large sizes of payloads.
Configuration parameters such as the periodicity of data and
routing messages allow the user of the library to adapt its
operation to the specific application requirements. The library
can be included in an IoT application code with a few steps,
which can lead to distributed LoRa mesh-based applications
at the IoT layer.

Future work will include extending the implemented pro-
tocols with reliable LoRa packet delivery and enabling the

library to route in the mesh network application layer pay-
loads beyond the size of LoRa packets. Having such capac-
ities would allow the LoRaMesher library to become a
communication substrate for distributed embedded machine
learning applications.
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