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Implementation of a non-deterministic optical noiseless amplifier
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Groupe d’Optique Quantique, Laboratoire Charles Fabry, Institut d’Optique, CNRS,

Université Paris-Sud, Campus Polytechnique, RD 128, 91127 Palaiseau cedex, France

Quantum mechanics imposes that any amplifier that works independently on the phase of the
input signal has to introduce some excess noise. The impossibility of such a noiseless amplifier
is rooted into unitarity and linearity of quantum evolution. A possible way to circumvent this
limitation is to interrupt such evolution via a measurement, providing a random outcome able to
herald a successful - and noiseless - amplification event. Here we show a successful realisation of
such an approach; we perform a full characterization of an amplified coherent state using quantum
homodyne tomography, and observe a strong heralded amplification, with about 6dB gain and a
noise level significantly smaller than the minimal allowed for any ordinary phase-independent device.

Quantum optical detection techniques are so advanced
that quantum fluctuations are the main source of noise.
Therefore, when amplifying optical signals, one has to
look at intrinsic limitations of the process: any amplifier
cannot work independently on the phase of the input, un-
less some additional noise is added [1]. The origin of this
limitation is that adding extra noise is needed for the
output field to obey Heisenberg’s uncertainty relation.
Also, it is connected to the impossibility of realizing ar-
bitrarily faithful copies of a quantum signal [2, 3], and it
is thus deeply rooted in the linear and unitary evolution
of quantum mechanical systems.

Various aspects of this limitation have been studied
by using optical parametric amplifiers[4, 5, 6, 7]. For
instance, a non-degenerate optical parametric amplifier
amplifies all input phases, and introduces the minimal
level of added noise, which degrades the signal-to-noise
ratio [1]. The same process, driven in the degenerate
regime, may provide amplification preserving the signal-
to-noise ratio. However, this occurs in a phase-dependent
fashion: only the part of the signal in phase with the
pump light will be amplified, while the part which is
90 degrees out of phase with the pump will be de-
amplified[4, 5].

A more intriguing idea is to find a way to tamper with
the linear evolution of quantum mechanics; this is actu-
ally possible, though non-deterministically, by condition-
ing our observation upon the result of a measurement[8].
Noiseless amplification can then take place, but only a
fraction of the times, and the correct operation is her-
alded. This strategy is commonly adopted for build-
ing effective nonlinearities in linear quantum optical
gates[9, 10].

Here we follow the proposal of Ralph and Lund
[11] to demonstrate experimentally that heralded non-
deterministic amplification can realise processes which
would be impossible for usual amplifiers. Unlike another
realisation [12], we have direct access to the output state
via state tomography, so we can provide a complete de-
scription of the process, and analyse the limitations aris-
ing from non-ideal components. Our study is relevant
in the long-term view of the integration of amplifiers in

quantum communication lines [13].
The conceptual layout of the noiseless amplifier is pre-

sented in Fig. 1. The operating principle is closely
related to quantum teleportation[14, 15, 16, 17], and
is actually a variation of the quantum scissors protocol
[18, 19]: the phase and amplitude information of the in-
put are transferred via a generalised teleportation onto a
superposition of the vacuum and a single photon. If the
input is not too large, such superposition is still adequate
to describe a coherent state with a good fidelity. The
amplification is allowed by the use of a non-maximally
entangled resource [11].

More in detail, a coherent state |α〉 is fed into the
input mode of the amplifier; at the same time an
auxiliary single photon beam is provided, and split
onto an asymmetric beam splitter (A-BS) with reflec-
tivity r; this prepares the two-mode entangled state√

1− r2|1〉T |0〉R+r|0〉T |1〉R , where T ,R denote the out-
put modes of the A-BS. We perform a collective mea-
surement on the input state and part of the entangled
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FIG. 1: Conceptual layout of the noiseless amplifier. A single
photon is split on an asymmetric beamsplitter (A-BS). The
input state |α〉 is superposed with reflected output of the A-
BS on asymmetric beamsplitter (S-BS). A successful run of
the amplifier is flagged by a single photon event on detector
D1 and no photons on detector D2. The transmitted mode
constitutes the output mode of the amplifier, and is approx-
imately in an amplified state |gα〉, conditioned on the right
detection events, as described by eq. (1).
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state, in our case the R mode; this consists in super-
posing them on a symmetric beamsplitter (S-BS), and
performing photon counting at the outputs. A successful
event is flagged by a single photon detection by the de-
tector D1, and no photons detected by the detector D2;
conditioned on this event, the (non normalised) state of
the T mode, which represents the output of our amplifier,
is [11]

e−
‖α2‖

2
r√
2

(
|0〉+

√
1− r2

r
α|1〉

)
(1)

