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Abstract

Perceptual Control Theory (PCT) theorizes that a creature’s behaviour is varied so that their perception can reach and

maintain certain fixed limits, despite external disturbances. The distinguishing characteristic of PCT is that the controlled

variables are the inputs (perceptions, as opposed to the system outputs). This paper presents the first direct comparison of

a PCT controller for a mobile robot (a two-wheeled ‘inverted pendulum’ balancing robot) with a classical control method,

LQR. Simulations and experimental validation results show that the performance of the PCT controller is comparable to the

LQR controller and better at disturbance rejection.

Keywords Perceptual control theory · Inverted pendulum · Robot · LQR control

1 Introduction

Humans, other animals and a variety of machines can be

said to ‘behave’ [1]. Yet scientific theories that traverse the

life, social and physical sciences are rare. One such theory

is perceptual control theory (PCT) [2, 3].

Developed by a medical physicist, William Powers, in

the 1950s, it provides a functional architecture of behav-

ior based on the principle that ‘behavior is the control of

perception’. Powers explained that for living mechanisms,

the presence of individual purpose leads to control. They

control neither their behaviour, nor external environmental

variables. Instead living mechanisms control their percep-

tions of those environmental variables when an internal

motivation appears [4].

Its basic components map onto the negative feedback

system utilized ubiquitously within artificial control sys-

tems and within existing models of behavior [5]. These

systems assume that the reference value (or goal state) for

the controlled variable, are inputted to the system from an

outside user, in the same way as a user sets a thermostat.
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In contrast, PCT explicitly places the reference value

within the control system. By doing so, the theory models

the system from the inside and permits the system to attempt

to control its own sensory input by comparing the current

sensory signal to its internally specified reference value, and

acting against disturbances in the environment to reduce this

difference.

Powers utilized this basic scheme to account for complex

behavior by proposing that the reference values are set by

a cascade of downward signals from higher level units. A

simplified ‘real-life’ example can illustrate this. In order to

successfully sip from a cup of cold water (perception = tem-

perature of lips; reference = cold), this level of this system

needs to vary the desired transition in joint angle of the wrist

which is in turn managed by systems at successively lower

levels. Only the lowest level in the hierarchy interfaces with

the body and environment. Here it varies actions to con-

trol the current intensity of sensory input [2]. An extended

‘real-life’ animated example of PCT hierarchical control is

provided at https://youtu.be/kE3EHvrpU7g. Whilst the hier-

archical structure of both the nervous system and machine

architectures is well founded [6, 7], the specification of

desired (rather than predicted) sensory inputs by downward

signals appears unique to PCT.

PCT proposes that a creature’s behaviour is varied

so that their perceptions can reach and maintain certain,

fixed limits, despite external disturbances. Control in living

systems can be thought of as a process of continually

adapting behaviour so that perceptions remain consistent
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Fig. 1 A Diagram to show the Organisation of a Single-Level

Perceptual Control System

with the internal system purpose [8]. Figure 1 presents a

schematic diagram which shows a single hierarchical level

in Perceptual Control Theory.

The distinguishing characteristic of perceptual control

theory is that the controlled variables are the inputs

(perceptions, as opposed to the system outputs (behavioural

actions) [9]. When regarding PCT in the control engineering

domain, the controlled perceptions are generally sensed

or transformed functions of the system states, which are

affected by the system behaviours.

The principal advantage of controlling the input is that

the PCT control system uses the current environment

(commonly known as the plant in control engineering) as

a fundamental component of the control loop. Therefore,

internal modelling of the environment to predict the ‘correct

response’ is not required. Consequently, the PCT system

has the capability to achieve and maintain control despite

unknown disturbances, including managing the inevitable

disturbances that result from the physical components of the

living organism (or robot) itself. The extension of the core

PCT concept to a hierarchy of autonomous, inter-dependent

units each controlling their own degree of freedom indicates

a significant advantage over traditional approaches with

the potential to construct advanced behavioural systems

composed merely of simple, nescient control units, negating

the need to define complex models of world dynamics. The

PCT model also involves a form of random-walk learning

algorithm known as reorganization to further optimize

performance, although this is not utilized in the current

study. Each of these properties entail that a PCT controller,

in theory, is more robust and adaptive than traditional

control methods.

