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Abstract: Epilepsy is a very common disease affecting at least 1% of the population, comprising
a number of over 50 million people. As many patients suffer from the drug-resistant version, the
number of potential treatment methods is very small. However, since not only the treatment of
epilepsy, but also its proper diagnosis or observation of brain signals from recordings are important
research areas, in this paper, we address this very problem by developing a reliable technique for
removing spikes and sharp transients from the baseline of the brain signal using a morphological
filter. This allows much more precise identification of the so-called epileptic zone, which can then be
resected, which is one of the methods of epilepsy treatment. We used eight patients with 5 KHz data
set and depended upon the Staba 2002 algorithm as a reference to detect the ripples. We found that
the average sensitivity and false detection rate of our technique are significant, and they are ∼94%
and ∼14%, respectively.

Keywords: morphological filter; dynamic threshold; spikes; epilepsy; brain signals; ripples

1. Introduction

Epilepsy affects over 1% of population, which has been estimated as the number
between 50 and 65 million people world wide [1–7]. Additionally. around 40% of epilepsy-
affected patients suffer its drug-resistant version, which significantly limits potential treat-
ment methods [1–3,5,8]. It affects the life quality of people affected with it in a significant
way, as the seizures occur unexpectedly and can cause various physical injuries or even
death [6,9–14]. Is is diagnosed usually by analysis of electroencephalography (EEG) sig-
nals [6,15–17], which can be recorded either from the scalp (surface) or via intracranial EEG
(iEEG) [6,18–21]. The main difference between these two types of recordings is that in the
EEG the electrodes are placed on the scalp, and thus, such a procedure is non-invasive,
while the intracranial EEG requires surgical intervention as the electrodes are placed directly
on the brain exposed surface, which is invasive and risky for patients [6,19–22].

2. Study Background

The iEEG signals can be measured with the use of various implanted electrodes types,
such as, among others, standard clinical macro-contacts or special micro-contact [23,24].
Both methods have advantages and disadvantages [21,23,25]. Despite the inconvenience
associated with the invasive registration of the iEEG signals, their analysis is a standard
procedure in the epilepsy diagnosis [19,21,23,26,27]; it is also due to the quality of the
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EEG data, which can be characterized with low amplitude spectrum and low frequency
ranges, that intracranial recordings can be good alternative to them [25,26,28]. Intracranial
recordings can also be used to confirm the information from the signals recorded with the
surface EEG [21]. Due to the invasive nature of the iEEG recordings, its use is mainly limited
to epilepsy-related studies [26]. It is not a very new technique, as it was invented shortly
after classic EEG [25,26,29–31]. Contrary to classical EEG, the electrodes are implanted
directly into the brain, so local field potentials and spikes can be measured [20,24,27,31,32].
In epileptic patients, the electrodes are implanted for couple of weeks, while patients are
hospitalized, in order to record spontaneously occurring seizures [27,31]. Temporal and
spatial resolutions of the intracranial EEG are higher than in classical EEG [27,28,31].

Despite significant medicine development and the fact that the past 20 years brought
a large number of new anti-epileptic drugs, as mentioned above, only a few treatment
methods are destined for epilepsy-suffering patients [1,5]; additionally, epilepsy reduces
life expectancy by up to 2 years, particularly in patients affected with cryptogenic or
idiopathic epilepsies [5].

As mentioned above, approximately a third of epilepsy patients taking an anti-
epileptic drug (AED) may still have seizures, as they are, unfortunately, medication
resistant [5,33–36]. Therefore, the surgical operation to resect epileptic zone is an alter-
native solution, but, unfortunately, localizing accurately the epileptic zone is sometimes
difficult [34,35]. This difficulty is because the seizures usually used to determine the
epileptic zone are unpredictable; therefore, this process may need many days or weeks
in the hospital to be accomplished [27,31]. Additionally, the surgery is effective in only
ca. 62% [1,2,35,37,38]. Each surgery is also a very invasive and risky procedure [1,2,8,37–40].

Analysis of biomedical data, in particular, brain signals, is a very challenging task [25,31],
mostly due to the non-stationary nature of these signals [25]. The EEG signals do not fall
into patterns and are inconsistent from one patient to another [31,41]. Additionally, they are
prone to various artifact occurrences and vulnerable to noise and/or disturbances, which
makes the whole analysis task complicated [31,41].

This study presents a method for using an efficient one-dimensional morphological
filter by introducing closing and opening operations on removing spikes and sharp tran-
sients from ictal electroencephalography (EEG) signals. Spikes and sharp transients can
appear in brain signals due to many reasons, such as physiological features coming along
with some brain diseases, for instance, epilepsy, or maybe artifacts [21,22,25,28]. While in
some other brain cases, for instance, cognitive task, vision, movement, epilepsy, etc., high
frequency true ripples are used as a biomarker [42–45]. Therefore, in these cases, removing
spikes and sharp artifacts, which cause false ripples, is required [46,47]. In fact, initially
detecting true ripples using any algorithm required a band-pass filter; therefore, any sharp
signal passing through this filter would be presented as a false ripple which is due to the
ringing effect of this filter. As a result, these false ripples would affect the outcomes and
cause medical misrepresentation [46].

It is possible to differentiate various epilepsy diagnostic methods [48]:

1. Non-invasive (first line):

• Video EEG;
• Neuro-psychology;
• Magnetic resonance imaging (MRI)/functional magnetic resonance imaging

(fMRI).

2. Non-invasive (second line):

• Positron emission tomography (PET);
• Single photon emission computed tomography (SPECT);
• Magnetonecephalography (MEG).

3. Invasive (third line):

• Intracranial EEG.
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In patients affected with drug-resistant epilepsy, source imaging (ESI) techniques based
on both EEG and ictal EEG are a frequently applied tool [49,50], as it allows automatic zones
localization [48,50]. Ictal ESI also allows to provide more accurate scalp interpretation for
potential intracranial electrodes placement [48], although it can still be affected by various
internal and external artifacts, such as movement, eye blinking, etc. [25,48]. For such
reasons, various pre-processing techniques are applied, such as principal component
analysis (PCA), independent component analysis (ICA), and filtering [25,48,51].

Instead of conducting a long and time-consuming recording, which would require a
very long and expensive stay in the hospital, clinicians try to extract some useful features
present in a brief interictal EEG recording [52,53].

It is also important to mention surface ictal EEG, which is one of the non-invasive
assessments routinely performed before surgery, used for the purpose of epileptic foci
localization [7,54–57]. It is a reliable and efficient method [56–58].

The main aim of any type of epilepsy treatment is to leave the patients seizure
free [48,59], regardless of whether it is pharmacological- or surgery based [48,59–63]. As
far as surgical procedures are concerned, appropriate epileptic zones localization plays a
crucial role [48,59,62].

For such reasons, high frequency ripples have been recently considered as a possible
new biomarker for determining the pathological ripple zone that may be used to map the
epileptic zone [64–67]. In fact, there is significant subjectivity in labeling these brief ripples
due to false events, and current detection algorithms remain susceptible to common signal
spikes and artifacts [65–68].

