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Implementation of a Model of
Coupled Elastic-Plastic Unilateral

Damage Material to Finite
Element Code

J. BIELSKI,* J. J. SKRZYPEK AND H. KUNA-CISKAL

Institute of Applied Mechanics

Cracow University of Technology

Jana Pawia II 37, 31-864 Kraków, Poland

ABSTRACT: The continuum damage mechanics-based elasto-plastic damage
theory, that extends the total form of Hayakawa and Murakami equations,
is developed. Weak elastic-plastic dissipation coupling is assumed by the use of
two dissipation potentials, plastic and damage, where only isotropic plasticity and
damage hardening is included, whereas kinematic hardening is not accounted for.
Unilateral damage condition, based on the concept of generalized projection
operators, accounts for a partial damage deactivation, which allows for an influence
of negative principal components of the stress tensor on damage evolution. The
incremental representation of the elastic-damage constitutive equations is derived.
Both elastic-damage and plastic-damage compliance matrices are developed for
plane stress condition, and implemented to ABAQUS finite element code by the
user-supplied procedure for non-standard material properties. Effective computation
algorithm for plastic and damage loading/unloading conditions based on the doubly
passive predictor and plastic-damage corrector approach is proposed. Numerical
examples are presented by applying the model calibration by Hayakawa and
Murakami for the spheroidized graphite cast iron FCD400. The examples illustrate
the capability of the model to describe elastic-plastic damage evolution under
monotonic loading. Under reverse loading conditions a partial elastic stiffness
recovery was demonstrated on the consecutive increasing strain-controlled loading
cycles and some limitation of the model was shown.

KEY WORDS: elasto-plastic damage, damage-induced anisotropy, damage
deactivation, stiffness recovery, doubly passive predictor–corrector approach.
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INTRODUCTION

I
N MOST ENGINEERINGmaterials the nonlinear material softening may be

explained by two distinct degradation phenomena: plasticity due to

dislocation along slip planes and damage due to microcrack nucleation and

growth. This is why double-dissipative coupled models based on thermo-

dynamic frameworks have been developed during the last two decades,

e.g., Hansen and Shreyer (1994); Zhu and Cescotto (1995); Chaboche (1997);

Hayakawa and Murakami (1997); Abu Al-Rub and Voyiadjis (2003). These

models are usually highly complicated, so that they can prescribe and

predict complex physical phenomena, including initial or damage aniso-

tropy, damage deactivation, to mention only the most important of them.

A consistent thermodynamic formalism is well established and developed;

however, calibration of the complicated constitutive equations and methods

of their implementation to finite element codes are still difficult tasks.

Recently, Kuna-Ciskal and Skrzypek (2004) have adopted and extended

the model of elastic-damage material, initiated by Murakami and Kamiya

(1997), to describe damage anisotropy in concrete. The effective elastic-

damage stiffness matrix has explicitly been derived and implemented to the

finite element ABAQUS code. By adopting loss of the positive definiteness of

the tangent stiffness matrix as the failure criterion, the model has effectively

been used to simulate and predict different crack growth mechanisms in a

plane-stress concrete specimen under tension or compression.

A motivation for the present article is to include the second dissipation

mechanism due to plastic flow to the model explored so far, and to

implement the coupled elastic-plastic-damage constitutive equations to a

commercial FEM code. The use of the theory developed by Hayakawa

and Murakami (1997) is the simplest way to achieve this goal. Although

the present formulation is based on the Gibbs thermodynamic potential,

contrary to the Murakami and Kamiya model where the Helmholtz free

energy was used as the state potential, in what follows the elastic-damage

compliance matrix has the analogous representation to the previously

derived elastic-damage stiffness matrix (Kuna-Ciskal and Skrzypek, 2004).

However, the numerical algorithm developed and implemented by the

present work is much more complicated than the previously used one, but

it can capture various damage/plasticity dissipation mechanisms: passive/

passive, passive/active, active/passive, and active/active, and ensure stability

and convergence. The theory formulated by Hayakawa and Murakami

(1997, 1998) was proved by the series of experiments, which calibrated it

for the spheroidized graphite cast iron. Accounting for an additional

plastic softening, the recent investigations show the capability of the method

developed, for capturing complex plane stress loading conditions, without
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the necessity to introduce additional failure criterion (Skrzypek et al.,

2004).

Implementation of the model to the commercial FE ABAQUS code has

considerable meaning in engineering application of damage mechanics.

COUPLED ELASTO-PLASTIC DAMAGE

THEORIES – STATE OF THE ART

A thermodynamically consistent framework for description of elasto-

(visco)-plasticity coupled with damage meets two general questions:

(i) how to include damage to the Helmholtz free energy or the Gibbs

thermodynamic potential (state coupling) and

(ii) how to couple dissipation potential(s) with damage (dissipation

coupling).

State Coupling

Three cases can be distinguished (Chaboche, 1999):

NO STATE COUPLING

When the simplest approach is used, the state potential term �
p

associated with plastic hardening �j is not coupled with damage; in other

words damage affects only the elastic term �
e through the damage variable

D, e.g., Chaboche (1977)

� ¼ �
e "e,Dð Þ þ�

p �j

� �
ð1Þ

or Mou and Han (1996)

� ¼ �
e "e,D,Tð Þ þ�

p
iso r,Tð Þ þ�

p
kin �,Tð Þ ð2Þ

where both isotropic r and kinematic hardening � variables are not coupled

with damage.

STATE COUPLING THROUGH THE ADDITIONAL TERM

OF THE STATE POTENTIAL �
d

In this concept new state variable �, that is a scalar measure of cumulative

damage, is introduced by the analogy with isotropic hardening variable r in

plasticity. This approach was introduced by Cordebois and Sidoroff (1982)

� ¼ �
e "e,D,Tð Þ þ�

p �j

� �
þ�

d �ð Þ ð3Þ

Coupled Elastic-Plastic Unilateral Damage Material Model 7



where D is the second-rank damage tensor, and �j denotes the set of

hardening variables for plasticity. A similar concept was used by Zhu

and Cescotto (1995), where only isotropic plastic hardening is considered.

A more general formulation was recently published by Voyiadjis and

Deliktas (2000) and Abu Al-Rub and Voyiadjis (2003), where kinematic

and isotropic hardening was admitted for both plasticity (�, pÞ and damage

(!, r) terms

� ¼ �
E "E,(
� �

þ�
p �, pð Þ þ�

d
!, rð Þ ð4Þ

whereas "E ¼ "e þ "ed denotes a sum of the ordinary elastic strain and the

elastic-damage strain (reversible) and ( denotes the damage tensor.

A slightly different approach was proposed by Hayakawa and Murakami

(1997), who introduced the Gibbs thermodynamic potential, instead of the

usually applied Helmholtz free energy, � �, r,D,�ð Þ ¼ � : "e ��

� ¼ �
e �,Dð Þ þ �

p rð Þ þ �
d �ð Þ ð5Þ

However, for the sake of simplicity only isotropic plasticity r and damage �

hardening was admitted. This model is applied as the basis for further

extension in this article.

DIRECT HARDENING-DAMAGE COUPLING

A more general approach consists in a hardening-damage coupling

independent of variable � (through the damage variable D). Such an

approach is used e.g., in Saanouni et al. (1994), where classical variables

"e,�, and r are replaced by the effective variablese""e Dð Þ,e�� Dð Þ, anderr Dð Þ by the
use of total energy equivalence principle, to yield the following Helmholtz

free energy representation

� ¼ �
e e""e,Tð Þ þ�

an e��,errð Þ: ð6Þ

A more general formulation was given by Hansen and Schreyer (1994),

who proposed a separable form of the free energy

� ¼W ", "p,Dð Þ þH "S, "H,DS,DH
� �

þ GD Dð Þ, ð7Þ

where W is the stored (elastic) term, H the hardening contribution, and GD

the surface energy term, whereas "S, "H and D
S,DH are kinematic, isotropic

plastic, and damage hardening variables, respectively.

8 J. BIELSKI ET AL.



Dissipation Coupling

Coupling between plastic and damage dissipation, in general, can be done

in two ways: either (a) a single plastic dissipation potential coupled with

damage is used (strong coupling), or (b) two (or more) dissipation potential

functions: plastic dissipation potential and damage dissipation potential are

assumed and independently defined (weak coupling).