To date, empirical support for PCT has come largely from

constructing and testing computational models of human

performance against behavioural data. These models have

shown close fits across a range of experimental contexts [10,

11]. There have also been a number of examples of success-

ful applications of PCT to robotics, including an real-world

autonomous robotic rover [12] control of a robotic arm [13]

and a hexapod simulation [14]. The autonomous rover

showed robust rejection of disturbances of various kinds.

For example, it continuously monitored the degree of wheel

movement to match it with the current reference value, and

would continue to modify the current output to the wheel

motor to keep to this goal, regardless of any imperfections

in the transmission system

Despite the above advances, no studies have directly

compared the validity of a PCT model with a compet-

ing, widely used classical control approach for the same

activity. Second, no studies have made this comparison

using a robotic device. Third, no studies have systematically

compared robustness against experimentally applied distur-

bances.

The benchmark of testing a theoretical model using a

robot is particularly high, because it immediately establishes

the real-world validity in that it permits the physics and

kinematics of behavior to be assessed. The comparison

vehicle chosen for this study is the inverted pendulum

robot, which is a popular benchmark for control theory

comparisons [15].

2 Inverted Pendulum Control

Figure 2 shows a diagram of an inverted pendulum on a

cart. The system contains a rolling cart and a bob, which

is connected to a frictionless hinge on the cart through a

weightless shaft [16]. For simplicity, each component is

treated as a point mass, the motion of the cart is constrained

to the horizontal direction and the pendulum is rigid.

This system is inherently unstable when the pendulum

is suspended above the horizontal as the pendulum will fall

over due to gravitational effects without additional control

effort [17]. The role of a control system is to apply a

control force to the cart in the ‘x’ direction to keep the

pendulum upright. The ultimate goal of a control system is

to find a fixed point at which the pendulum can be held

indefinitely [18].

The inverted pendulum is often accepted as an appropri-

ate model for a self-balancing vehicle [19]; its non-linearity

and availability in the laboratory mean that inverted pen-

dulum control can be viewed as a benchmark test for

evaluating and comparing different control methods [20,

21]. In this paper, the inverted pendulum test will be adopted

to compare PCT to other contemporary control methods.

3 Simulation

Initially, an inverted pendulum model was simulated and

two different control methods applied; PCT and Linear
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Fig. 2 A Diagram of an Inverted

Pendulum on a Cart

Quadratic Regulator control (LQR). This section presents

the models, controllers and simulation results.

3.1 Inverted PendulumModel

The inverted pendulum system model was taken from

previous work [21]. The non-linear state-space model for

the inverted pendulum system is described in Eq. 1.

ẋ1 = ẋ = x2,

ẋ2 = ẍ =
−Mbgsin(x3)cos(x3) + MbLx4

2sin(x3) − µx2

Mc + (1 − cos2(x3))Mb

+
1

Mcart + (1 − cos2(x3))Mb

,

ẋ3 = θ̇ = x4,

ẋ4 = θ̈ =
(Mc + Mb)gsin(x3) − MbLx4

2sin(x3)cos(x3)

L(Mc + (1 − cos2(x3))Mb)

+
µx2cos(x3) − Fcos(x3)

L(Mc + (1 − cos2(x3))Mb)
(1)

The non-linear system dynamics were specified in Matlab

(Matlab R2017a) and both the PCT controller and the

LQR controller were to be reproduced in Simulink 8.9.

For the purposes of the simulation, the values in Table 1

were chosen. It was decided to choose µ so that the system

Table 1 A table of values for simulation

Quantity Value

Mc 0.1

Mb 0.5

g 9.8

L 0.1

µ 0.0

was friction-less. The gravitational field strength, g, is

consistent with its value on the surface of the Earth, and

the values of the other quantities in Table 1 were chosen

arbitrarily.

3.2 LQR Control

LQR control is considered to be an optimal method for con-

trol of inverted pendulums [22]. It achieves a compromise

between error penalization and control effort by minimising

the quadratic cost function, Eq. 2.

J =

∫

((�y − �r)T Q(�y − �r) + F T RF)dt (2)

Where y is the state column-vector, r is the desired state

column-vector, Q and R are weight-defining matrices and

F is determined by the state feedback law [23].