A spike is a very short peak presenting in the brain signals, which consists of a peak
and a slow wave, which follows immediately after the peak. Typically, an EEG spike is
approximately 40–200 ms long [69]. A typical spike is triangular in shape, and it can be
distinguished from background activity with an amplitude that is at least twice as high [70].
High frequency oscillations (HFO) or high frequency ripples were recently used as EEG bio
markers for epileptic tissues. This feature can be divided into event ripples 80–250 Hz and
fast ripples 25–500 Hz [71,72].

The reciprocal inhibition among inhibitory neurons was proposed as a source of ripple
oscillations. A physical damage in the inter-neuronal cells causes a pathological issue,
which will probably lead to the inhibitory signal reduction upon the pyramidal cells and to
the excitatory signal increase.

Finally, the fast ripple oscillations at high frequencies from a pyramidal cell will be
arisen [73], where the HFOs were first recorded from intracranial micro-wires [71,74], where
the most recent studies have shown that the HFO can be detected from deeper-placed and
subdural electrodes [75–78], but less likely from the surface (scalp) EEG [79,80].

Identifying HFOs by using visual inspection from the ECoG data is a time-consuming,
tedious and highly subjective task [81–83]. Therefore, Graef et al., 2013 ([84]) suggested an
automatic computational technique based on signal detection methodology classification.

Various HFO detection algorithms have already been proposed in the most current
literature (see inter alia: [84–89]). These simple algorithms used as the first step band-
pass filtering and some statistical measurements, such as, among others, RMS (root mean
square) [71], line length [87,90] or Hilbert transform [91]. Contrary to the visual inspection,
the automated and robust algorithms will take only a short time in order to achieve this
task and can save the clinically relevant EEG sections for further applications.

The study presented in [72] and in [75] showed that more than 60% of ripples
(80–250 Hz) and about 50% of fast ripples (FRs, 250–500 Hz) occur within spikes. It was also
shown that more than 40% of spikes carried ripples and around 30% of spikes co-occurred
with fast ripples.

An interesting question can be raised here; how many of the HFOs co-occurring with
spikes are true HFOs, and how many are due to the filtering of the sharp transients and
were wrongly marked as HFOs? Therefore, there is a need to design and use a reliable,
universal and automated software for clinical identification of HFOs. For this purpose,
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a functional solution should provide an accurate detection of the true HFOs with lowest
possible rate of false detection. It should be able to sort out spikes and sharp signals without
HFOs. It is difficult to achieve these requirements at the same time due to the trade-off
between the sensitivity and false detection rate (FDR) [92].

One of the studies presented by Gliske et al. in 2016 (see: [88,93]), which was based
on research carried out by Staba et al., 2002 (see: [71]), described an algorithm developed
to identify the HFOs. The aim of their algorithm was to provide an automated, versatile
and generalizable method to reject false-positive HFO detections, which appear due to the
artifacts. This study showed a reduction in sensitivity for about 10%, but the specificity
increased from 68.8% to 88.5%.

For this study purposes, the authors developed a particular technique using a mor-
phological filter that sets a dynamic threshold for removing powerfully spikes and sharp
artifacts and improved true ripples detection in the presence of a brief interictal EEG
recording. It was done to determine the HFO zone for epileptic patients in order to give
additional evidence in defining epileptic zone. After appropriate epileptic area definition,
it can be surgically removed, and the patient has a chance to become seizure-free. For that
reason, the HFOs have to be properly classified/detected. The problem with that is that
the spikes or or sharp transits present in epileptic patients can be detected as false HFOs,
particularly when filtered with a band-pass filter of any algorithm used to detect HFOs.
Therefore, it is necessary to remove these spikes, thus, this would improve detecting more
true HFOs and therefore accurately determine the HFO zone.

3. Materials and Methods

For this study purposes, we worked on a method upon boosted, fast and easy spike
detection and compensation techniques that will go over the raw signal as a first step and
potentially enhance the performance of the automatic HFOs detection algorithm.

3.1. Data Selection

Intracranial EEG (iEEG) data were acquired from electrode grids at a high sampling
frequency of 5 [kHz], which was selected for analysis from 8 subjects being evaluated for
surgical treatment of refractory epilepsy. These data were downloaded from the open
source data base, IEEG.org [94]. In order to obtain the events of spikes and ripples, 2 EEG
channels located inside epileptic zone marked by physicians were taken for each patient.

Unfortunately, the lengths of the interictal patients data (iEEG) used in this study
varied, where the recording lasted 4–24 h.

3.2. Study Participants

Table 1 presents the information regarding study participants.

Table 1. Patients’ information.

No. Subject ID: Location Age Gender Data Seizure No. of No. of
with 5 [kHZ] Fs Length History Channels Seizures

1 I001_P001_D01 Unknown NA M 5 days and 4 h Unknown 62 4
2 I001_P002_D01 Left Temporal Lobe NA F 5 days and 9 h Partial/Complex 15 2
3 I001_P005_D01 Temporal Lobe NA M 1 day and 11 h Partial/Complex 36 1
4 I001_P010_D01 Temporal Lobe NA F 4 days Unknown 56 10
5 I001_P013_D01 Occipital and Parietal Lobes NA F 3 days and 13 h Unknown 72 5
6 I001_P034_D01 Temporal and Frontal Lobes 35 F 1 day and 8 h Partial/Complex 47 15
7 Study 036 Temporal Lobe NA M 4 day and 14 h Partial/Simple 96 4
8 Study 40 Parietal Lobe 32 M 2 days and 23 h Partial/Simple/ 116 7Complex

3.3. Method for Ripples and Spikes Identification

To more likely achieve some ripples and spikes, random data from interictal bipolar-
montage channels placed inside epileptic zone were at first band-pass filtered from 80–500 Hz,
and the root-mean-squared (RMS) value in a 3 ms moving window was computed. A se-
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quence of the RMS values that stays above 5 SD (standard deviation) over the mean of the
RMS baseline for at least 6 ms was identified as a putative HFO. Events separated by less
than 10 ms were clustered together.

An HFO was confirmed to be true if the rectified band-pass filtered signal had 6 or
more peaks that crossed a preset threshold (i.e., 3 SD above the mean of a rectified band-pass
filtered baseline) [71].

For the study purposes, we coded the Staba 2002 algorithm (see: [71] and applied it for
2 channels randomly recorded data from 8 different patients (4–24 h); as a result, we were
able to automatically detect true ripples and, unfortunately, some false positives (due to
spikes), as illustrated in Figure 1, where the flowchart shows how the first step (band-pass
filtering) of ripple detection algorithm causes false positive results due to spike occurrence
(right side).

Figure 1. Flowchart—spike detection, true and false positive.

Flowchart illustrated with Figure 2 shows the steps taken for choosing the best thresh-
old and for spike removal.
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Figure 2. Flowchart with the steps of choosing the best threshold and removing spikes.

Finally, we used visual inspection to verify the detected ripples and spikes. Here, we
considered the detected events as data set and divided into two following groups: training
and testing sets. Each set has events of ripples and spikes.
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3.4. Optimal Threshold for Spikes Truncating Identification

Optimal threshold for spikes truncating identification technique is based on a one-
dimension morphological Vanherk filter (closing (Max/Min) and opening (Min/Max)) over
the rectified first difference of the raw signal. In this work, we set an appropriate window
size of 1 ms and 4 ms for closing and opening operators, respectively.