STRONG DISSIPATION COUPLING

This frequently used approach imposes limitations that are too restrictive

because it does not allow for damage evolution without simultaneous

plastic dissipation, since both mechanisms are governed by the single plastic

multiplier. Hence, this approach is not applicable for a brittle-like damage

in elastic moderately plastic materials, but only for a ductile-like damage

in elastic-plastic materials for which damage in the elastic range (without

plasticity) is negligible. In spite of this the strong coupling is frequently used

by many authors for its simplicity and easy model calibration. Among them,

we mention the following articles: Cordebois and Sidoroff (1982); Lemaitre

and Chaboche (1985); Lemaitre (1992); Saanouni et al. (1994); Chaboche

(1999); Chow and Tai (2000); Pederson and Tvergaard (2000); Hesebeck

(2001); Nesnas and Saanouni (2002); Olsson and Ristnmaa (2003). A

discussion of different approaches to damage effect on the elastic limit

criterion was given by Chaboche (1999). Three possibilities are discussed in

this article:

1. No hardening-damage coupling (only the effective stress concept e�� is

used), e.g., Benallal (1989) and Lemaitre (1992).

2. Partly coupled hardening-damage (through effective kinematic hardening
eXX), e.g., Lemaitre and Chaboche (1985).

3. Fully coupled hardening-damage (through both effective hardening

variables eXX and eRR), e.g., Chaboche (1977) and Saanouni (1988).

In the usual case of J2 plasticity models, all three approaches are

summarized as follows:

f1 ¼ fðe��,X,RÞ ¼ J2 e�� � Xð Þ � R� �y � 0

f2 ¼ fðe��,eXX,RÞ ¼ J2ðe�� �eXX Þ � R� �y � 0

f3 ¼ fðe��,eXX, eRRÞ ¼ J2ðe�� �eXX Þ � eRR� �y � 0

ð8Þ

WEAK DISSIPATION COUPLING

Increasing demands for higher performance materials, especially elastic-

moderate plastic materials, composites, and others, in which strong

Coupled Elastic-Plastic Unilateral Damage Material Model 9



plasticity-damage dissipation coupling models are not applicable, present an

increasing necessity to develop more physically justified approaches based

on the weak coupling concept. Among the numerous articles based on

the weak coupling theories, let us mention the following: Chow and Wang

(1987); Simo and Ju (1987, 1989); Lemaitre and Chaboche (1990); Stevens

and Liu (1992); Hansen and Schreyer (1994); Zhu and Cescotto (1995);

Chaboche (1997); Hayakawa and Murakami (1997, 1998); Voyiadjis

and Park (1997, 1999); Voyiadjis and Deliktas (2000); Voyiadjis et al.

(2001); Abu Al-Rub and Voyiadjis (2003). Chow and Wang (1987)

introduced two dissipation functions that describe the plastic dissipation

surface F p and damage dissipation surface F d as follows:

F p ¼ f �,D,Rð Þ ¼ e��p � R0 þ R pð Þ½ � ¼ 0 e��p ¼
1

2
�T

: eHH : �

� �1=2

F d ¼ f �,D,Bð Þ ¼ e��d � B0 þ B �ð Þ½ � ¼ 0 e��d ¼
1

2
�T

: eDD : �

� �1=2
ð9Þ

Then, using a thermodynamic formulation for anisotropic plasticity (eHH
is Hill’s effective plastic characteristic tensor) and anisotropic damage

(eDD denotes effective damage characteristic tensor), the plastic evolution and

damage evolution equations are derived for variables _""p, _pp and _DD, _��.

In general, all these theories are based on the concept of the existence

of two (or even more) dissipation surfaces, and the maximum dissipation

principle: ‘Actual state of the thermodynamic forces is that which maxi-

mizes the dissipation function over all other possible admissible states’.

A generalized normality rule is usually applied to obtain evolution rules. In

the previously mentioned article by Hansen and Schreyer (1994), the

Lagrangian functional is built with two independent multipliers _��p and _��d

L ¼ �� þ _��p�p þ _��d�d, ð10Þ

where � denotes the dissipation due to plasticity and damage

� ¼ � : _""p þ �S
: _""S þ �H

: _""H þ Y : _DDþ Y
S
: _DD

S þ Y
H
: _DD

H, ð11Þ

whereas two constraints �p ¼ 0 and �
d ¼ 0 represent the yield and damage

dissipation potentials

�
p b��, b��S, b��H
� �

¼ �
p1 b�� �b��S
� �

� �
p2 b��H
� �

þ �y
� �

� 0

�
d
Y, YS, YH
� �

¼ �
d1

Y� Y
S

� �
� �

d2
Y

H
� �

þ !0

� �
� 0:

ð12Þ

10 J. BIELSKI ET AL.



In the notation used above b��S, b��H and Y
S,YH denote the conjugate forces

for "S, "H and D
S, D

H, respectively, whereas the symbol ðbÞ stands for

effective variables e.g., b�� ¼MðDÞ : �,b"" p ¼M
�TðDÞ : "p, etc.

The evolution rules of _b""b"" p, _b""b"" S, _b""b""H and _DD, _DDS, _DDH, for the actual values of

thermodynamic forces that maximize entropy, are

@L

@�
¼ 0! _b""b"" p ¼ _��p

@�p1

@�

@L

@Y
¼ 0! _DD ¼ _��d

@�d1

@Y

@L

@�S
¼ 0! _b""b"" S ¼ _��p

@�p1

@�S

@L

@YS
¼ 0! _DD

S ¼ _��d
@�d1

@YS

@L

@�H
¼ 0! _b""b""H ¼ _��p

@�p2

@�H

@L

@YH
¼ 0! _DD

H ¼ _��d
@�d2

@YH

ð13Þ

and the Khun-Tucker loading/unloading conditions for both independent

dissipation mechanisms, plasticity and damage, hold

_��p � 0, �p � 0, _��p�p ¼ 0 and _��d � 0, �d � 0, _��d�d ¼ 0: ð14Þ

Similar thermodynamic formulation as described above was also used by

Zhu and Cescotto (1995), where the dissipation due to coupled plasticity

and damage contains only four terms, hence

� ¼ � : _""p � R _��� Y : _DD� B _�� and � ¼ �� _��pF p � _��dF d ð15Þ

However, anisotropic elasticity, anisotropic plasticity, and anisotropic

damage are included in this formulation. To this end the effective

orthotropic elastic stiffness tensor bCC e, the effective Hill’s plastic char-

acteristic tensor bHH, and the damage characteristic tensor J are used.

Additionally, an anisotropic microcrack opening/closing mechanism is

accounted for by the use of a concept of spectral projection tensors and a

modified damage energy release rate for ductile-like or brittle-like damage

conditions.

A possibility to define a multiple dissipation potential was discussed by

Chaboche (1997), who introduced three independent potentials expressed

in the space of thermodynamic forces (A
p
k,A

d
j ) associated with the

plastcity and damage hardening variables (V
p
k,V

d
j ). The potentials

stand for three dissipation mechanisms: �p – plastic flow and hardening

process, �
s – microstructure evolution, and �

d – damage process.

Coupled Elastic-Plastic Unilateral Damage Material Model 11



Finally, introducing three Lagrange multipliers _��p, _��s, and _��d the general-

ized normality rule holds

_b""b""p ¼ _��p
@�p

@�

� _VV
p
k ¼

_��p
@�p

@A
p
k

þ _��s
@�s

@A
p
k

� _VVd
j ¼

_��d
@�d

@Ad
j

ð16Þ

All the discussed models of weak elastic-plastic dissipation coupling assume

the existence of both plastic and damage potentials. In general, the assump-

tion of existence of damage potential, related to the similar concept of plastic

potential, should be validated. Hence Hayakawa and Murakami (1997)

performed an experimental verification of the existence of a damage potential

and the corresponding normality rule for the spheroidized graphite cast iron.

