
IMPLEMENTATION OF A PROGRAMMABLE
LINEAR MMSE DETECTOR FOR MIMO-OFDM

Johan Eilert, Di Wu and Dake Liu

Department of Electrical Engineering, Linköping University, 58183 Linköping, Sweden

ABSTRACT

This paper presents a linear minimum mean square error
(LMMSE) symbol detector for MIMO-OFDM enabled mo-
bile terminals. The detector is implemented using a pro-

grammable baseband processor aimed for software-defined
radio (SDR). Owing to the dynamic range supplied by the
floating-point SIMD datapath, special algorithms can be
adopted to reduce the computational latency of detection.
The programmable solution not only supports different trans-
mit/receive antenna configurations, but also allows hardware
multiplexing to obtain silicon and power efficiency. Com-

pared to several existing fixed-functional solutions, the one
proposed in this paper is smaller, more flexible and faster.

Index Terms— MIMO systems, OFDM, Programmable
circuits, Very-large-scale integration

1. INTRODUCTION

Multi-antenna or multi-in and multi-out (MIMO) is a tech-
nology to greatly enhance the performance of wireless com-
munications by utilizing various degrees of freedom. Orthog-
onal frequency division multiplexing (OFDM) is a promising

technology for its capability to convert a frequency-selective
channel into a number of flat fading subchannels. Due to
the property that subcarriers are orthogonal to each other, the
guard bands are no longer necessary, which greatly increases
the spectrum efficiency. Although signals in different sub-
carriers are overlapped in frequency, it is possible to recover
at the receiver side as long as the orthogonality is main-

tained. MIMO and multi-carrier (e.g. OFDM and OFDMA)
technologies have been adopted by most emerging wireless
broadband standards (e.g. WiMAX and 3GPP LTE) to in-
crease the spectrum efficiency.

Since complex valued matrix manipulations such as ma-
trix inversion and QR decomposition are common operations
in the receiver of MIMO-OFDM systems, the receiver com-
plexity is much higher than that in SISO and single-carrier
systems. Therefore, with the limited amount of computing
power available to mobile terminals, trade-off between the

performance and power consumption is a critical issue to be
carefully addressed in MIMO-OFDM systems.

2. SYSTEM MODEL

A general MIMO enhanced multi-carrier system model is de-
picted as in Fig. 2 which might be either OFDM or OFDMA

based system. Taking a MIMO-OFDM system as an example,
it has NT TX antennas, NR antennas and K sub-carriers in

one OFDM block. It is assumed that the time-variant wireless
channel is static or quasi-static during P consecutive OFDM
blocks. Channels between each pair of TX-RX antennas are
uncorrelated from each other.

Fig. 1. A MIMO Enhanced Multi-Carrier System

During a transmission interval n, a stream of binary bits b
is coded into NT symbol blocks. The signal on the kth sub-
carrier at the ith TX antenna is denoted by Xi[n, k], where
i = 1, . . . , NT , k = 0, . . . , K − 1, n = 0, . . . , P − 1. The

received signal at RX antenna j is

Yj [n, k] =

NT
∑

i=1

Xi[n, k]Hij [n, k] + Nj [n, k] (1)

where Hij [n, k] is the frequency response between an-
tennas i and j, Ni[n, k] is additive Gaussian noise with zero
mean and variance σ2

n. Eq. 1 can also be written as

Y(n) = X(n)H + N(n) (2)

3. LINEAR MMSE DETECTION

LMMSE is one of the most straightforward detection schemes
which outperforms Zero-Forcing detection by taking the
noise into consideration. Meanwhile, it has still a reasonable
implementation complexity. According to the Eq. 2, LMMSE
detection can be described in the following

X = (HH
H + σ2

I)
−1

H
H
Y (3)

which involves the precalculation of a coefficient matrix

W = (HH
H + σ2

I)
−1

H
H (4)



The precalculation involves quite a few matrix manipulations
such as matrix inversion and multiplication. The frequency
of these matrix manipulations depends on the variation of
the wireless channel. Taking a 4 × 4 spatial multiplexing or

2 × 2 space-time block coding (STBC) MIMO-OFDM based
WiMAX system as an example, we assume 512 subcarriers
are used and the working frequency f is 2.5 GHz. If the mo-
bile handset is moving at speed v = 100km/h, then based on
the following formula

fm =
vf

c

the maximum Doppler shift fm is 231.5 Hz. The following

formula given in [2],

Tc ≈
1

fm

estimates the channel coherence time Tc to be 4 ms. In this
case, excluding the pilot and null subcarriers, the number of
channel matrices to be inverted is 420 before the detection can

start. Although the channel matrix will not change drastically
within the coherence time, the detection can not start before
the estimation and preprocessing of the channel matrices is
finished. Thus the inversion of a 4 × 4 matrix as well as all
other channel estimation computation needs to be finished as
soon as possible. The goal of this paper is to find a practical
solution that meets this real-time constraint.

4. MATRIX INVERSION

H can be any matrix of arbitrary size. As mentioned in [5],
the size of H considered is typically between 2×2 and 4×4.
Although larger matrices (e.g. 8×8) can still be managed [5],
the cost of real-time implementation will be much higher.