LQR control was achieved by using a linearization of

the system presented in Eq. 1. Matlab’s in-built LQR

function was used to provide control parameters for the

specified linear system. The linearized system can be found

in Eq. 3.
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Where µ is the coefficient of ground friction and L is the

length of the rod. The tuned values used for the LQR control

simulation are shown in Eq. 4.

Q =

⎛

⎜

⎜

⎝

1 0 0 0

0 1 0 0

0 0 10 0

0 0 0 100

⎞

⎟

⎟

⎠

, R = 0.01 (4)
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3.3 Developing a Perceptual Controller

Previous work has applied PCT to the inverted pendulum

system [16]. Powers initially developed a 5-level perceptual

controller (Fig. 3), but this controller had the issue that it

could find equilibrium positions at the origin, even when the

origin was not the desired position reference for the cart.

A revised controller was proposed [16] by removing the

fourth hierarchical level (Fig. 4). The 4-level proportional

controller is the basis the perceptual controller used in this

paper.

The mathematical model of the controller is given by the

system of equations shown in Eq. 5.

F(t) = K4e4(t),

e4 = u3(t) − Vcart (t),

u3(t) = K3e3(t),

e3 = u2(t) − (Xcart (t) − Xbob(t)), (5)

u2(t) = K2 ∗ sat (KI

∫

e2(t) + µu2(t)),

e2 = u1(t) − Vbob(t),

u1(t) = K1e1(t),

e1 = Rxbob(t) − Xbob(t)

F (t) is the output control variable, un is the output of

each level of the PCT controller, en is the error term for

each level, Kn is the gain of each level and KI is the gain

associated with the leaky integrator

In order to produce results comparable to Kennaway’s

[16] the values of the proportional gains, Kn, were tuned

Fig. 3 A Reproduction of Powers’ 5-Level Perceptual Controller

in [16]

Fig. 4 An Adaptation of Kennaway’s 4-Level Perceptual Controller

in [16]

manually. The relevant tuning parameters for the perceptual

controller are given in Table 2.

3.4 Results and Analysis

Figure 5 shows the performance of both the PCT and LQR

controllers. It can be seen that the performance of the

PCT controller is comparable to the LQR. The rise-time is

slower than the LQR for the position response, however the

overshoot and settling time of the bob angle is less.

It is also apparent from Fig. 6 that the perceptual

controller was capable of dealing with disturbances. In

fact, PCT significantly outperformed LQR in the rejection

of disturbances. In Fig. 6 the system under LQR control

required nearly 6s to find equilibrium after a force of 5N

was applied for 1.5s. To contrast this, the cart’s position was

almost unaffected by the same disturbance when controlled

by PCT.

The results from these simulations indicate that PCT is

a viable method for controlling this system, and due to this

system’s parallels to self-balancing vehicles [19] it seems

Table 2 The tuning parameters used in the PCT controller

Quantity Value

K1 1.0

K2 20.0

K3 20000.0

K4 0.56

KI 0.51
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Fig. 5 A Comparison of LQR and PCT Control

probable that PCT may be found to be useful in controlling

these vehicles.

The results in Figs. 5 and 6 show that the perceptual con-

troller has very good disturbance rejection. A fundamental

Fig. 6 Disturbance Rejection of

LQR and PCT Control

difference between the perceptual controller and LQR is that

PCT requires only one reference perception to be set. In the

case of LQR, each of the four state variables is controlled.

It may be that perceptual controllers can outperform other

contemporary methods at controlling their highest level per-

ception as they do not work to control other environmental

variables.

It is difficult, however, to make absolute conclusions

regarding the performance of the perceptual controller due

to the necessity of manual tuning for both the PCT controller

and the LQR controller. Although both methods were

subject to tuning until continued iteration to the tuning made

no demonstrable effect on the performance, it could still be

argued that the tuning for either of the methods could still

be improved. Another study attempted to achieve optimal

control of this system in simulation [17] and found that their

LQR controller was able to stabilise at a new reference point

in approximately 6s. This result is consistent with the results

reported here, and so the LQR controller implemented in

this study is considered to be well-performing.

Before substantive claims can be made regarding the

performance of perceptual controllers, it is necessary to

validate the controller comparison using real robots.