Experiments proved that both existence and normality hold in the space of

damage conjugate forces, which are easily related to stresses F d½Yð�Þ�:

UNILATERAL DAMAGE CONCEPTS

When the material is subjected to reverse tension–compression cycles, the

crucial question that arises is how to properly describe a phenomenon of the

unilateral damage, also called the damage deactivation or the crack closure/

opening effect. To this end a decomposition of the stress or strain tensors

into the positive or negative projections is usually introduced using the

fourth-rank projection operators written in terms of principal directions

of the strain or stress tensors n
ðiÞ
" or n

ðiÞ
� as follows (Lubarda et al., 1994;

Hansen and Schreyer, 1995; Krajcinovic, 1996):

P
þ
" ¼

X3

i¼1

"ðiÞ
� �� �

n
ðiÞ
" � n

ðiÞ
" � n

ðiÞ
" � n

ðiÞ
" , P

�
" ¼ I� P

þ
"

P
þ
� ¼

X3

i¼1

�ðiÞ
� �� �

n
ðiÞ
� � n

ðiÞ
� � n

ðiÞ
� � n

ðiÞ
� , P

�
� ¼ I� P

þ
�

ð17Þ

where the double angular bracket is defined as hhaii ¼ 1 for a� 0 or 0 for

a<0, and "ðiÞ, �
(i) are the principal strain or stress components. Hence

"þ ¼ P
þ
" : ", "� ¼ P

�
" : "

�þ ¼ P
þ
� : �, �� ¼ P

�
� : �

ð18Þ
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where only the positive or the negative components of the strain or stress

tensors are extracted. It is usually assumed that the negative components of

the strain or stress tensors remain inactive as long as the loading conditions

again render them active. A more realistic description of damage deacti-

vation allows for an influence of negative principal components of strain

and stress tensors for damage evolution, as observed in brittle materials

(Hayakawa and Murakami, 1997; Murakami and Kamiya, 1997). These

concepts reduce to introduction of the generalized projection operators

(Ganczarski et al., 2003) and the modified strain or stress tensors as follows:

P" ¼ P
þ
" þ �"P

�
" or P� ¼ P

þ
� þ ��P

�
� ð19Þ

and

" ¼ P" : " or � ¼ P� : � ð20Þ

In the case when �" ¼ 1 or �� ¼ 1 then P" ¼ I or P� ¼ I, such that the unique

mapping holds: " ¼ " or � ¼ �. In contrast, if �" ¼ 0 or �� ¼ 0, then P" ¼ P
þ
"

or P� ¼ P
þ
� , hence the negative principal components of the strain or stress

tensors have no influence on damage evolution, " ¼ "þ or � ¼ �þ. When

general coordinate systems are used the modified strain or stress tensors are

expressed in terms of the actual ones by the following mappings:

"ij ¼
X3

I¼1

� "Ið Þn
"ð Þ
iI n

"ð Þ
jI n

"ð Þ
Ik n

"ð Þ
Il "kl ¼ B

"ð Þ
ijkl"kl ð21Þ

or

�ij ¼
X3

I¼1

� �Ið Þn
�ð Þ
iI n

�ð Þ
jI n

�ð Þ
Ik n

�ð Þ
Il �kl ¼ B

�ð Þ
ijkl�kl ð22Þ

where the fourth-rank tensors B
"ð Þ
ijkl or B

�ð Þ
ijkl are built of direction cosines

between the principal and the current spatial systems.

Fourth-rank positive projection operators P
þ
" that extract the tensile

strain components were used by Hansen and Schreyer (1994), whereas Zhu

and Cescotto (1995) applied the spectral decomposition of the stress tensor

�þ ¼ P
þ
� : � in order to account for microcrack opening/closure effect in

elastic-plastic-damage materials. These concepts are somewhat similar to

that introduced earlier by Ortiz (1985), who considered, however, only

brittle materials (concrete). Limitations of the unilateral damage condition

Coupled Elastic-Plastic Unilateral Damage Material Model 13



concept applied to continuum damage theories were discussed by Chaboche

(1992, 1993); Chaboche et al. (1995) and Halm and Dragon (1996). It was

shown that some existing theories (e.g., Krajcinovic and Fonseka, 1981; Ju,

1989) either lead to nonsymmetries of the elastic stiffness or may yield to

non-realistic discontinuous stress– strain response under non-proportional

loading. It is easy to illustrate that, if unilateral damage condition does

influence both diagonal and off-diagonal components of the stiffness or

compliance matrix, a stress discontinuity occurs when one of the principal

strains changes sign, whereas the others remain unchanged, see Skrzypek

and Kuna-Ciskal (2003).

In what follows, the crack closure phenomenon is stress controlled, which

means the zeroth closure stress �c ¼ 0 (Figure 1(a)). A continuous descrip-

tion of the stiffness recovery process due to crack closure effect was

recently proposed by Ganczarski (2004), where Ylinen’s approximation was

modified such that only the damage variable that acts on the volumetric
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Figure 1. Tension/compression deactivation diagrams: (a) stiffness recovery controlled by �
(present model), (b) smooth stiffness recovery model (Ganczarski, 2004), (c), (d) two closure
positions �c > 0, �c < 0 (Chaboche et al., 1998).
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stress is subjected to the closure effect, whereas the isotropic ones remain

unchanged on compression (Figure 1(b)). Hence, only partial (but con-

tinuous) stiffness recovery occurs on the loading cycle when a low cycle

fatigue-damage is observed in 316L stainless steel. Instead of the usually

used crack closure parameter hc, a continuous function h �ð Þ is defined

such that a smooth stiffness recovery is met. A more general concept of

microcrack closure was studied by Chaboche et al. (1998), who considered

two cases of positive �c > 0 or negative �c < 0 closure stresses in composite

materials (Figure 1(c) and (d)).

The extended Hayakawa and Murakami model is the basis of the present

consideration. It is adopted here to the reverse cyclic loading conditions,

where the microcrack opening/closure mechanism is significant. The matrix

representation of the incremental form of the Hayakawa and Murakami

elastic-plastic-damage equations, derived by Bielski et al. (2002) is

implemented to the ABAQUS finite element code. Effective algorithm for

plastic and damage loading/unloading conditions based on the doubly

passive predictor–plastic damage corrector approach is used.

STATE POTENTIAL AND ELASTIC-PLASTIC-DAMAGE

CONSTITUTIVE EQUATIONS

The basic set of state and evolution equations for elastic-plastic damage

material of a moderate ductility is accepted after Hayakawa and Murakami

(1997). It is usually assumed that the Helmholtz free energy is used as

the state potential. Such an approach was applied e.g., by Murakami and

Kamiya (1997) to describe elastic-brittle damage materials (high strength

concrete) by the use of a total stress–strain formulation � ¼ se,, : "e, where
se,,(D) denotes the effective secant stiffness tensor. Skrzypek and Kuna-

Ciskal (2003) and Kuna-Ciskal and Skrzypek (2004) extended this model

to the incremental formulation d� ¼ te,, : d"e, where te,,ð"e,DÞ stands for the
effective tangent stiffness tensor. A general failure criterion based on the

Drucker stability postulate has also been proposed:

@2�

@"eij@"
e
kl

d"eijd"
e
kl ¼ Hijkld"

e
ijd"

e
kl > 0 ð23Þ

if loss of the positive definiteness of the Hessian matrix ½H� is accepted as the

failure criterion (also Chen and Han, 1995). Note that, when Helmholtz

free energy based approach is used, the damage conjugate forces Y

are expressed in terms of elastic strains Y("e). However, for the sake of

simplicity of experimental validation of the model, the damage conjugate
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forces should rather be related to the stress tensor Y(�). Such an approach

enables consistent definition of both dissipation surfaces, plastic F p �,Rð Þ

and damage F dðY,BÞ, in the stress space.

To make the experimental verification straightforward, i.e., to have

damage conjugate forces expressed in stresses instead of strains, the Gibbs

thermodynamic potential from Equation (5) is applied instead of the

Helmholtz one

� �, r,D,�ð Þ ¼ � : "e �� "e, r,D,�ð Þ ð24Þ

where � "e, r,D,�ð Þ is the Helmholtz free energy per unit mass.

Following the scheme typical for the irreversible thermodynamics the

elastic strain tensor as well as the conjugate forces are obtained as

"e ¼
@�

@�
, R �

@�

@r
, Y �

@�

@D
, B �

@�

@�
ð25Þ

where � is the stress tensor, r is the scalar plastic isotropic hardening

variable, D is the second rank symmetric damage tensor, and � is the scalar

variable to describe an evolution of the damage surface. R, Y, and B are the

thermodynamic force-conjugates of state variables r, D, and �, respectively.

Note that kinematic hardening variables for plasticity and damage terms are

disregarded in Equation (24).

The form of the Gibbs thermodynamic potential is postulated as a sum of

three parts

� �, r,D,�ð Þ ¼ �
e �,Dð Þ þ �

p rð Þ þ �
d �ð Þ ð26Þ

where �e is the complementary energy due to the elastic deformation, which

is assumed to be an isotropic symmetric function depending on the tensors �

and D, since the undamaged (initial) material is considered isotropic.

Furthermore, due to the postulated isotropic and linear behavior of the

undamaged material, �e is assumed to be a quadratic with respect to �.