The output is thus prepared approximately in the co-
herent state |gα〉, with g=

√
1−r2
r ; the probability of this

event is given by the squared norm of the state (1):
P=e−‖α

2‖ r2
2

(
1 + g2‖α2|

)
. Events where D2 detects one

photon andD1 detects none can still be accepted by using
an active phase modulation [11]. The main limitation of
the amplifier is the size of input state: for its correct op-
eration it is necessary that g2‖α2‖ � 1. Larger coherent
states can be amplified by splitting the input into several
modes, each one with an acceptable size for the amplifier.
These modes are then amplified individually, and finally
recombined non-deterministically on a single mode [11].
Here we will focus on small values of ‖α2‖, which are
relevant for continuous-variable quantum cryptography
[20], and show explicitly how the gain is degraded when
‖α2‖ becomes too large.

Single photons are produced by using spontaneous
parametric down-conversion in a non-linear crystal. This
process generates photon pairs in two correlated modes;
the presence of a single photon on one mode is inferred
by a click on a single photon detector D0 placed on
the other twin mode [21]. Our down-conversion source
is based on a 100µm thick KNbO3 slab, pumped by
doubled Ti:Sa laser pulses (Pmax=3.3mW, λp=423.5nm,
∆t=220fs, repetition frequency ∆ν=800kHz). Phase-
matching is temperature-tuned to obtain frequency de-
generate emission at an angle ∼ 3◦. The amplifier works
conditionally on a coincidence count between D0 and D1.
Due to the limited efficiency of our single-photon detec-
tion, D2 can be dropped from the actual implementation
without significantly affecting the performance of the am-
plifier.

We used homodyne detection and a maximum-
likelihood reconstruction algorithm [22] to determine the
Wigner quasi-probability distribution of the output of
our amplifier for several values of ‖α2‖. A nominal value
g=2 corresponding to a 6dB gain in intensity was set
by adjusting the A-BS. Each state tomography is re-
constructed from a set of 200,000 points divided into 12
histograms according to the measured quadrature. The
measured success rates depend on the amplitude, and
ranges from ∼ 1% for ‖α‖ ' 0.1 up to ∼ 6% for ‖α‖ ' 1.
The Wigner functions shown in Fig. 2 summarize the
behaviour of the amplifier for growing input amplitudes:

even for small amplitudes, ‖α‖=0.1, one can observe
small departures from the circular shape of a coherent
state, in particular different widths along the amplitude
quadrature X and the phase quadrature P . As the am-
plitude grows, ‖α‖=0.25, and ‖α‖=0.5, those departures
become more important, and the non-gaussian character
of the output state in eq.(1) clearly appears.

We quantify the effective amplification by introducing
an effective gain:

geff =
〈Xout〉
〈Xin〉

(2)

where Xout, (Xin) is the amplitude quadrature of the
output (input) field.

We have used two different methods for characterising
the input and output states : the output is analysed with
the homodyne detection, while the input is measured us-
ing a photon counting avalanche photodiode. This allows
us to characterize both beams while the amplification
scheme is running. On the input side, the amplitude ‖α‖
is measured with the detector D1, relating the observed
count rate C when blocking the single photon beam; call-
ing µ the detection efficiency, the value of ‖α‖ is calcu-
lated from the relation[23] C=∆ν

(
1− e−µ‖α2‖

)
. From

this measurement, we can obtain the value 〈Xin〉=2α, for
α real. This evaluation has been checked to be fully con-
sistent with the homodyne result, directly performed on
the input beam when calibrating the system.

We consider the values 〈Xout〉 and 〈Xin〉 just be-
fore and just after the amplifier. The ratio of these
two quantities would be unchanged if we use the val-
ues measured with the same homodyne efficiency ηHD,
since 〈Xm〉=√ηHD〈X〉. The homodyne efficiency is esti-
mated as ηHD=0.68, and originates from imperfect mode-
matching (0.9), limited optical transmittivity (0.87), and
limited quantum yield of the photodiodes (0.97). Exper-
imental data are compared with a model taking into ac-
count the main imperfections of our setup: limited qual-
ity of our single photon state, due to multi pair emission
and parasite processes[21, 24]; imperfect mode-matching
between the single photon and the coherent beams; fi-
nite photon counting detection efficiency. Our entan-
gled resource is still satisfactory for small coherent states
(‖α‖ < 0.1) , for which the observed gain remains close
to the target value g=2 (Fig.3a).