J Intell Robot Syst (2020) 99:683–692 687



Fig. 7 Images of the

Two-Wheeled Balancing

Mindstorms Robot

4 Experimental Validation

The platform chosen to test the perceptual controller was the

Lego Mindstorms Two-wheeled Balancing Robot, shown

in Fig. 7. This platform has been used to test control

methods previously [24, 25] and has many similarities to

the inverted pendulum on a cart. Most importantly, this

platform has unmodelled dynamics and is subject to noise

and uncertainties.

The two-wheeled balancing robot (TWBR) uses

tachometers in the two servo-motors and a gyro sensor made

by HiTechnic (The HTWay NXT Gyro Sensor) to measure

the 4 state variables. Using an estimated moving average, it

was possible to get a value for the robots pitch and angular

velocity. The TWBR is controlled by the two servo-motors

which provide a restoring force. Figure 8 defines the

angular displacement and linear displacement used in the

results section.

A cage of 12 VICON cameras (Vero v1.3 X) was used

to track the position and pitch angle of the robot to sub-

millimetre accuracy. A diagram of the tracking cage is

shown in Fig. 9. The VICON system has been found

in previous studies to have a mean accuracy of between

63-290µm [26].

Three control strategies were implemented on the robot;

PCT, LQR and Proportional controller. Three experiments

were conducted; station keeping at a set-point, disturbance

rejection and tracking a variable set-point.

A proportional controller was implemented in this

section to provide an extra comparison for the performance

of the perceptual controller. The proportional controller

was developed to attempt to stabilize the robot with every

state-variable at zero. The proportional controller took

measurements of the four state-variables from the motor

encoders and the gyroscope. These inputs were used to

generate a motor output based on the control law shown in

Equation 6. The gains were altered through manual tuning

until adequate performance was achieved.

Pout = K1x + K2ẋ + K3θ + K4θ̇ (6)

4.1 Station Holding Results and Analysis

Figure 10 shows the results of the angular displacement

of the robot for the three different controllers. The

PCT controlled robot had a steady-state error of ≈ 2◦,

Fig. 8 A Definition of the Angular and Linear Displacement
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Fig. 9 A Diagram and Image of The VICON Cage

whereas the LQR and P-Controlled robots were subject to

oscillations with amplitudes around ≈ 5◦. While the LQR

controller performs less well than has been reported in

another study with the TWBR [24], the LQR results from

this study can still provide an informative comparison for

the performance of the PCT controller.

Direct comparison between the results from this study

and other studies with the TWBR [24] are problematic due

to the differences in how the tracking data has been taken

and also the differences in robot design (particularly the

wheel choice). Despite these differences, it is still notable

that the perceptual controller developed in this study has

better reported performance in station holding (fluctuations

of ≈ 2◦) than the well-tuned LQR controller (fluctuations

of ≈ 3◦) developed in [24].

It can be seen in this study that PCT control performed

better in tracking both the head angle and head position than

LQR and proportional control. After an initial stabilizing

period (generally caused by a force input from the user

standing the robot up), the PCT controller was capable of
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Fig. 10 A Comparison of Three Control Methods’ Ability to Control the Angular Displacement of the TWBR

maintaining a position that was within 5mm of the set point:

the performance of the PCT controller in this test was far

greater than either of the other competing methods.

Results from the experimental validation demonstrate

that the PCT controller was less sensitive to internal noise,

frictions and uncertainties. It is clear from the results that

the low-amplitude perturbations from the TWBR under PCT

control was much smaller than the results from the TWBR

under P-Control or LQR control. Although this work is not

an objective examination of the behaviour of these control

methods, the strong performance of PCT in simulation and

on the TWBR would suggest that this behaviour may be

intrinsic to the PCT controller and is unlikely to be a result

of tuning differences.

4.2 Disturbance Rejection and Variable Set-Point
Results

The results in this section detail the perceptual controller’s

response to a number of additional scenarios; disturbance

rejection and variable set-point. Only the PCT controller

was evaluated for these scenarios for two reasons; firstly,

ensuring that the robot received exactly the same impulse

on different occasions was challenging and so an objective

comparison of disturbance rejection could not be performed.

In addition to this, PCT proved to be the only control method

for this application that could reliably track a new set-point.