Due to the expected decrease of �e as damage develops, the form linear with

respect to D is supposed. Eventually, after the crack closure effect (under

compressive state) is included, the form for �
e is expressed as a linear

combination of the six basic invariants of the tensors � and D, instead of

10 basic invariants in a general case (Spencer, 1971; Rymarz, 1993):

�
e �,Dð Þ ¼ �

�0

2E0

tr �ð Þ2þ
1þ �0

2E0

tr � � �ð Þ þ #1 trD tr �ð Þ2

þ #2 trD tr � � �ð Þ þ #3 tr � tr � �Dð Þ þ #4 tr � � � �Dð Þ ð27Þ
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with � being the modified stress tensor

�ij ¼
X3

I¼1

�IQIiQIj ¼
X3

I¼1

� �Ið Þ�IQIiQIj

¼
X3

I¼1

� �Ið Þ�klQIkQIlQIiQIj ¼
X3

I¼1

� �Ið ÞQIiQIjQIkQIl

" #
�kl ¼ B

ð�Þ
ijkl�kl

ð28Þ

QIi is a direction cosine between the principal stress direction I and the

current spatial system direction i, �I are the principal values for �, whereas

the modified ones are

�I ¼ �Ih i � � ��Ih i � � �Ið Þ�I ðI ¼ 1, 2, 3, no sum:Þ

� �Ið Þ ¼ H �Ið Þ þ �H ��Ið Þ ¼ �I

0 � � � 1

ð29Þ

�0, E0 are the elastic constants for initial undamaged material and #1, #2, #3,

#4, and � are elastic-damage material constants. In Equation (27), the

modified stress tensor appears only in the fourth and sixth terms of �e, since

the unilateral response is not observed in the virgin elastic state and the

continuity requirements must hold during unloading when �I ¼ 0. Hence,

the off-diagonal components of the effective elastic compliance tensor s
C

eðDÞ

are not affected by the unilateral damage, in a similar fashion as shown

by Kuna-Ciskal and Skrzypek (2004) in the case of elastic-brittle damage.

�
p is the part of the Gibbs potential related to plastic deformation (e.g.,

distortion energy of crystal lattice related to dislocation structure) and

it represents the effect of the isotropic plastic hardening. Note that the

influence of other state variables, including damage, is neglected. Hence, we

assume

�
p rð Þ ¼ R1 rþ

1

b
exp �brð Þ

	 

ð30Þ

where R1 and b are plastic material constants.

�
d is the damage part of the Gibbs potential (e.g., surface energy due to

the nucleation of cavities); here the linear relation between internal variable

� and its conjugate force B is postulated, hence

�
d �ð Þ ¼

1

2
Kd�

2 ð31Þ

where Kd is another damage material constant.
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Now, applying Equations (25) and (26) one comes to the relation for

elastic strains expressed in stresses and damage tensor in a total form

"e ¼
@�e

@�
¼ �

�0

E0
tr �ð ÞIþ

1þ �0

E0

� þ 2#1 trD tr �ð ÞIþ 2#2 trDð Þ� :
@�

@�

þ #3 tr Dð ÞIþ tr �ð ÞD½ � þ #4 � �DþD � �ð Þ :
@�

@�
ð32Þ

or

"e ¼ s
C

e
Dð Þ : � ð33Þ

The thermodynamic conjugate forces corresponding to the internal state

variables D, r, and � are

Y �
@�e

@D
¼ #1 tr �ð Þ2þ#2 tr � � �ð Þ

� �
Iþ #3 tr �ð Þ� þ #4 � � �ð Þ ð34Þ

R �
@�p

@r
¼ R1 1� exp �brð Þ½ � ð35Þ

B �
@�d

@�
¼ Kd� ð36Þ

s
C

eðDÞ is the fourth-rank secant elastic compliance tensor with damage

tensor D as argument. The details of derivation of the effective compliance

tensor s
C

e, including the derivative of the modified stress tensor with respect

to the stress tensor @�=@�, are analogous to those in Kuna-Ciskal

and Skrzypek (2004), where the effective secant stiffness tensor was derived

based on the formulation by Murakami and Kamiya (1997) for elastic

damage materials. Hence, when Equation (28) is used, the corresponding

derivatives are calculated according to the scheme

D
ð�Þ
ijkl ¼

@�ij

@�kl
¼ B

ð�Þ
ijkl þ

@B
ð�Þ
ijpq

@�kl
�pq ð37Þ

This formula leads to a somewhat cumbersome representation of the fourth-

rank tensor D
ð�Þ
ijkl that accounts for unilateral damage if the incremental form

of the transformation rule i.e., Equation (28) is used

d�ij ¼ D
ð�Þ
ijkld�kl ð38Þ
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DISSIPATION POTENTIALS AND EVOLUTION RULES

FOR PLASTICITY AND DAMAGE

The next step is the assumption that there exists a dissipation potential

surface

F Xm; r,D,�ð Þ ¼ 0 ð39Þ

for each conjugate force Xm, where (X ¼ �,R,Y,Bf g) and current state

variables, together with the normality law

Jm ¼ _��m
@F

@Xm

ð40Þ

with J ¼ f_""p, _rr, _DD, _��g.

We assume, after Hayakawa and Murakami (1997), that the dissipation

potential is composed of two parts, plastic and damage, and the maximum

dissipation principle holds (weak dissipation coupling). The plastic

dissipation potential is mainly related to the dislocation motion, whereas

the damage one is related to the internal energy release in cavities. Thus

F �,Y,R,B;D, r,�Þ ¼ F p �,R;DÞ þ F d
Y,B; D, r,�ð Þ

��
ð41Þ

Note that only isotropic plasticity and damage hardening are accounted

for in the present formulation, such that thermodynamic force conjugates to

the fluxes J ¼ f_""p, _rr, _DD, _��g are F ¼ f�,R,Y,Bg. This formulation introduces

limitation to relatively simple loading conditions. If more complex loading

history is considered, kinematic hardening should also be included to

both the state and the dissipation potentials to yield a more general form

of the fluxes and thermodynamic force vectors, e.g., f_""p, _��, _pp, _!!, _((, _rrg and

f�,X,R,Y,H,Kg, respectively, where the notation used in Abu Al-Rub and

Voyiadjis (2003) was used.

Having in mind that damage will, in general, influence a yield surface, and

assuming the associate flow rule, the form

F p �,R; Dð Þ ¼ �eq � R0 þ Rð Þ ¼ 0 ð42Þ

�eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
�0 : M Dð Þ : �0

r
ð43Þ
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with R0 being a material constant (initial yield stress) and �0 being the

deviatoric stress tensor, is proposed as the plastic dissipation potential (for

relatively simple loading processes).

The tensor function M Dð Þ linear in D is specified in order to describe the

increased effect of stress due to damage

M Dð Þ½ �ijkl¼
1

2
	ik	jl þ 	il	jk
� �

þ
1

2
cp 	ikDjl þDik	jl þ 	ilDjk þDil	jk
� �

ð44Þ

with cp being a material constant. Thus, Equation (42) is an extension of the

Huber–Mises–Hencky yield condition for the damage materials.

The damage dissipation potential is built in the force conjugate Y space

and is assumed to depend on damage as well as on plastic deformation and

hydrostatic stress. The relation is easily transformed into the stress space via

Equation (34). Hence

F d
Y,B; D, r,�ð Þ ¼ Yeq þ crr trD trY� B0 þ Bð Þ ¼ 0 ð45Þ

with

Yeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
Y : L Dð Þ : Y

r
ð46Þ

tensor function LðDÞ linear in D

L Dð Þ½ �ijkl¼
1

2
	ik	jl þ 	il	jk
� �

þ
1

2
cd 	ikDjl þDik	jl þ 	ilDjk þDil	jk
� �

ð47Þ

and material constants cd, cr, and B0. Expressions for MðDÞ and LðDÞ that

appear in formulae for �eq (Equation (43)) and Yeq (Equation (46)) are

based on the assumption that in no-damage states both the yield and

damage functions are isotropic.

A more general formulation was given by Zhu and Cescotto (1995) where,

instead of the simplified formulae (43) and (46), the following expressions

were used

�eq ¼
1

2
�T

: H : �

� �1=2

, H ¼M
ZC

: H : M
ZC, ð48Þ

Yeq ¼
1

2
Y

T
: J : Y

� �1=2

, ð49Þ
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whereH is Hill’s plastic characteristic tensor,MZCðDÞ denotes damage effect

tensor, and J stands for damage characteristic tensor. Hence, the anisotropy

of both the plastic surface and the damage surface is accounted for. It

was experimentally proved that for the purpose of modeling spheroidized

graphite cast iron the formulae (44) and (47) are justified.