The purpose for using the morphological filter is to define a suitable threshold in
order to distinguish between the background signals and spikes [95,96]. The novelty
here is to select a dynamic threshold that depends on the shape of the spikes instead
of choosing it by applying an arbitrary fixed threshold over the entire EEG recording.
The most morphological filter operations applied here are closing (dilation, then erosion),
and opening (erosion and then dilation). The erosion and dilation operations can be framed
receptively as (1) and (2) [97]:

( f 	 gs)(t) = min
τ∈D
{ f (t)− g(t− τ))} (1)

( f ⊕ gs)(t) = min
τ∈D
{ f (t) + g(t− τ))} (2)

Using the above Equations ((1) and (2)) closing (dilation and erosion), and opening
(erosion and dilation) operators can be framed receptively as (3) and (4):

( f • g)(t) = [( f ⊕ gs)	 g](t) (3)

( f ◦ g)(t) = [( f 	 gs)⊕ g](t) (4)

where

• f (t)—the analyzed EEG signal;
• g(t)—the structuring element;
• gs(t) = g(−t)—the reflection of structuring element;
• D—the domain of signal f (t).

The one-dimensional operators were described in detail in [98].
Practically, the steps of applying the one-dimensional morphological filter on iEEG

signals in order to find the dynamic optimal threshold are as follows:

(1) Read the raw signal and deal with each event in the data set (Figure 3):

Figure 3. Example of a spike in the data set detected with the Staba 2002 ([71]) algorithm.

(2) In order to manifest the spike from the EEG background, the rectified first difference
signal was computed as | di f f (x) |; then the moving average filter with a suitable
window size of 10 ms was used to smooth the signal (Figure 4).
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Figure 4. Rectified first difference spike with respect to the original one.

(3) Now it is necessary to apply the one-dimensional morphology filter. The following
closing and opening filters were used:

(a) To envelope the spike and background signal, a closing (dilation, then erosion)
filter was applied with an appropriate 1 ms window size (Figure 5).

Figure 5. Closing operation demonstrated enveloped spike (green signal).

(b) To truncate the enveloped spike from an appropriated level, an opening (erosion,
then dilation) filter was used with an arbitrary value of 1 ms window size
(Figure 6).

Figure 6. Opening operation demonstrated truncated spike (red signal).
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(4) In this step, we sorted out all the truncated values of all events in the training set, then
we selected the maximum value to set the initial threshold. As a result, most spikes
(false positives) and very few ripples (true positives) were removed from the training
set. Now to evaluate the performance of our technique, we measured the sensitivity
(SE) and false detection rate (FDR) for all events in the new training set (events of
ripples and few spikes) (Figure 7).

Figure 7. Another spike in the training set with the maximum value of the truncated level. Hint:
this value set as the optimal threshold separated between candidate events and background in the
data set.

However, since the window size of the opening filter is crucial in term of determining
the optimal threshold, so instead of choosing it as an arbitrary value (1 ms mentioned
earlier), we tried to find a way to identify it. We used the training set and repeated
step 4 with different window sizes (1–8) ms and measured SE and FDR for each one.
Then, we plotted the receiver operating characteristic curve (ROC) and measured the
Euclidean distance between the optimal sensitivity and FDR point (0, 1) (0% FDR, 100% SE),
and individual sensitivity and FDR of each window size in order to find the shortest
distance and mark the best operation point.

4. Results

The open question for applying 1-D morphological filter to remove epileptic spikes
from the brain signals was how to determine the suitable window size. In this study, we
proposed two operators (closing followed by opening). With the 5 [KHz] sampling rate
and very sharp spikes with less than 200 [ms] long window, empirically, we noticed that
the window size of the closing operator did not affect too much the smoothing process
outcomes. Therefore, we selected an arbitrary 1 [ms] window size and we found that this
value was strongly acceptable. From the other hand, we noticed that the big challenge
was to set the window size of the opening operator. In fact, this was because the trucking
levels that determined the suitable threshold later were so sensitive to the window size.
Therefore, we used some statistical measurements, such as SE, FDR and ROC, to achieve
and validate the best window size as described below.

After applying the threshold on the data set, the events were classified as listed below:

1. True positive (TP): spikes detected as spikes;
2. False positive (FP): ripples detected as spikes;
3. True negative (TN): ripples detected as ripples;
4. False negative (FN): spikes detected as ripples.
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Since we focused on spikes detection, we considered only ‘TP’, ‘FP’ and ‘FN’ in our
calculations in order to measure SE and FDR in accordance with the (5) and (6):

SE = TP/(TP + FN) (5)

FDR = FP/(FP + TP) (6)

In Table 2, the nature of events with the spikes’ detection results are presented.

Table 2. Part A: describes the nature of the candidate events detected by Staba, 2002 detector. Part B:
shows the results of our spike detection technique when we use different window sizes using the
training data.

# of All
Part A Candidate # of True # of Sharp # of True Spikes

Events Ripples Transients

136 113 2 21

Window Size
Part B of the Filter TP FP # of Detectors FN Sensitivity % FDR %

[ms] (TP + FP)

1 1 9 5 14 12 43 36
2 2 13 7 19 8 62 32
3 3 15 9 24 6 72 38
4 3.4 16 9 25 5 77 36
5 4 17 9 26 4 81 35
6 4.6 17 10 27 4 81 39
7 5 17 11 28 4 81 40
8 5.4 18 12 30 3 86 40
9 6 18 16 34 3 86 47
10 7 18 18 36 3 86 50
11 8 18 19 37 3 86 53

From the ROC result (Figure 8), we found that 4 [ms] is the best operation point for
these training data sets. We validated this value for the testing data as presented in Table 3.

We repeated the cross-validation technique 10 times for all 10 testing data sets. We
found from the ROC results that the window size was consistent at 4 ms. With this filter,
we achieved average sensitivity and FDR of ∼94% and ∼14% respectively.

Figure 8. Receiver operating characteristic curve (ROC) shows how to choose the optimal point based
on the shortest distance from (0, 1).
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Table 3. Part A: describes the nature of the candidate ripples detected by Staba, 2002 detector. Part B:
shows the results of our spike detection technique when we used the window size 4 ms for one set of
the testing data.

# of All
Part A Candidate # of True # of Sharp # of True Spikes

Events Ripples Transients

4 2 0 2

Window Size
Part B of the Filter TP FP # of Detectors FN Sensitivity % FDR %

[ms] (TP + FP)

4 ms window
size 2 2 4 0 100 50

5. Discussion and Conclusions

Spikes usually appear in the brain signals for the epileptic patients. They are relatively
different in shape within the same patient and across patients and have large and sharp
transient areas. Unfortunately, these spikes cause false detection of the biomarker ripples
due to the ringing effect of the band-pass filter of any detection algorithm. Therefore,
removing them properly from the EEG baseline would improve the detection of high-
frequency oscillations (HFOs).

Instead of setting an arbitrary threshold in order to remove these spikes, our hypothesis
here is to apply a one-dimensional morphological filter (closing and opening operators)
proposed to remove large events. This type of filter would first smooth the EEG signals and
second cut out the standout spikes surrounded by lower baseline. In this way, a suitable
threshold which is spike shape dependent would be measured and applied to remove as
many spikes as possible in the data set.