4.1. The General Case

As mentioned in [3], for large matrices, matrix inversion is
traditionally implemented by applying QR factorization to the
original matrix to generate an upper triangular matrix R, then
the result can be computed using back substitution. How-
ever, for small matrices, as shown by [4], there are other al-
ternatives which are faster, more silicon efficient while still

providing sufficient numerical stability. In [4], the use of a
method called blockwise analytic matrix inversion (BAMI)
is proposed to compute the inversion of complex-valued ma-
trices by partitioning the matrix into four smaller matrices,
and then compute the inverse based on computations on these
smaller parts. For example, to compute the inverse of a 4 × 4
matrix M, it is first divided into four submatrices

M =

[

A B
C D

]

The inverse of M can be computed as:

"

A−1 + A−1B(D − CA−1B)
−1

CA−1
−A−1B(D − CA−1B)

−1

−(D − CA−1B)
−1

CA−1 (D − CA−1B)
−1

#

4.2. STBC: A Special Case

Alamouti matrix [1] based orthogonal space-time-block-
coding (STBC) has been widely used to exploit the diversity
in space and time domain. The basic 2 × 2 Alamouti matrix
is defined in [1] as

A =

[

a1 a2

−a∗

2 a∗

1

]

(5)

the structure of matrices based on 2 × 2 Alamouti sub-
blocks remains invariant under several nontrivial matrix op-
erations including matrix inversion and QR decomposition.

Therefore, based on BAMI and the special structure of Alam-
outi matrix, in Ref. [5] a new method namely Alamouti
blockwise analytic matrix inversion (ABAMI) is proposed
by us which significantly reduces the amount of computation
needed to invert large Alamouti sub-block based matrices.
For example, the inversion of a 2× 2 Alamouti matrix can be

computed as follows:

H
−1 =

[

a1 a2

−a∗

2 a∗

1

]

−1

=
1

a1a1
∗ + a2a2

∗

[

a∗

1 −a2

a∗

2 a1

]

where a1a1
∗ + a2a2

∗ = |a1|
2 + |a2|

2 = αA is a real valued
result computed from the two complex values a1 and a2. In
order to calculate the inverse, we need the following several
operations: one dot operation to generate αA, one operation to
calculate the real valued 1/αA, two complex-with-real mul-
tiplications and a few sign-flip operations. Compared to the
BAMI method, the number of operations is reduced by almost

half, which makes ABAMI by far the simplest method for ma-
trix inversion in literature. The LMMSE detecter presented in
this paper is using BAMI and ABAMI based matrix inversion
to compute the coefficient matrix in Eq. (4).

5. ARCHITECTURE OF PROGRAMMABLE

HARDWARE

As mentioned in [6], systolic array is a classical architecture
to implement QR decomposition for high performance solu-
tions. However, traditional systolic arrays usually consume
large silicon area and do not scale very well as the size of the
matrix changes. Since it is already shown by [5] that BAMI
and ABAMI can efficiently handle matrix inversion using pro-

grammable HW, in order to fully prove the concept, a com-
plete LMMSE detector is designed and implemented. The
detector has limited programmability due to design simpli-
cations, nevertheless it supplies enough flexibility to support
most linear detectors (e.g. ZF and LMMSE).

As depicted in Fig. 2, the baseband processor presented
in this paper contains a 4-way SIMD Floating-Point Com-

plex Multiply and ACcumulation (FPCMAC) datapath. Fig. 3
shows the schematic of one FPCMAC. With 32 complex-
valued general registers and four accumulation registers, the
processor is enough to compute the inverse of matrices not
larger than 4× 4 with little memory overhead. For larger ma-
trices (e.g. 8 × 8), data need to be moved in between the reg-
ister file and memory thus introducing some overhead. For-



Fig. 2. Architecture of programmable hardware used for
MMSE detection

Inputs

Outputs

Fig. 3. Schematic of the FPCMAC (the divider unit is not
shown)

tunately, in most standards, only channel matrices not larger
than 4 × 4 are involved.

6. SIMULATION

The performance (SNR/BER) curves of MMSE detection are

depicted in Fig. 4 and Fig. 5 using 16-bit, 20-bit and 64-bit
(IEEE double precision) floating-point datatypes. The size of
the matrices involved ranges from 4×4 to 8×8. As illustrated
in Fig. 5, for 8 × 8 matrix inversion, the BER/SNR perfor-
mance curve will saturate even if the SNR increases further.
In comparison, the 20-bit representation brings sufficient pre-
cision for larger matrices. It has also been shown in [5] that

ABAMI has the same numerical stability as BAMI.