Using Equations (32)–(36) and (40) the Clausius–Duhem inequality

becomes

� ¼ � : _""p � R_rr� Y : _DD� B _�� � 0 ð50Þ

where � denotes the non-negative dissipation due to plasticity and damage

that is subjected to two constraints F p ¼ 0 and F d ¼ 0. Hence, when two

Lagrange multipliers _��p and _��d are introduced, the functional is built

� ¼ �� _��pF p � _��dF d ¼ � : _""p � R_rr� Y : _DD� B _��� _��pF p � _��dF d ð51Þ

Next, maximizing �, we arrive at the plasticity and damage constitutive

equations:

@�

@�
¼ 0�! _""p ¼ _��p

@F p

@�
, _""

p
ij ¼

3

2
_��p
Mijkl�

0
kl

�eq
¼ _��pmij ð52Þ

@�

@ �Rð Þ
¼ 0�!_rr ¼ _��p

@F p

@ �Rð Þ
¼ _��p ð53Þ

@�

@Y
¼ 0�! _DD ¼ _��d

@F d

@Y
¼ _��d

L :Y

2Yeq

þ crr ðtrDÞI

	 

ð54Þ

@�

@ �Bð Þ
¼ 0�! _�� ¼ _��d

@F d

@ �Bð Þ
¼ _��d ð55Þ

where, for convenience of further derivation, a new definition of the second-

rank tensor m �,DÞð was used, m ¼ ð3=2Þ ðMðDÞ :�0=�eqÞ, with Equation (44)

taken into account for the fourth-rank tensor function MðDÞ.

The Kuhn–Tucker relations are used in order to specify loading/

unloading conditions both for plasticity and damage

_��p � 0, F p � 0, _��pF p ¼ 0 ð56Þ

_��d � 0, F d � 0, _��dF d ¼ 0 ð57Þ

The values of plastic multiplier _��p and damage multiplier _��d are found by

solving the consistency conditions simultaneously for the yield surface and
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the damage surface (e.g., Abu Al-Rub and Voyiadjis, 2003):

_FF p �
@F p

@�
: _�� þ

@F p

@R
_RRþ

@F p

@D
: _DD ¼ 0 ð58Þ

_FF d �
@F d

@Y
: _YYþ

@F d

@B
_BBþ

@F d

@D
: _DD ¼ 0 ð59Þ

hence, when plasticity and damage evolution rules (Equations (52)–(55)) are

substituted for _rr, _��, and _DD, we arrive at

_��p ¼
ð@F p=@�Þ : _�� þ ð@F p=@DÞ : ð@F d=@Y Þ

� �
_��d

dR=dr

¼
ð@F p=@�Þ : _��

dR=dr
þ

ð@F p=@DÞ : ð@F d=@Y Þ
� �

ð@F d=@YÞ : _YY
� �

ðdR=drÞ ðdB=d�Þ � ð@F d=@DÞ : ð@F d=@Yð ÞÞ
ð60Þ

and

_��d ¼
ð@F d=@Y Þ : _YY

ðdB=d�Þ � ð@F d=@DÞ : ð@F d=@Y Þ
ð61Þ

Note that the thermodynamic force Y is expressed in terms of � (see

Equation (34)) such that from the rate of it, _YY may be understood as a

product of the fourth-rank tensor Z¼ @Y/@� and the stress rate tensor _��

_YY ¼ Z : _�� ð62Þ

Finally, both plasticity and damage multipliers _��p and _��d are given in terms

of _�� as

_��d ¼
ð@F d=@Y Þ :Z

ðdB=d�Þ � ð@F d=@DÞ : ð@F d=@Y Þ

	 

: _�� ¼ ,

d
: _�� ¼ ,

d
� 

_��f g ð63Þ

_��p ¼
@F p=@�

dR=dr
þ

ð@F p=@DÞ : ð@F d=@Y Þ
� �

ð@F d=@Y Þ :Z
� �

dR=drð Þ ðdB=d�Þ � ð@F d=@DÞ : ð@F d=@Y Þð Þ

	 

: _��

¼ ,
p
: _�� ¼ ,

p
� 

_��f g ð64Þ

where second-rank tensors ,d and ,
p depend on the current material state

variables �, Y, D, and r.
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In other words, in the stress space two coupled dissipation surfaces exist,

the plastic surface F p ¼ 0 and the damage F d ¼ 0, that should be corrected

together on the subsequent loading steps �� ¼ �nþ1 � �n (Figure 2).

It happens, of course, that when one of the two multipliers _��p or _��d equals

zero, then the system of Equations (63) and (64) reduces to _��p > 0 or _��d > 0,

for passive damage or plastic processes, respectively. On the other hand if

both multipliers _��p and _��d equal zero a doubly passive plastic and damage

process takes place.

FINITE ELEMENT IMPLEMENTATION

Incremental Elastic-Plastic-Damage Constitutive Equations – Effective

Tangent Compliance Matrix

When the Hayakawa and Murakami concept was used, elastic-damage

constitutive equations are formulated in a total form (Equation (33))

"e ¼ s
C

eðDÞ :�, where s
C

e stands for the effective secant compliance matrix.

Since the plasticity and damage constitutive equations (52)–(55) are given in

the incremental form, in order to solve the coupled elastic–plastic-damage

process we also need the incremental form of Equation (33).

To derive incremental elastic-damage constitutive equations we follow the

scheme described in Kuna-Ciskal and Skrzypek (2004), where the effective

tangent stiffness matrix has been determined based on the relevant model

of elastic-damage materials developed by Murakami and Kamiya (1997).

 
n

σ 

σ 

n+ 1

F = 0
d

F = 0
p

F = 0
p

F = 0
d

n

n

n+ 1

n+ 1

Figure 2. Coupled dissipation surfaces, plastic and damage, simultaneously corrected at
loading step.
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It was shown that when deriving explicit general formulae for the effective

tangent matrix the main difficulty arises from the unilateral damage

effect included, as described by the fourth-rank transformation tensor

D"
ijkl ¼ @"ij=@"kl. In the present article, after Hayakawa and Murakami

(1997), the Gibbs formulation is applied for the state potential instead of the

Helmholtz free energy, such that elastic-damage constitutive equations

are expressed in stresses instead of strains. This makes experimental

verification straightforward, in which stress-controlled processes are usually

examined.

On the other hand, the implementation of these relations into a standard

displacement finite element code requires special treatment since the

iteration process is driven by strain increments. Moreover, both the plastic

flow and damage evolution are the history-dependent processes, hence the

integration of the constitutive equations at each subincremental step must

be performed from the last equilibrium state instead of simple cumulation of

subincrements of stresses.

For numerical operations by finite element method the vector/matrix

representation of all tensor quantities is applied. The Voigt notation is used

to perform tensorial multiplication with appropriate contractions. At each

integration point where the constitutive relations are to be integrated it is

assumed that the state variables (f"g, r, fDg,�) together with the conjugate

forces (f�g, R, fYg,B) are known at the beginning of a ‘time’ increment. In

the frame of the small strain theory, the given strain increment f_""g is the sum

of the elastic and plastic part

_""f g ¼ _""ef g þ _""pf g ð65Þ

whereas the stress increment f _��g is sought along with conjugate pairs’

increase of _RR and _rr, f _YYg and f _DDg, and _BB and _��.

The general incremental form of the elastic-damage constitutive

Equation (33) may be expressed as

_""ef g ¼ C
e �,D,Yð Þ½ � _��f g ð66Þ

with the local tangent elastic compliance matrix C
e being

C
e
D, �ð Þ ¼ s

C
e
Dð Þ þ

@sC e
Dð Þ

@D
:
@D

@�
:� ð67Þ

Taking into account Equation (52) for the plastic-damage strain increment

_""p together with Equation (64) the following is furnished

_""p ¼ m
p _��p ¼ m

p
,

p
: _��ð Þ ¼ m

p
,

pð Þ : _�� ð68Þ
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or if a matrix form is used

_""pf g ¼ m
p �,Dð Þ

� 
,

p �,D,Y, rð Þ
� � �

_��f g ¼ C
p �,D,Y, rð Þ½ � _��f g ð69Þ

Note that, when Voigt notation is used, in Equation (69) ½fmpgf,pg�

stands for the matrix product of the corresponding vectors.

Hence, from Equations (65), (66), and (69), we eventually arrive at the

incremental elastic-plastic-damage constitutive equation

_""f g ¼ ½C e� _��f g þ ½C p� _��f g ¼ ½C �,D,Y, rð Þ� _��f g ð70Þ

with the local elastic-plastic-damage compliance matrix C ¼ C
eð�,D,Y Þ þ

C
pð�,D,Y, rÞ dependent on the variables given at the starting equilibrium

point (see Equations (67) and (69)).

Then taking inverse of the matrix C, the increments of stresses are

calculated as:

_��f g ¼ ½C�1� _""f g ð71Þ

and the elastic-plastic-damage stiffness matrix C
�1 is accepted as an

approximation of the local Jacobian matrix of the constitutive model.