Interictal spikes and sharp artifacts can be a confounding variable when trying to
detect and localize ripple activity. Many algorithms have been proposed to detect spikes
which are, in nature, morphologically different. The challenge here is how to set an
appropriate threshold while the threshold is shape dependent. Therefore, there is a need
to propose a technique which would take into account the shape characteristics in the
process. For that reason, we tried to design a reliable spike detection technique by applying
a morphological filter. This filter would set a dynamic threshold which is used to catch
the most spikes and as a result would improve the detection performance. Generally, our
technique is to be used in conjunction with existing automatic ripple detection algorithms.

The verification of ripples is a tedious and subjective process. Improved ripple detec-
tion and characterization could help determine the correlation of ripple activity with the
epileptic zone in patients being evaluated for surgery.

One of the problems with the data is the number of electrodes placed on the surface of
the brain, which depends on how big the area (seizure onset zone) for the investigation
is. Additionally, the data used for analysis come from various medical centers, which is
another reason for the lack of consistency.

Author Contributions: Conceptualization, A.F.A.-B. and A.K.-S.; methodology, A.F.A.-B. and A.K.-S.;
software, A.F.A.-B.; validation, A.F.A.-B. and A.K.-S.; formal analysis, A.F.A.-B.; investigation,
A.F.A.-B.; resources, A.F.A.-B.; data curation, A.F.A.-B.; writing—original draft preparation, A.F.A.-B.,
R.M., M.P., J.Z. and A.K.-S.; writing—review and editing, A.F.A.-B., R.M., M.P., J.Z. and A.K.-S.; visual-
ization, A.F.A.-B., M.P. and A.K.-S.; supervision, A.F.A.-B.; project administration, A.F.A.-B.; funding
acquisition, A.F.A.-B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Sensors 2022, 22, 7522 12 of 15

Acknowledgments: Amir F. Al-Bakri would like to thank Sridhar Sunderam, head of the Neural
Systems Lab, Department of Biomedical Engineering, University of Kentucky (Lexington, KY, USA)
for his constant support and help.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Thomas, G.P.; Jobst, B.C. Critical review of the responsive neurostimulator system for epilepsy. Med. Devices 2015, 8, 405.
2. Batson, S.; Shankar, R.; Conry, J.; Boggs, J.; Radtke, R.; Mitchell, S.; Barion, F.; Murphy, J.; Danielson, V. Efficacy and safety of

VNS therapy or continued medication management for treatment of adults with drug-resistant epilepsy: Systematic review and
meta-analysis. J. Neurol. 2022, 269, 2874–2891 . [CrossRef]

3. Galanopoulou, A.S.; Buckmaster, P.S.; Staley, K.J.; Moshé, S.L.; Perucca, E.; Engel, J., Jr.; Löscher, W.; Noebels, J.L.; Pitkänen,
A.; Stables, J.; et al. Identification of new epilepsy treatments: Issues in preclinical methodology. Epilepsia 2012, 53, 571–582.
[CrossRef]

4. World Health Organization; Global Campaign against Epilepsy; World Health Organization. Atlas: Epilepsy Care in The World;
World Health Organization: Geneva, Switzerland, 2005.

5. Moshé, S.L.; Perucca, E.; Ryvlin, P.; Tomson, T. Epilepsy: New advances. Lancet 2015, 385, 884–898. [CrossRef]
6. Alotaiby, T.N.; Alshebeili, S.A.; Alshawi, T.; Ahmad, I.; El-Samie, A.; Fathi, E. EEG seizure detection and prediction algorithms: A

survey. EURASIP J. Adv. Signal Process. 2014, 2014, 1–21. [CrossRef]
7. Li, S.; Zhou, W.; Yuan, Q.; Geng, S.; Cai, D. Feature extraction and recognition of ictal EEG using EMD and SVM. Comput. Biol.

Med. 2013, 43, 807–816. [CrossRef]
8. Li, J.; Reiter-Campeau, S.; Namiranian, D.; Toffa, D.H.; Bouthillier, A.; Dubeau, F.; Nguyen, D.K. Insular Involvement in Cases of

Epilepsy Surgery Failure. Brain Sci. 2022, 12, 125. [CrossRef]
9. Thomson, L.; Fayed, N.; Sedarous, F.; Ronen, G.M. Life quality and health in adolescents and emerging adults with epilepsy

during the years of transition: A scoping review. Dev. Med. Child Neurol. 2014, 56, 421–433. [CrossRef]
10. Baker, G.A.; Jacoby, A.; Buck, D.; Stalgis, C.; Monnet, D. Quality of life of people with epilepsy: A European study. Epilepsia 1997,

38, 353–362. [CrossRef]
11. Wang, M.; Perera, K.; Josephson, C.B.; Lamidi, M.; Lawal, O.A.; Awosoga, O.; Roach, P.; Patten, S.B.; Wiebe, S.; Sajobi, T.T.

Association between antiseizure medications and quality of life in epilepsy: A mediation analysis. Epilepsia 2022, 63, 440–450.
[CrossRef]

12. Asiri, S.; Al-Otaibi, A.; Al Hameed, M.; Hamhom, A.; Alenizi, A.; Eskandrani, A.; AlKhrisi, M.; Aldosari, M.M. Seizure-related
injuries in people with epilepsy: A cohort study from Saudi Arabia. Epilepsia Open 2022, 7, 422–430. [CrossRef] [PubMed]

13. Friedman, D. Sudden unexpected death in epilepsy. Curr. Opin. Neurol. 2022, 35, 181–188. [CrossRef] [PubMed]
14. Liao, P.; Vajdic, C.M.; Reppermund, S.; Cvejic, R.C.; Srasuebkul, P.; Trollor, J. Mortality rate, risk factors, and causes of death in

people with epilepsy and intellectual disability. Seizure 2022, 101, 75–82. [CrossRef]
15. Wadhera, T. Brain network topology unraveling epilepsy and ASD Association: Automated EEG-based diagnostic model. Expert

Syst. Appl. 2021, 186, 115762. [CrossRef]
16. Adeli, H.; Ghosh-Dastidar, S. Automated EEG-Based Diagnosis of Neurological Disorders: Inventing the Future of Neurology; CRC Press:

Boca Raton, FL, USA, 2010.
17. Smith, S.J. EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 2005,

76, ii2–ii7. [CrossRef] [PubMed]
18. Antoniades, A.; Spyrou, L.; Took, C.C.; Sanei, S. Deep learning for epileptic intracranial EEG data. In Proceedings of the 2016

IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Salerno, Italy, 13–16 September 2016; pp.
1–6.