LQR and P-control suffered from drift and so could not be

used to track new set-points (Fig. 11).

Figure 12 shows the response of the robot under PCT

control to three disturbances. It can be seen that the

PCT controller can sustain forces that cause an initial

perturbation of over 15cm. The instability of the TWBR

platform and the limits of the motor control combined so

that the robot was unable to right itself much larger than this.

In Fig. 12 we can see that the robot took over 25s to

stabilize after the final perturbation. Although this time

J Intell Robot Syst (2020) 99:683–692 689
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Fig. 11 A Comparison of Three Control Methods’ Ability to Control the Displacement of the TWBR

for stabilization was large, the other competing controllers

were not able to stabilize after a perturbation of a similar

magnitude and instead began large-amplitude oscillatory

behaviour.

A key prediction from the simulation data was that

the PCT controller could withstand external perturbations,

and this prediction was supported by the validation.

After being subjected to perturbations in excess of 15cm

the PCT controller was able to stabilize, whereas the

LQR and P-Controller used in this experiment were not

able to withstand perturbations noticeably larger than the

oscillatory behaviour they exhibited while attempting to

track a set point. While there is a possibility that this was

merely a consequence of tuning in both the simulation

and validation, there are certainly grounds for further

investigation of this.

Figure 13 details the PCT controller’s performance in the

variable-set point test. After an initial stabilizing period, the

perceptual controller demonstrated its ability to track a set-

point accurate to 5mm. After this, the TWBR tracked two

set-points, one 20cm and one 40cm away from the origin.

The robot was able to stabilize at these two set points. After

40s and 50s the robot again responded to a changing set-

point. Figure 13 shows that the robot was subject to a small

level of drift as it was not able to stabilize at the origin after

it had tracked the other set-points. This drift was probably

likely to be caused by wheel slip.

In simulation, the perceptual controller was able to adjust

to a variable set-point over a range of 2m. The results from

the validation show a range that is understandably lower

than this. The TWBR was unable to react to larger changes

in set-point as this large change produced a large difference

in reference and actual position. This produced large motor

forces and this forced the robot to fall. The Leaky Integrator

in the perceptual controller was implemented to reduce the

effects of these large changes in reference.

It is clear that this perceptual controller is robust

enough to deal with many competing environmental factors,

relatively large disturbances and can still track its reference

point well.
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Fig. 12 A PCT Controller’s Ability to Reject Disturbances
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5 Conclusions and Further Work

This work has demonstrated clearly that robotic machines

can perform balanced motion using one single reference and

their sensors. Close parallels can be drawn between the

robot’s reference and a living organism’s internal purpose or

motivation [12]. Parallels can also be drawn between the data

from the robot’s sensors and a living organism’s perception

of its environment. It could be contended that using per-

ceptual control theory to effectively model robotic motion

supports the idea that perceptual control theory provides an

accurate model of the behaviour on living organisms.

The results outlined in this paper are a clear indication

that perceptual control theory is not only a viable method for

control systems, but potentially superior to contemporary

control algorithms in a number of key performance

parameters. The strong performance of PCT in this paper

certainly strengthens the argument that the development

of more perceptual controllers for future robots would be

worthwhile.

The subjectivity of the analysis of different control

methods in this work means that no definitive assertions can

be made about the comparative performance of PCT against

its rivals. It is hoped that further studies can produce a more

objective study of perceptual controllers that is not limited

by the potential pit-falls of manual tuning.

In this research we have adhered to the previous

hierarchy structure which includes an integrator function

[16]. Although it serves a necessary role of limiting the

reference to the cart position control system and, so, the

force applied to the robot, an integrator in this case can

result in oscillation around the set point. This is due to

smoothing over past values of the error resulting in the error

not being zero when the target is reached; integral windup.

In future versions we would investigate replacing it with

a proportional controller with a limit, such as a sigmoid

function, which would avoid excessive force. This should

also result in control according to only the latest value of the

error so that when the target is reached the position error,

and the force error, will be zero thus avoiding oscillation.

Finally, the current study is part of a larger program

to develop perceptual controllers for applications other

than the inverted pendulum, such as humanoid motion.

The success of these systems would greatly strengthen

the argument that perceptual control theory provides an

accurate explanation of behaviour in living organisms.
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