The general representation of the elastic-damage compliance matrix

C
eðD, �Þ (Equation (67)) as well as the plastic-damage matrix

C
pð�,D,Y, rÞ (Equation (69)) is somewhat cumbersome for numerical

implementation into ABAQUS finite element code via the user-supplied

procedure that defines non-standard material properties. Hence, in what

follows we confine ourselves to the plane stress, following procedures

described in Skrzypek and Kuna-Ciskal (2003).

Matrix Constitutive Equations in Plane Stress State

If the plane stress state �33 ¼ 0 is considered then in vector/matrix

representation we deal with:

� ¼ �11, �22, �12f g, Y ¼ Y11,Y22,Y33,Y12f g, D ¼ D11,D22,D33,D12f g,

ð72Þ

,
p ¼ �

p
11,�

p
22,�

p
12

� 
, ,

d ¼ �
d
11,�

d
22,�

d
12

� 
, ð73Þ
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Z ¼
@Y

@�

	 

¼

Z11 Z12 Z14

Z21 Z22 Z24

Z31 Z32 Z34

Z41 Z42 Z44

2
6664

3
7775

_YY11, _YY22, _YY33, _YY12

� 
¼

Z11 Z12 Z14

Z21 Z22 Z24

Z31 Z32 Z34

Z41 Z42 Z44

2
6664

3
7775

_��11

_��22

_��12

8
><
>:

9
>=
>;

ð74Þ

The effective application of Equation (28) to the constitutive equation

(32) requires the explicit formula for the derivative @�ij=@�kl, therefore the

unilateral transformation tensor D
ð�Þ
ijkl from Equation (38) must explicitly be

expressed. In the case of plane stress considered, the transformation reduces

to plane rotation by the angle �

� ¼
1

2
arctan

2�12

�11 � �22
ð75Þ

Hence, the derivative @�ij=@�kl must be calculated according to the

procedure for the complex function

D
ð�Þ
ijkl ¼

@�ij

@�kl
¼ B

ð�Þ
ijkl þ

@B
ð�Þ
ijpq

@�

@�

@�kl
�pq ð76Þ

The above scheme is cumbersome, therefore, after Kuna-Ciskal and

Skrzypek (2004), we reduce Equation (28) to the simplified form

�11

�22

�12

8
<
:

9
=
; ¼

a 0 b

0 c b

0:5b 0:5b d

2
4

3
5

�11
�22
�12

8
<
:

9
=
; ð77Þ

where a ¼ ð1=2Þð�1 þ �2Þ þ ð1=2Þð�1 � �2Þ cos 2�, b ¼ ð1=2Þð�1 � �2Þ sin 2�,

c ¼ ð1=2Þð�1 þ �2Þ � ð1=2Þð�1 � �2Þ cos 2�, and d ¼ ð1=2Þ �1 þ �2ð Þ, whereas

�I ¼ �ð�IÞ denote coefficients in the stress modification rule (Equation (29))

due to damage deactivation.
In the plane stress conditions, the total form of the matrix constitutive

equation (32) has the form

"e11

"e22

�e
12

8
><
>:

9
>=
>;
¼

sCe
11

sCe
12

sCe
14

sCe
12

sCe
22

sCe
24

sCe
14

sCe
24

sCe
44

2
64

3
75

�11

�22

�12

8
><
>:

9
>=
>;

ð78Þ

26 J. BIELSKI ET AL.



The effective secant compliance matrix s
C

eðDÞ is furnished as follows:

sCe
11 ¼

1

E0

þ 2#1trDþ 2#2 trDða
2 þ 0:5b2Þ þ 2#3D11

þ #4½D11ð2a
2 þ 0:5b2Þ þ 0:5D22b

2 þ 2abD12�

sCe
12 ¼ �

�0

E0

þ 2#1 trDþ #2b
2 trDþ #3ðD11 þD22Þ

þ #4½0:5b
2ðD11 þD22Þ þ bðaþ cÞD12�

sCe
14 ¼ 2bðaþ d Þ#2 trDþ 2#3D12

þ #4½D11bð2aþ d Þ þ bdD22 þ 2D12ðb
2 þ ad Þ�

sCe
22 ¼

1

E0

þ 2#1 trDþ 2#2 trDðc
2 þ 0:5b2Þ þ 2#3D22

þ #4½0:5D11b
2 þD22ð2c

2 þ 0:5b2Þ þ 2bcD12�

sCe
24 ¼ 2bðcþ d Þ#2 trDþ 2#3D12

þ #4½bdD11 þD22bð2cþ d Þ þ 2D12ðb
2 þ cd Þ�

sCe
44 ¼ 2

�
1þ �0

E0

þ 2#2 trDð1þ b2 þ d 2Þ

þ #4½ðb
2 þ d 2ÞðD11 þD22Þ þ 4bdD12�

�

ð79Þ

The thermodynamic conjugate force Y defined by Equation (34) is

expressed as:

Y11

Y22

Y33

Y12

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼

#1 tr �ð Þ2þ#2 tr � � �ð Þ þ #3 tr �ð Þ�11
þ#4 a�11 þ b�12ð Þ2þ 0:5bð�11 þ �22ð Þ þ d�12Þ

2
� �

#1 tr �ð Þ2þ#2 tr � � �ð Þ þ #3 tr �ð Þ�22
þ#4 c�22 þ b�12ð Þ2þ 0:5bð�11 þ �22ð Þ þ d�12Þ

2
� �

#1 tr �ð Þ2þ#2 tr � � �ð Þ

#3 tr �ð Þ�12#4½0:5bð�11 þ �22Þ þ d�12�ða�11 þ 2b�12 þ c�22Þ

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð80Þ

When the general incremental form of the elastic-damage constitutive

equation (66) is applied to the plain stress state d�33 ¼ 0, the following

3� 3 tangent elastic-damage stiffness matrix representation Ce
ijð�,D,YÞ is
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furnished in terms of the corresponding secant matrix components sCe
ijðDÞ

Equation (79), according to formula (67)

_""e11
_""e22
_��e
12

8
<
:

9
=
; ¼

Ce
11 Ce

12 Ce
14

Ce
12 Ce

22 Ce
24

Ce
14 Ce

24 Ce
44

2
4

3
5

_��11
_��22
_��12

8
<
:

9
=
;: ð81Þ

For instance, as regards the first element of the matrix (81), the following

formula holds:

Ce
11 ¼

sCe
11 þ 2#1

@ trD

@�11
þ 2#2

@ trD

@�11
a2 þ 0:5b2
� �

þ 2#3

@D11

@�11

�

þ #4

@D11

@�11
2a2 þ 0:5b2
� �

þ 0:5
@D22

@�11
b2 þ 2ab

@D12

@�11

	 
�
�11

þ 2#1

@ trD

@�11
þ #2b

2 @ trD

@�11
þ #3

@D11

@�11
þ
@D22

@�11

� ��

þ #4 0:5b2
@D11

@�11
þ
@D22

@�11

� �
þ
@D12

@�11
b aþ cð Þ

	 
�
�22

þ 2b aþ dð Þ#2

@ trD

@�11
þ 2#3

@D12

@�11

�

þ #4

@D11

@�11
b 2aþ dð Þ þ bd

@D22

@�11
þ 2

@D12

@�11
b2 þ ad
� �	 
�

�12 ð82Þ

Computational Algorithm for Elastic-Plastic Damage Material

under Unilateral Damage Condition

The iteration of global equilibrium of a system is performed by ABAQUS

with the use of Newton–Raphson method. The applied scheme is iteration-

independent, which means that all variables are only updated by the end

of an increment step after the convergence is achieved. The task to be

performed by the user-supplied routine is to integrate physical relations

at a point level (Gauss point of an element) when starting from a known

equilibrium state and for a total strain increment given in each iteration.

The output information are stress and all other state variables updated

(integrated) by the end of the iteration increment as well as the local stiffness

matrix.

The integration is performed here with an explicit forward Euler scheme.

That means the derivatives (stiffness) are known at the starting point and

kept constant along the increment. Such an approach is not unconditionally
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stable and may be succesfully used only for relatively simple loading history

and sufficiently small incremental step.

The particular forms of matrices C e and C
p not only depend on the state

variables and the conjugate forces but also on the kind of deformation

process taking place through a strain increment. Namely, they depend on

whether the process is active or passive. Here, the terms ‘active’, ‘passive’,

and ‘neutral’ are generalized for both damage and plasticity. ‘Active’

(loading) denotes a process, which implies evolution of the limit surface;

‘passive’ (unloading) stands for changes inside the limit surface; and

‘neutral’ denotes a process tangent to the limit surface.