19. Pacia, S.V.; Ebersole, J.S. Intracranial EEG in temporal lobe epilepsy. J. Clin. Neurophysiol. 1999, 16, 399. [CrossRef] [PubMed]
20. Jobst, B.C.; Bartolomei, F.; Diehl, B.; Frauscher, B.; Kahane, P.; Minotti, L.; Sharan, A.; Tardy, N.; Worrell, G.; Gotman, J. Intracranial

EEG in the 21st Century. Epilepsy Curr. 2020, 20, 180–188. [CrossRef] [PubMed]
21. Nahum, L.; Gabriel, D.; Spinelli, L.; Momjian, S.; Seeck, M.; Michel, C.M.; Schnider, A. Rapid consolidation and the human

hippocampus: Intracranial recordings confirm surface EEG. Hippocampus 2011, 21, 689–693. [CrossRef]
22. Ponz, A.; Montant, M.; Liegeois-Chauvel, C.; Silva, C.; Braun, M.; Jacobs, A.M.; Ziegler, J.C. Emotion processing in words: A test

of the neural re-use hypothesis using surface and intracranial EEG. Soc. Cogn. Affect. Neurosci. 2014, 9, 619–627. [CrossRef]
23. Cimbalnik, J.; Dolezal, J.; Topçu, Ç.; Lech, M.; Marks, V.S.; Joseph, B.; Dobias, M.; Van Gompel, J.; Worrell, G.; Kucewicz, M.

Intracranial electrophysiological recordings from the human brain during memory tasks with pupillometry. Sci. Data 2022,
9, 1–10. [CrossRef]

24. Parvizi, J.; Kastner, S. Promises and limitations of human intracranial electroencephalography. Nat. Neurosci. 2018, 21, 474–483.
[CrossRef] [PubMed]

25. Kawala-Sterniuk, A.; Browarska, N.; Al-Bakri, A.; Pelc, M.; Zygarlicki, J.; Sidikova, M.; Martinek, R.; Gorzelanczyk, E.J. Summary
of over fifty years with brain-computer interfaces—a review. Brain Sci. 2021, 11, 43. [CrossRef] [PubMed]

http://doi.org/10.1007/s00415-022-10967-6
http://dx.doi.org/10.1111/j.1528-1167.2011.03391.x
http://dx.doi.org/10.1016/S0140-6736(14)60456-6
http://dx.doi.org/10.1186/1687-6180-2014-183
http://dx.doi.org/10.1016/j.compbiomed.2013.04.002
http://dx.doi.org/10.3390/brainsci12020125
http://dx.doi.org/10.1111/dmcn.12335
http://dx.doi.org/10.1111/j.1528-1157.1997.tb01128.x
http://dx.doi.org/10.1111/epi.17153
http://dx.doi.org/10.1002/epi4.12615
http://www.ncbi.nlm.nih.gov/pubmed/35621396
http://dx.doi.org/10.1097/WCO.0000000000001034
http://www.ncbi.nlm.nih.gov/pubmed/35102124
http://dx.doi.org/10.1016/j.seizure.2022.07.012
http://dx.doi.org/10.1016/j.eswa.2021.115762
http://dx.doi.org/10.1136/jnnp.2005.069245
http://www.ncbi.nlm.nih.gov/pubmed/15961864
http://dx.doi.org/10.1097/00004691-199909000-00001
http://www.ncbi.nlm.nih.gov/pubmed/10576222
http://dx.doi.org/10.1177/1535759720934852
http://www.ncbi.nlm.nih.gov/pubmed/32677484
http://dx.doi.org/10.1002/hipo.20819
http://dx.doi.org/10.1093/scan/nst034
http://dx.doi.org/10.1038/s41597-021-01099-z
http://dx.doi.org/10.1038/s41593-018-0108-2
http://www.ncbi.nlm.nih.gov/pubmed/29507407
http://dx.doi.org/10.3390/brainsci11010043
http://www.ncbi.nlm.nih.gov/pubmed/33401571


Sensors 2022, 22, 7522 13 of 15

26. Lachaux, J.P.; Axmacher, N.; Mormann, F.; Halgren, E.; Crone, N.E. High-frequency neural activity and human cognition: Past,
present and possible future of intracranial EEG research. Prog. Neurobiol. 2012, 98, 279–301. [CrossRef] [PubMed]

27. Ung, H.; Baldassano, S.N.; Bink, H.; Krieger, A.M.; Williams, S.; Vitale, F.; Wu, C.; Freestone, D.; Nurse, E.; Leyde, K.; et al.
Intracranial EEG fluctuates over months after implanting electrodes in human brain. J. Neural Eng. 2017, 14, 056011. [CrossRef]

28. Baud, M.O.; Schindler, K.; Rao, V.R. Under-sampling in epilepsy: Limitations of conventional EEG. Clin. Neurophysiol. Pract.
2021, 6, 41–49. [CrossRef]

29. Jasper, H.H.; Carmichael, L. Electrical potentials from the intact human brain. Science 1935, 81, 51–53. [CrossRef]
30. Reif, P.S.; Strzelczyk, A.; Rosenow, F. The history of invasive EEG evaluation in epilepsy patients. Seizure 2016, 41, 191–195.

[CrossRef]
31. Lachaux, J.P.; Rudrauf, D.; Kahane, P. Intracranial EEG and human brain mapping. J. Physiol. 2003, 97, 613–628. [CrossRef]
32. McCarty, M.J.; Woolnough, O.; Mosher, J.C.; Seymour, J.; Tandon, N. The listening zone of human electrocorticographic field

potential recordings. Eneuro 2022, 9. [CrossRef]
33. Kwan, P.; Schachter, S.C.; Brodie, M.J. Drug-resistant epilepsy. N. Engl. J. Med. 2011, 365, 919–926. [CrossRef]
34. Liu, J.t.; Liu, B.; Zhang, H. Surgical versus medical treatment of drug-resistant epilepsy: A systematic review and meta-analysis.

Epilepsy Behav. 2018, 82, 179–188. [CrossRef] [PubMed]
35. Yoo, J.Y.; Panov, F. Identification and treatment of drug-resistant epilepsy. CONTINUUM Lifelong Learn. Neurol. 2019, 25, 362–380.

[CrossRef] [PubMed]
36. González, F.L.; Osorio, X.R.; Rein, A.G.N.; Martínez, M.C.; Fernández, J.S.; Haba, V.V.; Pedraza, A.D.; Cerdá, J.M. Drug-resistant

epilepsy: Definition and treatment alternatives. Neurología 2015, 30, 439–446. [CrossRef]
37. Ryvlin, P.; Rheims, S. Epilepsy surgery: Eligibility criteria and presurgical evaluation. Dialogues Clin. Neurosci. 2022, 10, 91–103.

[CrossRef]
38. Boon, P.; Raedt, R.; De Herdt, V.; Wyckhuys, T.; Vonck, K. Electrical stimulation for the treatment of epilepsy. Neurotherapeutics

2009, 6, 218–227. [CrossRef]
39. Wu, Y.C.; Liao, Y.S.; Yeh, W.H.; Liang, S.F.; Shaw, F.Z. Directions of deep brain stimulation for epilepsy and Parkinson’s disease.