The noiseless behaviour of our amplifier is analysed in
terms of its “equivalent input noise” (EIN), also called
“noise referred to the input” [25, 26, 27, 28]:

Neq=
〈δX2

out〉
g2

eff

− 〈δX2
in〉 (3)

where 〈δX2〉 is the variance of the X quadrature just at
the output of the amplifier, and is related to the measured
value 〈δX2

m〉 by the relation 〈δX2〉=1 + 〈δX2
m〉−1
ηHD

. This
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FIG. 2: Experimental results for the Wigner functions illustrating the evolution of the output state. For each value of ‖α‖
we show a 3D and a contour plot of the Wigner function. As the input amplitude grows, non-trivial structures appear in the
state, due to its non-Gaussian character (a superposition of vacuum and one-photon states, eq.(1) ). These results are obtained
directly from raw homodyne data, without corrections for the detection efficiency. The value of α is arbitrarily chosen to be
real and positive, but the results would be the same for any other choice, since the amplifier gain is phase - independent.

figure is the quantum optical analogue to the one adopted
in electronics [26, 27]; it tells how much noise must be
added to the input noise level, in order to mimic the ob-
served output noise for the given gain. In Fig. 3b, Neq

is shown as a function of the input amplitude; we report
both the minimal and the maximal EIN, corresponding
to the X and P quadratures respectively (Fig. 2), and
the EIN averaged over the 12 quadratures correspond-
ing to our histograms. We also report the predicted Neq

obtained with a phase-independent parametric amplifier
driven at gain geff . Our data demonstrate how the noise-
less amplification actually occurs for all quadratures at
the same time; the amplified state remains approximately
round when ‖α‖<0.1.

Some excess noise is present mostly due to multi-
photon events on the auxiliary mode. This noise can be
reduced only at expenses of the single photon generation
rate. The reported value represents the best experimen-
tal trade-off between count rate and excess noise we have
achieved on our setup.

The EIN parameter is always positive in ordinary am-
plifiers, as these cannot improve the quality of the enter-
ing signal. In the present case, it may become negative

for specific heralded events; obviously, when considering
the whole set of events, we always observe a behaviour
compatible with quantum mechanics. Indeed, we can
give a simple argument to show that the amplifier cannot
increase the overall information if used at the receiving
site of a transmission line. Let us consider the mutual
information IAB between two parties sharing a Gaus-
sian distribution of coherent states [28]: IAB= 1

2 ln(1+r),
where r denotes the signal-to-noise ratio. The amplifier
modifies the expression above as: Iamp

AB ≤P ln(1 + g2r),
where 2P is the success probability when allowing for
both heralding events. In the limit of small coherent
states one gets:

IAB≤
r2

2
g2r=

1− r2

2
r ' (1− r2)IAB.

This shows that the success probability of amplification
is small enough not to increase the overall mutual infor-
mation, remaining thus consistent with the general limits
imposed by quantum mechanics.

Our investigation demonstrates that some processes
that are forbidden with unitary operations can be actu-
ally observed in experiments based on quantum measure-
ment and post-selection. Furthermore, we have shown
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FIG. 3: Experimental test of the noiseless optical amplifier. a): effective phase-independent gain as a function of the input
state amplitude . The solid line is the prediction from a model accounting for the main imperfection of our setup. The relevant
values of ‖α‖ are smaller than 0.1. b): since the noise of the amplified state is not fully circular in phase space (see Fig. 2),
homodyne detections with different phases will see different noises. Therefore we plot the average EIN (�), maximal EIN (N),
and minimal EIN (•) as a function of the input state amplitude ‖α‖ . Our model predicts the solid line for the average EIN,
and dashed lines for the minimal and maximal EIN in the output state. We also report as a reference (dotted line) the minimal
noise attained with a non-degenerate parametric amplifier [1] for geff > 1 and with a beamsplitter model [23] for geff < 1. For
small ‖α‖ , Neq is clearly negative.

how our amplifier is quite robust against many exper-
imental imperfections, making it valuable resource for
quantum communication. This opens the way to the ap-
plication of our device to non-deterministic entanglement
distillation protocols.

Acknowledgements This work is supported by the EU
project COMPAS and the ANR SEQURE. F.F. is sup-
ported by C’Nano - Île de France. M.B. is supported
by the project ‘MCQM’ of the RTRA ‘Triangle de la
Physique’.

[1] C.M. Caves, Phys. Rev. D 26, 1817 (1982).
[2] W.K. Wootters, and W.H. Zurek, Nature 299, 802

(1982).
[3] U. L. Andersen, V. Josse, and G. Leuchs, Phys. Rev. Lett.

94, 240503 (2005).
[4] A. Levenson, I. Abram, Th. Rivera, P. Fayolle, J.C. Gar-

reau, and P. Grangier, Phys. Rev. Lett. 70, 267 (1993).
[5] A. Levenson, I. Abram, Th. Rivera, and P. Grangier, J.

Opt. Soc. Am. B 10, 2233 (1993).
[6] S.L. Braunstein, N.J. Cerf, S. Iblisdir, S., P. van Loock,

and S. Massar, Phys. Rev. Lett. 86, 4938 (2001).
[7] P.C. Cochrane, T.C. Ralph, and A. Dolińska, Phys. Rev.
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