The predictor–corrector approach is applied here since the limit surfaces

depend on the state variables and may be verified after the variables are

updated at the end of an incremental step. At each iteration step we start

with a doubly passive predictor, which means that matrix C
e is determined

for _��d ¼ 0 and matrix C
p is zero because of _��p ¼ 0, i.e., we assume there

are no plastic strain increments and those elastic do not involve the damage

parameters evolution. Afterwards, the stress increments f _��g are calculated,

then f _YYg from Equation (62) is found, and before the conjugate forces are

updated (only f�g and fYg are changed) checking is performed. There are,

in general, four possible situations at the end of the increment:

ð1Þ F d
Yþ _YY,B,D, r
� �

� 0 ^ F p � þ _��,R,Dð Þ � 0 ð83Þ

which means that none of the limit surfaces is exceeded, the pure (no

damage) elastic increment is accepted and the conjugate forces f�g and fYg

are updated: � �� þ _��, Y �Yð�Þ (Equation (34));

otherwise – the corrector phase ((2), (3), or (4)) is necessary

ð2Þ F d
Yþ _YY,B,D, r
� �

> 0 ^ F p � þ _��,R,Dð Þ � 0 ð84Þ

(only damage surface is exceeded) the matrix C
e is rebuilt with the elastic-

damage evolution allowed for (with _��d > 0), whereas _��p ¼ 0 is kept

constant. New solution for stress increment f _��g is obtained, _��d

(Equation (63)) and f _YYg, f _DDg, and _�� are determined from Equations (62),

(54), and (55), and checking is done again for the plasticity limit:

if

F p � þ _��,R,Dþ _DD
� �

� 0 ð85Þ

then the increment is accepted, the state variables D and � as well as the

conjugate forces �, Y, and B are updated: D �Dþ _DD, � ��þ _��,

� �� þ _��, Y �Yð�Þ (Equation (34)), B �Bð�Þ (Equation (36));

else – Point (4) is performed
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ð3Þ F d
Yþ _YY,B,D, r
� �

� 0 ^ F p � þ _��,R,Dð Þ > 0 ð86Þ

(only plastic surface is exceeded) the matrix C
p is built with _��p > 0

(plastic surface evolution allowed for) but with _��d ¼ 0 (no damage

evolution), whereas the matrix C
e is kept unchanged as in the predictor

phase. After the solution for stress increment f _��g is obtained, the plastic

multiplier _��p (Equation (64)) is determined as well as _rr (Equation (53)),

and f _YYg (Equation (62)) are calculated. Then checking is done for the

damage limit:

if

F d
Yþ _YY,B,D, rþ _rr
� �

� 0 ð87Þ

then the increment is accepted, the state variable r as well as the conjugate

forces �, Y, and R are updated: r �rþ _rr, R �R rð Þ (Equation (35)),

� �� þ _��, Y �Y �ð Þ (Equation (34));

else – Point (4) is performed

ð4Þ F d
Yþ _YY,B,D, r
� �

> 0 ^ F p � þ _��,R,Dð Þ > 0 ð88Þ

(both limit surfaces are exceeded) the matrices C e and C
p are built for _��p>0

(plastically active process) together with _��d>0 (damage evolution). After

the stress increments f _��g are calculated, the plastic multiplier _��p

(Equation (64)) and the damage multiplier _��d (Equation (63)) are

determined, _rr (Equation (53)), f _DDg (Equation (54)), and _�� (Equation (55))

are determined, and finally the state variables r, D, and � together

with the conjugate forces �, Y, R, and B are updated: r �rþ _rr,

D �Dþ _DD, � ��þ _��, � �� þ _��, Y �Y �ð Þ (Equation (34)), R �R rÞð

(Equation (35)), B �B �Þð (Equation (36)).

Eventually, the local stiffness matrix (treated as tangent at the beginning

of the step), possibly corrected after predictor–corrector treatment, is

accepted for computing the global stiffness of a system.

A more general method is presented in Zhu and Cescotto (1995). There,

the elastic predictor is followed by the two-step coupled plastic-damage

corrector and the stiffness matrix is built by a numerical perturbation

method.

EXAMPLES OF APPLICATION TO MONOTONIC

AND CYCLIC LOADINGS

The presented constitutive model and the local iteration method are

implemented into the ABAQUS finite element code via the user-supplied
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procedure that defines non-standard material properties. The primary goal

is to test the efficiency and convergence of the global iteration process for

such a model of elastic-plastic-damage material in uniaxial or plane stress

state.

Material Data

The following material constants are taken for spheroidized graphite cast

iron FCD400 after Hayakawa and Murakami (1999):

E0¼ 169�103 ðMPaÞ, �0¼ 0:285, �¼ 0:89,

#1¼�3:95�10�7 ðMPa�1Þ, #2¼ 4:00�10�6 ðMPa�1Þ,

#3¼�4:00�10�7 ðMPa�1Þ, #4¼ 2:50�10�6 ðMPa�1Þ,

b¼ 15, R0¼ 293:0 ðMPaÞ, R1¼ 250:0 ðMPaÞ, cp¼ 1:0,

Kd¼ 1:3 ðMPaÞ, B0¼ 0:273 ðMPaÞ, cd¼�15:0, cr¼ 50:0

Monotonic Loading

Initially, a uniform stress state is analyzed and a plane rectangular shield

is used for a structural model.

A strain control is used because, for the stress-controlled processes

together with the forward Euler integration scheme and lack of consis-

tent linearization, a divergence might be met at the point-level iteration,

especially for the material model with asymptotic hardening.

The results of integration for monotonic strain increase are presented

in Figures 3–5. Figure 3 presents the stress–strain relation with initial

elastic (doubly passive) range followed by elastic-damage process and

concluded with elastic-damage-plastic deformation. The asymptotic

nature of plastic hardening is also observed. The effect of acquired

anisotropy is confirmed in Figure 4. The diagonal components of the

damage tensor, initially of value zero increase in course of deformation

but the component D11 (connected with the direction of tension) is

greater than D22 observed in the perpendicular direction. One may also

observe that evolution of plastic deformation slows down significantly

the evolution of damage process. Finally, Figure 5 presents the

deterioration of elastic material properties due to damage. C�111 , which

is the diagonal component of elasticity tensor (Equation (71)), is of

constant value as long as the process is doubly passive, then rapidly

decreases after the elastic-damage process is activated, and still decreases,

but to a much lesser extent, after plasticity is coupled with damage. Due

to asymptotic plasticity of the material model, the deterioration observed
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Figure 3. Strain-controlled process with observed stages of: purely elastic, elastic-damage,
and elastic-damage-plastic responses.

ε 

D11

D22

Figure 4. Damage anisotropy and effect of plastic deformation on damage rate.
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is also of asymptotic nature. In the initial state of virgin elastic material

and for plane stress conditions C�111 ¼ E0=ð1� �20Þ.

Cyclic Loading

Figures 6–10 present the results of cyclic strain-controlled loading process

for relatively small strain value. The cyclic process is assumed with

amplitude increasing for each half-cycle (Figure 6) so as to enable activation

of both dissipation processes on the tension and compression side. The

stress–strain relation is given in Figure 7. The initial fraction of the multi-

cycle diagram resembles what is presented above for monotonic load. The

evolution of damage tensor in course of cyclic deformation is presented

in Figure 8. Not only is the anisotropy of damage effects confirmed but

one may also easily recognize whether the process is ‘damagely’ active or

passive. This diagram should be correlated with Figure 9, where the

hardening parameters are given and the passive or active stages of

the process in a sense of plastic r and damage � hardening are shown.

The curve for evolution of the damage hardening parameter � is in exact

affinity with those for the evolution of damage tensor components. Clearly,

the damage rate is proportional to the rate of � (Equation (54)). The

evolution of the plastic hardening parameter r indicates a plastic-active

or plastic-passive process. It may be observed that the plastically active

ε 

C11

-1

Figure 5. Stiffness drop due to elastic-damage and elastic-plastic-damage growth.
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deformation evolves both on the tension and compression side, whereas

damage evolves almost exclusively on the tension side. This is explained

based on the fact that on the compression side both the dissipation surfaces

are isotropically extended due to doubly active deformation and, after the

ε 

Time

Figure 6. Increasing strain-controlled deformation cycles.

 

σ

ε

Figure 7. Stress–strain curves on loading cycles with partial damage deactivation (�¼ 0.89)
for spheroidized cast iron.

34 J. BIELSKI ET AL.



sign of stress becomes negative, the plastically active process precedes any

damage since the effective damage stress is reduced by the unilateral effect.