Front. Neurosci. 2021, 15, 671. [CrossRef]
40. Li, M.C.; Cook, M.J. Deep brain stimulation for drug-resistant epilepsy. Epilepsia 2018, 59, 273–290. [CrossRef]
41. Hossain, P.S.F.; Shaikat, I.M.; George, F.P. Emotion Recognition Using Brian Signals Based on Time-Frequency Analysis and

Supervised Learning Algorithm. Ph.D. Thesis, BRAC University, Dhaka, Bangladesh, 2018.
42. Nunez, M.D.; Charupanit, K.; Sen-Gupta, I.; Lopour, B.A.; Lin, J.J. Beyond rates: Time-varying dynamics of high frequency

oscillations as a biomarker of the seizure onset zone. J. Neural Eng. 2022, 19, 016034. [CrossRef]
43. Wang, Y.; Xu, J.; Liu, T.; Chen, F.; Chen, S.; Yuan, L.; Zhai, F.; Liang, S. Diagnostic value of high-frequency oscillations for the

epileptogenic zone: A systematic review and meta-analysis. Seizure 2022, 99, 82–90. [CrossRef]
44. Papadelis, C.; Perry, M.S. Localizing the epileptogenic zone with novel biomarkers. In Seminars in Pediatric Neurology; Elsevier:

Amsterdam, The Netherlands, 2021; Volume 39, p. 100919.
45. King-Stephens, D. The ambiguous nature of fast ripples in epilepsy surgery. Epilepsy Curr. 2019, 19, 91–92. [CrossRef]
46. Kobayashi, K.; Shibata, T.; Tsuchiya, H.; Akiyama, T. Exclusion of the possibility of “false ripples” from ripple band high-

frequency oscillations recorded from scalp electroencephalogram in children with epilepsy. Front. Hum. Neurosci. 2021, 15, 696882.
[CrossRef] [PubMed]

47. Zweiphenning, W.J.; von Ellenrieder, N.; Dubeau, F.; Martineau, L.; Minotti, L.; Hall, J.A.; Chabardes, S.; Dudley, R.; Kahane, P.;
Gotman, J.; et al. Correcting for physiological ripples improves epileptic focus identification and outcome prediction. Epilepsia
2022, 63, 483–496. [CrossRef] [PubMed]

48. Van Mierlo, P.; Vorderwülbecke, B.J.; Staljanssens, W.; Seeck, M.; Vulliémoz, S. Ictal EEG source localization in focal epilepsy:
Review and future perspectives. Clin. Neurophysiol. 2020, 131, 2600–2616. [CrossRef] [PubMed]

49. Baroumand, A.G.; Arbune, A.A.; Strobbe, G.; Keereman, V.; Pinborg, L.H.; Fabricius, M.; Rubboli, G.; Madsen, C.G.; Jespersen, B.;
Brennum, J.; et al. Automated ictal eeg source imaging: A retrospective, blinded clinical validation study. Clin. Neurophysiol.
2021, 141, 119–125. [CrossRef]

50. Vespa, S.; Baroumand, A.G.; Santos, S.F.; Vrielynck, P.; De Tourtchaninoff, M.; Feys, O.; Strobbe, G.; Raftopoulos, C.; van Mierlo, P.;
El Tahry, R. Ictal EEG source imaging and connectivity to localize the seizure onset zone in extratemporal lobe epilepsy. Seizure
2020, 78, 18–30. [CrossRef] [PubMed]

51. LeVan, P.; Urrestarazu, E.; Gotman, J. A system for automatic artifact removal in ictal scalp EEG based on independent component
analysis and Bayesian classification. Clin. Neurophysiol. 2006, 117, 912–927. [CrossRef] [PubMed]

52. Pillai, J.; Sperling, M.R. Interictal EEG and the diagnosis of epilepsy. Epilepsia 2006, 47, 14–22. [CrossRef] [PubMed]
53. Le Van Quyen, M.; Martinerie, J.; Adam, C.; Varela, F.J. Nonlinear analyses of interictal EEG map the brain interdependences in

human focal epilepsy. Phys. D Nonlinear Phenom. 1999, 127, 250–266. [CrossRef]
54. Lee, S.K.; Kim, J.Y.; Hong, K.S.; Nam, H.W.; Park, S.H.; Chung, C.K. The clinical usefulness of ictal surface EEG in neocortical

epilepsy. Epilepsia 2000, 41, 1450–1455. [CrossRef]
55. Thamcharoenvipas, T.; Takahashi, Y.; Kimura, N.; Matsuda, K.; Usui, N. Localizing and Lateralizing Value of Seizure Onset

Pattern on Surface EEG in FCD Type II. Pediatr. Neurol. 2022, 129, 48–54. [CrossRef]

http://dx.doi.org/10.1016/j.pneurobio.2012.06.008
http://www.ncbi.nlm.nih.gov/pubmed/22750156
http://dx.doi.org/10.1088/1741-2552/aa7f40
http://dx.doi.org/10.1016/j.cnp.2020.12.002
http://dx.doi.org/10.1126/science.81.2089.51
http://dx.doi.org/10.1016/j.seizure.2016.04.006
http://dx.doi.org/10.1016/j.jphysparis.2004.01.018
http://dx.doi.org/10.1523/ENEURO.0492-21.2022
http://dx.doi.org/10.1056/NEJMra1004418
http://dx.doi.org/10.1016/j.yebeh.2017.11.012
http://www.ncbi.nlm.nih.gov/pubmed/29576434
http://dx.doi.org/10.1212/CON.0000000000000710
http://www.ncbi.nlm.nih.gov/pubmed/30921014
http://dx.doi.org/10.1016/j.nrleng.2014.04.002
http://dx.doi.org/10.31887/DCNS.2008.10.1/pryvlin
http://dx.doi.org/10.1016/j.nurt.2008.12.003
http://dx.doi.org/10.3389/fnins.2021.680938
http://dx.doi.org/10.1111/epi.13964
http://dx.doi.org/10.1088/1741-2552/ac520f
http://dx.doi.org/10.1016/j.seizure.2022.05.003
http://dx.doi.org/10.1177/1535759719835669
http://dx.doi.org/10.3389/fnhum.2021.696882
http://www.ncbi.nlm.nih.gov/pubmed/34211382
http://dx.doi.org/10.1111/epi.17145
http://www.ncbi.nlm.nih.gov/pubmed/34919741
http://dx.doi.org/10.1016/j.clinph.2020.08.001
http://www.ncbi.nlm.nih.gov/pubmed/32927216
http://dx.doi.org/10.1016/j.clinph.2021.03.040
http://dx.doi.org/10.1016/j.seizure.2020.03.001
http://www.ncbi.nlm.nih.gov/pubmed/32151969
http://dx.doi.org/10.1016/j.clinph.2005.12.013
http://www.ncbi.nlm.nih.gov/pubmed/16458594
http://dx.doi.org/10.1111/j.1528-1167.2006.00654.x
http://www.ncbi.nlm.nih.gov/pubmed/17044820
http://dx.doi.org/10.1016/S0167-2789(98)00258-9
http://dx.doi.org/10.1111/j.1528-1157.2000.tb00121.x
http://dx.doi.org/10.1016/j.pediatrneurol.2022.01.008


Sensors 2022, 22, 7522 14 of 15

56. Foldvary, N.; Klem, G.; Hammel, J.; Bingaman, W.; Najm, I.; Lüders, H. The localizing value of ictal EEG in focal epilepsy.
Neurology 2001, 57, 2022–2028. [CrossRef] [PubMed]

57. Ebersole, J.S.; Pacia, S.V. Localization of temporal lobe foci by ictal EEG patterns. Epilepsia 1996, 37, 386–399. [CrossRef] [PubMed]
58. Walczak, T.S.; Radtke, R.A.; Lewis, D.V. Accuracy and interobserver reliability of scalp ictal EEG. Neurology 1992, 42, 2279.