This, however, must not be taken as a rule. Probably for a bigger change in

the cycle amplitude on the compression side both the dissipation processes

would be active.

D
,
D

1
1

2
2

D11

D22

Figure 8. Evolution of anisotropic damage components in course of cyclic deformation.

r

r

β 

β 

Figure 9. Evolution of hardening parameters, plastic (r) and damage (�), on loading cycles.
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Figure 10 presents a change of the elastic material properties during the

cycle loading. The diagonal component of the elasticity tensor C�111 varies in

‘time’. Again, the deterioration of material stiffness is confirmed. One may

also observe the partial recovery of the stiffness after each change of stress

for negative sign. The deterioration has an asymptotic nature: the decrease

of elastic modulus on the tension side becomes slower in course of the

process. Also, the recovery of the stiffness on the compression side is

asymptotically convergent. The change of the elastic modulus (directly

connected with the unilateral effect) is noticeable but not significant

for the accepted material constants (note a big scale of the vertical axis in

Figure 10). That is why the change of slope in the stress–strain diagram

(Figure 7) is hardly visible.

CONCLUSIONS

1. The extended incremental elastic-plastic-damage model is capable

of describing both the purely elastic-damage and the plastic-damage

behavior.

2. The applied model of unilateral damage by the use of generalized

projection operator enables to account for a partial damage deactivation

controlled by the additional material constant �, which results in a slower

damage evolution on a compressive side.

C11

-1

Figure 10. Consecutive stiffness drop/recovery during tensile/compressive loading half-
cycles.
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3. For the material data used for model calibration, damage evolution

on the compressive side is almost eliminated due to reduction of the effec-

tive damage stress by the stiffness recovery. In contrast, the plastic

deformation evolves on both the tensile and compressive side.

4. Application of the model developed is limited to relatively simple loading

conditions due to isotropic hardening applied to both plastic and damage

surfaces. For more complex loading conditions it is necessary to extend

the model by the kinematic hardening as well.
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Ganczarski, A., Skrzypek, J. and Foryś, P. (2003). Anisotropic Thermo-Creep-Damage in
Thick Plate Subjected to Thermomechanical Loading Cycles, In: Onate, Owens (ed.),
Proc. VII International Conf. on Comp. Plasticity COMPLAS VII, CD.

Halm, D. and Dragon, A. (1996). A Model of Anisotropic Damage by Mesocrack Growth –
Unilateral Effects, Int. J. Damage Mech., 5: 384–402.

Hansen, N.R. and Schreyer, H.L. (1994). A Thermodynamically Consistent
Framework for Theories of Elastoplasticity Coupled with Damage, Int. J. Solids
Struct., 34: 359–389.

Hansen, N.R. and Schreyer, H.L. (1995). Damage Deactivation, J. Appl. Mech., 62: 450–458.

Hayakawa, K. and Murakami, S. (1997). Thermodynamical Modeling of Elastic-Plastic
Damage and Experimental Validation of Damage Potential, Int. J. Damage Mech., 6:
333–362.

Hayakawa, K. and Murakami, S. (1998). Space of Damage Conjugate Forces and
Damage Potential of Elastic-Plastic Damage Materials, In: Voyiadjis, Ju, Chaboche (eds),
Damage Mechanics in Eng. Mat., pp. 27–44, Elsevier, Amsterdam, Lausanne, New York.

Hesebeck, O. (2001). On an Isotropic Damage Mechanics Model for Ductile Materials, Int. J.
Damage Mech., 10(10): 325–346.

Ju, J.W. (1989). On Energy-based Coupled Elastoplastic Damage Theories: Constitutive
Modeling and Computational Aspects, Int. J. Solids Struct., 25(7): 803–833.

Krajcinovic, D. (1996). Damage Mechanics, Elsevier, Amsterdam.

Krajcinovic, D. and Fonseka, G.U. (1981). The Continuous Damage Theory of Brittle
Materials, Part I: General Theory, Trans. ASME (J. Appl. Mech.), 48(4): 809–815.

Kuna-Ciskal, H. and Skrzypek, J. (2004). CDM based Modeling of Damage and Fracture
Mechanisms in Concrete under Tension and Compression, Eng. Fracture Mechanics, 71:
681–698.

Lemaitre, J. (1992). A Course on Damage Mechanics, Springer, Berlin.

Lemaitre, J. and Chaboche, J.-L. (1985). Mecanique des materiaux solides, Dunod, Paris.

Lemaitre, J. and Chaboche, J.-L. (1990). Mechanics of Solid Materials, Cambridge University
Press, Cambridge, UK.

Lubarda, V.A., Krajcinovic, D. and Mastilovic, S. (1994). Damage Model for Brittle
Elastic Solids with Unequal Tensile and Compressive Strength, Eng. Fracture Mech.,
49(5): 681–697.

Murakami, S. and Kamiya, K. (1997). Constitutive and Damage Evolution Equations
of Elastic-brittle Materials based on Irreversible Thermodynamics, Int. J. Mech. Sci., 39:
473–486.

Nesnas, K. and Saanouni, K. (2002). Integral Formulation of Coupled Damage and Viscoplastic
Constitutive Equations: Formulation and Computational Issues, Int. J. Damage Mech.,
11(10): 367–397.

Olsson, M. and Ristnmaa, M. (2003). Damage Evolution in Elasto-plastic Materials – Material
Response due to Different Concepts, Int. J. Damage Mech., 12(4): 115–139.

Ortiz, M. (1985). A Constitutive Theory for the Inelastic Behavior of Concrete, Mech. Mater.,
4: 67–93.

Pedersen, T.O. and Tvergaard, V. (2000). On Low Cycle Fatigue in Metal Matrix Components,
Int. J. Damage Mech., 9(4): 154–173.

Rymarz, Cz. (1993). Continuum Mechanics (in Polish), PWN, Warszawa.

38 J. BIELSKI ET AL.



Saanouni, K. (1988). Sur l’Analyse de la Fissuration des Milieux Elasto-viscoplastiques par la
Theorie de l’Endommagement Continu, Doctorat d’Etat, Universite de Compiegne.

Saanouni, K., Forster, C. and Ben Hatira, F. (1994). On the Inelastic Flow with Damage,
Int. J. Damage Mech., 3(2): 140–169.

Simo, J.C. and Ju, J.W. (1987). Stress and Strain based Continuum Damage Models, Part I
and II, Int. J. Solids Struct., 23: 821–869.

Simo, J.C. and Ju, J.W. (1989). Finite Deformation Damage Elastoplasticity: A Non-
Conventional Framework, Int. J. Comp. Mech., 5: 375–400.

Skrzypek, J.J. and Kuna-Ciskal, H. (2003). Anisotropic Elastic-Brittle-Damage and Fracture
Models based on Irreversible Thermodynamics, In: Skrzypek, Ganczarski (ed.),
Anisotropic Behaviour of Damage Materials, pp. 143–184, Springer, Berlin, Heidelberg,
New York.

Skrzypek, J.J., Kuna-Ciskal, H. and Bielski, J. (2004). Damage Acquired Anisotropy in Elastic-
Plastic Materials, 21 ICTAM, Warsaw, 15–21 August 2004, CD, SM4L_11796.

Spencer, A.J.M. (1971). Theory of Invariants, In: Eringen, E.C. (ed.), Continuum Physics,
pp. 239–353, Academic Press, New York.

Stevens, D.J. and Liu, D. (1992). Strain based Constitutive Model with Mixed Evolution Rules
for Concrete, J. Engng Mech. ASCE, 118: 1184–1200.

Voyiadjis, G.Z. and Deliktas, B. (2000). A Coupled Anisotropic Damage Model for Inelastic
Response of Composite Materials, Comp. Meth. in Appl. Mech. Eng., 183: 159–199.

Voyiadjis, G.Z. and Park, T. (1997). Local and Interfacial Damage Analysis of Metal Matrix
Components using Finite Element Method, Eng. Fracture Mech., 56(4): 483–511.

Voyiadjis, G.Z. and Park, T. (1999). Kinematics Description of Damage for Finite Strain
Plasticity, Int. J. Eng. Science, 37: 803–830.

Voyiadjis, G.Z., Deliktas, B. and Aifantis, E.C. (2001). Multiscale Analysis of Multiple Damage
Mechanics Coupled with Inelastic Behavior of Composite Materials, J. Eng. Mech.,
127(7): 636–645.

Zhu, Y.Y. and Cescotto, S. (1995). A Fully Coupled Elasto-Visco-Plastic Damage Theory for
Anisotropic Materials, Int. J. Solids Struct., 32(11): 1607–1641.

Coupled Elastic-Plastic Unilateral Damage Material Model 39