[CrossRef] [PubMed]
59. Helmstaedter, C.; Kurthen, M.; Lux, S.; Reuber, M.; Elger, C.E. Chronic epilepsy and cognition: A longitudinal study in temporal

lobe epilepsy. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2003, 54, 425–432. [CrossRef]
60. Taft, C.; Sager Magnusson, E.; Ekstedt, G.; Malmgren, K. Health-related quality of life, mood, and patient satisfaction after

epilepsy surgery in Sweden—A prospective controlled observational study. Epilepsia 2014, 55, 878–885. [CrossRef]
61. Zentner, J.; Hufnagel, A.; Ostertun, B.; Wolf, H.K.; Behrens, E.; Campos, M.G.; Solymosi, L.; Elger, C.E.; Wiestler, O.D.; Schramm, J.

Surgical treatment of extratemporal epilepsy: Clinical, radiologic, and histopathologic findings in 60 patients. Epilepsia 1996,
37, 1072–1080. [CrossRef]

62. Liu, S.Y.; Yang, X.L.; Chen, B.; Hou, Z.; An, N.; Yang, M.H.; Yang, H. Clinical outcomes and quality of life following surgical
treatment for refractory epilepsy: A systematic review and meta-analysis. Medicine 2015, 94, e500. [CrossRef]

63. Ben-Menachem, E.; Sander, J.W.; Privitera, M.; Gilliam, F. Measuring outcomes of treatment with antiepileptic drugs in clinical
trials. Epilepsy Behav. 2010, 18, 24–30. [CrossRef]

64. Zijlmans, M.; Jiruska, P.; Zelmann, R.; Leijten, F.S.; Jefferys, J.G.; Gotman, J. High-frequency oscillations as a new biomarker in
epilepsy. Ann. Neurol. 2012, 71, 169–178. [CrossRef]

65. Bragin, A.; Engel, J., Jr.; Staba, R.J. High-frequency oscillations in epileptic brain. Curr. Opin. Neurol. 2010, 23, 151. [CrossRef]
66. Staba, R.J.; Bragin, A. High-frequency oscillations and other electrophysiological biomarkers of epilepsy: Underlying mechanisms.

Biomarkers Med. 2011, 5, 545–556. [CrossRef] [PubMed]
67. Pail, M.; Cimbálník, J.; Roman, R.; Daniel, P.; Shaw, D.J.; Chrastina, J.; Brázdil, M. High frequency oscillations in epileptic and

non-epileptic human hippocampus during a cognitive task. Sci. Rep. 2020, 10, 1–12. [CrossRef] [PubMed]
68. Thomschewski, A.; Hincapié, A.S.; Frauscher, B. Localization of the epileptogenic zone using high frequency oscillations. Front.

Neurol. 2019, 10, 94. [CrossRef] [PubMed]
69. Saeid, S.; Chambers, J. EEG Signal Processing; John Willey & Sons: Chichester, UK, 2007.
70. Gloor, P. Contributions of electroencephalography and electrocorticography to the neurosurgical treatment of the epilepsies. In

Neurosurgical Management of the Epilepsies; Raven Press: New York, NY, USA, 1975; pp. 59–105.
71. Staba, R.J.; Wilson, C.L.; Bragin, A.; Fried, I.; Engel Jr, J. Quantitative analysis of high-frequency oscillations (80–500 Hz) recorded

in human epileptic hippocampus and entorhinal cortex. J. Neurophysiol. 2002, 88, 1743–1752. [CrossRef] [PubMed]
72. Jacobs, J.; Staba, R.; Asano, E.; Otsubo, H.; Wu, J.; Zijlmans, M.; Mohamed, I.; Kahane, P.; Dubeau, F.; Navarro, V.; et al.

High-frequency oscillations (HFOs) in clinical epilepsy. Prog. Neurobiol. 2012, 98, 302–315. [CrossRef] [PubMed]
73. Gulyás, A.I.; Freund, T.T. Generation of physiological and pathological high frequency oscillations: The role of perisomatic

inhibition in sharp-wave ripple and interictal spike generation. Curr. Opin. Neurobiol. 2015, 31, 26–32. [CrossRef]
74. Bragin, A.; Engel Jr, J.; Wilson, C.L.; Fried, I.; Mathern, G.W. Hippocampal and entorhinal cortex high-frequency oscillations

(100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia 1999, 40, 127–137. [CrossRef]
75. Jacobs, J.; LeVan, P.; Chander, R.; Hall, J.; Dubeau, F.; Gotman, J. Interictal high-frequency oscillations (80–500 Hz) are an indicator

of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia 2008, 49, 1893–1907. [CrossRef]
76. Ochi, A.; Otsubo, H.; Donner, E.J.; Elliott, I.; Iwata, R.; Funaki, T.; Akizuki, Y.; Akiyama, T.; Imai, K.; Rutka, J.T.; et al. Dynamic

changes of ictal high-frequency oscillations in neocortical epilepsy: Using multiple band frequency analysis. Epilepsia 2007,
48, 286–296. [CrossRef]

77. Dimakopoulos, V.; Mégevand, P.; Boran, E.; Momjian, S.; Seeck, M.; Vulliémoz, S.; Sarnthein, J. Blinded study: Prospectively
defined high-frequency oscillations predict seizure outcome in individual patients. Brain Commun. 2021, 3, fcab209. [CrossRef]

78. Ahmed, R.; Otsubo, H.; Snead III, C.; Donner, E.; Widjaja, E.; Ochi, A.; Drake, J.M.; Rutka, J.T. Diagnostic evaluation and surgical
management of pediatric insular epilepsy utilizing magnetoencephalography and invasive EEG monitoring. Epilepsy Res. 2018,
140, 72–81. [CrossRef] [PubMed]

79. Andrade-Valenca, L.; Dubeau, F.; Mari, F.; Zelmann, R.; Gotman, J. Interictal scalp fast oscillations as a marker of the seizure
onset zone. Neurology 2011, 77, 524–531. [CrossRef] [PubMed]

80. Goldenholz, D.M.; Gotman, J.; Seyal, M.; Bateman, L.M.; Andrade-Valenca, L.; Zelmann, R.; Dubeau, F. Interictal Scalp Fast
Oscillations as a Marker of the Seizure Onset ZoneAuthor Response. Neurology 2012, 78, 224–225. [CrossRef] [PubMed]

81. Al-Bakri, A.F.; Yaghouby, F.; Besio, W.; Ding, L.; Modur, P.; Sunderam, S. Effect of Vigilance Changes on the Incidence of High
Frequency Oscillations in the Epileptic Brain. In Proceedings of the 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 991–994.

82. Li, A.; Chennuri, B.; Subramanian, S.; Yaffe, R.; Gliske, S.; Stacey, W.; Norton, R.; Jordan, A.; Zaghloul, K.A.; Inati, S.K.; et al.
Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy. Netw.
Neurosci. 2018, 2, 218–240. [CrossRef]

83. Tassi, L.; Jayakar, P.; Pieper, T.; Kahane, P. 6. Intracranial and electrical EEG stimulation recordings. Pediatr. Epilepsy Surg. 2016,
61.

http://dx.doi.org/10.1212/WNL.57.11.2022
http://www.ncbi.nlm.nih.gov/pubmed/11739820
http://dx.doi.org/10.1111/j.1528-1157.1996.tb00577.x
http://www.ncbi.nlm.nih.gov/pubmed/8603646
http://dx.doi.org/10.1212/WNL.42.12.2279
http://www.ncbi.nlm.nih.gov/pubmed/1461379
http://dx.doi.org/10.1002/ana.10692
http://dx.doi.org/10.1111/epi.12616
http://dx.doi.org/10.1111/j.1528-1157.1996.tb01027.x
http://dx.doi.org/10.1097/MD.0000000000000500
http://dx.doi.org/10.1016/j.yebeh.2010.04.001
http://dx.doi.org/10.1002/ana.22548
http://dx.doi.org/10.1097/WCO.0b013e3283373ac8
http://dx.doi.org/10.2217/bmm.11.72
http://www.ncbi.nlm.nih.gov/pubmed/22003903
http://dx.doi.org/10.1038/s41598-020-74306-3
http://www.ncbi.nlm.nih.gov/pubmed/33097749
http://dx.doi.org/10.3389/fneur.2019.00094
http://www.ncbi.nlm.nih.gov/pubmed/30804887
http://dx.doi.org/10.1152/jn.2002.88.4.1743
http://www.ncbi.nlm.nih.gov/pubmed/12364503
http://dx.doi.org/10.1016/j.pneurobio.2012.03.001
http://www.ncbi.nlm.nih.gov/pubmed/22480752
http://dx.doi.org/10.1016/j.conb.2014.07.020
http://dx.doi.org/10.1111/j.1528-1157.1999.tb02065.x
http://dx.doi.org/10.1111/j.1528-1167.2008.01656.x
http://dx.doi.org/10.1111/j.1528-1167.2007.00923.x
http://dx.doi.org/10.1093/braincomms/fcab209
http://dx.doi.org/10.1016/j.eplepsyres.2017.12.011
http://www.ncbi.nlm.nih.gov/pubmed/29288902
http://dx.doi.org/10.1212/WNL.0b013e318228bee2
http://www.ncbi.nlm.nih.gov/pubmed/21753167
http://dx.doi.org/10.1212/01.wnl.0000410956.29629.4d
http://www.ncbi.nlm.nih.gov/pubmed/22249499
http://dx.doi.org/10.1162/netn_a_00043


Sensors 2022, 22, 7522 15 of 15

84. Graef, A.; Flamm, C.; Pirker, S.; Baumgartner, C.; Deistler, M.; Matz, G. Automatic ictal HFO detection for determination of
initial seizure spread. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 2096–2099.

85. Wong, S.M.; Arski, O.N.; Workewych, A.M.; Donner, E.; Ochi, A.; Otsubo, H.; Snead III, O.C.; Ibrahim, G.M. Detection of
high-frequency oscillations in electroencephalography: A scoping review and an adaptable open-source framework. Seizure 2021,
84, 23–33. [CrossRef]

86. Cimbálník, J.; Hewitt, A.; Worrell, G.; Stead, M. The CS algorithm: A novel method for high frequency oscillation detection in
EEG. J. Neurosci. Methods 2018, 293, 6–16. [CrossRef]

87. Gardner, A.B.; Worrell, G.A.; Marsh, E.; Dlugos, D.; Litt, B. Human and automated detection of high-frequency oscillations in
clinical intracranial EEG recordings. Clin. Neurophysiol. 2007, 118, 1134–1143. [CrossRef]

88. Gliske, S.V.; Irwin, Z.T.; Davis, K.A.; Sahaya, K.; Chestek, C.; Stacey, W.C. Universal automated high frequency oscillation detector
for real-time, long term EEG. Clin. Neurophysiol. 2016, 127, 1057–1066. [CrossRef]

89. Wu, M.; Qin, H.; Wan, X.; Du, Y. HFO detection in epilepsy: A stacked denoising autoencoder and sample weight adjusting
factors-based method. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 1965–1976. [CrossRef]

90. Worrell, G.A.; Parish, L.; Cranstoun, S.D.; Jonas, R.; Baltuch, G.; Litt, B. High-frequency oscillations and seizure generation in
neocortical epilepsy. Brain 2004, 127, 1496–1506. [CrossRef] [PubMed]

91. Crépon, B.; Navarro, V.; Hasboun, D.; Clemenceau, S.; Martinerie, J.; Baulac, M.; Adam, C.; Le Van Quyen, M. Mapping interictal
oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy. Brain 2010, 133, 33–45. [CrossRef]
[PubMed]

92. Chaibi, S.; Sakka, Z.; Lajnef, T.; Samet, M.; Kachouri, A. Automated detection and classification of high frequency oscillations
(HFOs) in human intracereberal EEG. Biomed. Signal Process. Control 2013, 8, 927–934. [CrossRef]

93. Gliske, S.V.; Stacey, W.C.; Moon, K.R.; Hero, A.O. The intrinsic value of HFO features as a biomarker of epileptic activity. In
Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China,
20–25 March 2016; pp. 6290–6294.

94. Wagenaar, J.B.; Worrell, G.A.; Ives, Z.; Dümpelmann, M.; Litt, B.; Schulze-Bonhage, A. Collaborating and sharing data in epilepsy
research. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2015, 32, 235. [CrossRef] [PubMed]
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97. Misiūnas, A.V.M.; Meškauskas, T.; Juozapavičius, A. On the implementation and improvement of automatic EEG spike detection

algorithm. Liet. Mat. Rinkinys. Ser. A 2015, 56, 60–65. [CrossRef]
98. Jankowski, M. Erosion, dilation and related operators. In Proceedings of the 8th International Mathematica Symposium,

Kuressaare, Estonia, 3–5 July 2006; pp. 1–10.

http://dx.doi.org/10.1016/j.seizure.2020.11.009
http://dx.doi.org/10.1016/j.jneumeth.2017.08.023
http://dx.doi.org/10.1016/j.clinph.2006.12.019
http://dx.doi.org/10.1016/j.clinph.2015.07.016
http://dx.doi.org/10.1109/TNSRE.2021.3113293
http://dx.doi.org/10.1093/brain/awh149
http://www.ncbi.nlm.nih.gov/pubmed/15155522
http://dx.doi.org/10.1093/brain/awp277
http://www.ncbi.nlm.nih.gov/pubmed/19920064
http://dx.doi.org/10.1016/j.bspc.2013.08.009
http://dx.doi.org/10.1097/WNP.0000000000000159
http://www.ncbi.nlm.nih.gov/pubmed/26035676
http://dx.doi.org/10.1016/j.bspc.2018.10.006
http://dx.doi.org/10.1080/03091902.2018.1513576
http://dx.doi.org/10.15388/LMR.A.2015.11

	Introduction
	 Study Background
	Materials and Methods
	Data Selection
	Study Participants
	Method for Ripples and Spikes Identification
	Optimal Threshold for Spikes Truncating Identification

	Results
	Discussion and Conclusions
	References