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR

B
E

R

BER/SNR curve of MMSE detection (4x4)

 

 

4x4, double precision
4x4, 16−bit
4x4, 20−bit

Fig. 4. Performance of LMMSE Detection (4 × 4)

Mnem Name Description cycles

sabs Cplx squared abs c = a.r2 + a.i2 2

ssa Sum squared abs c = a.r2 + a.i2 + b.r2 + b.i2 3

cip Cplx inner product c =
P

(ai.r
2 + ai.i

2) 4
cmul Cplx multiply c.r = a.r ∗ b.r − a.i ∗ b.i 2

c.i = a.r ∗ b.i + a.i ∗ b.r
cmac Cplx multiply-add c.r = c.r + a.r ∗ b.r − a.i ∗ b.i 3

c.i = c.i + a.r ∗ b.i + a.i ∗ b.r
rmul Real-Cplx multiply c.r = a.r ∗ b; c.i = a.i ∗ b 1
inv Real 1/x b = 1/a 3

Table 1. Complex Floating-Point Instructions

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR
B

E
R

BER/SNR curve of MMSE detection (8x8)

 

 

8x8, double precision
8x8, 16−bit
8x8, 20−bit

Fig. 5. Performance of LMMSE Detection (8 × 8)

7. IMPLEMENTATION

In order to evaluation the performance of the LMMSE de-
tector presented in this paper with several existing solutions,
it is synthesized using both the Xilinx FPGA and ST 65 nm
CMOS ASIC technologies.

7.1. FPGA Prototype

For the FPGA implementation, Xilinx ISE and Core Genera-
tor were used to synthesize the design based on the Virtex4-
xc4vlx200 FPGA. The input is a 4 × 4 matrix of complex
floating-point values and output is the inverse matrix. All the
basic units are generated using Xilinx Core Generator. Both
the 16-bit and 20-bit implementations have 9 pipeline stages
in the FPCMAC and take 8 cycles to finish the real value

division (1/X). Our design has also been synthesized using
Virtex2 and the main difference from Virtex4 is the clock fre-
quency. As depicted in Table 2, compared to the latest synthe-
sis result presented in [7] and [6], our 20-bit implementation
is much faster and occupies smaller area.

Impl 16b Impl 20b Ref [7] Ref [6]1

FPGA Type Virtex4 Virtex4 Virtex2 Virtex2

Num of Parallel Streams 4 4 1 1

Datatype floating floating fixed fixed

Wordlength (bits) 16 20 16 12

Num of Slices 7312 9474 16805 44001

Num of DSP48/MULT 0 0 44 0

Frequency (MHz) 120 110 66 100

Cycles to compute W 270 270 3000 3501

Latency/subcarrier (µs) 0.563 0.614 45 N/A1

Table 2. FPGA Implementation Result Comparison (1the im-

plementation in [6] only performs matrix inversion)



7.2. ASIC Implementation

Table 3 depicts the synthesis result including the gate count,
working frequencies and pipeline stages for various floating-
point wordlength. The 16-bit implementation can easily run at
400 MHz and takes 88 cycles to compute the inverse of a 4×4
matrix and in total 202 cycles to finish the preprocessing in-
cluding matrix inversion and multiplications. The 20-bit im-
plementation can run at 400 MHz by having 3 pipeline stage
in the 1/X unit. In this case, it requires 90 cycles and 204 cy-
cles to finish the same tasks accordingly. In other words, the
preprocessing of 420 matrices can be finished within 53 µs
which is only 1.23% of the channel coherence time.

Impl 16b Impl 20b

Wordlength (bits) 16 20

Num of Parallel Streams 4 4

Area (kgate) 90 120

Num of Pipeline Stages in FPCMAC 3 3

Cycles for Division 1 3

Working Frequency (MHz) 400 400

Cycles to Compute Matrix Inversion 85 90

Cycles to Compute W 202 204

Latency/subcarrier (µs) 0.126 0.128
Latency for 420 subcarriers (µs) 53 54

Table 3. ASIC Implementation of the Baseband Processor

8. DESIGN EVALUATION AND TRADE-OFF

8.1. Long vs. Short Wordlength

For any embedded system, there exists a design trade-off
which depends on the target of the system. From a cost effi-
cency perspective, the shorter the wordlength, the smaller the
silicon area and the higher the clock frequency can be. On the
other hand, in order to accommodate various antenna config-

urations (in other words, channel matrices in different sizes),
longer wordlength is expected to supply enough precision for
the matrix inversion. Facing such a dilemma, a trade-off must
be made according to the product specification.

For example, in case the baseband processor is designed
for standards that are relatively fixed, only the set of antenna
configurations specified in the standard needs to be covered.
As specified in WiMAX (IEEE-802.16-2005), only matrices

not larger than 4 × 4 are involved, which means that the 16-
bit implementation in this paper is sufficient for the prepro-
cessing of channel matrices. Meanwhile, since silicon cost is
important for a volume product, the 16-bit implementation is
more attractive due to the smaller area.

In case the processor is designed for SDR systems, the an-
tenna configuration and other system parameters are usually
unknown and dynamic, so that longer wordlength is preferred

to maintain the precision during the computation. Therefore,
for SDR systems aimed for algorithm research or defence ap-
plications which require the quick deployment of a new sys-
tem, longer wordlength (e.g. 20-bit) is expected.

8.2. Fixed-Point vs. Floating-Point

Although it is possible to use fixed-point hardware for the
matrix inversion in MIMO systems, it usually requires very
careful scaling (especially under badly conditioned channel)

which is more effort demanding for hardware and software
development. In comparison, floating-point hardware has the
advantage of higher productivity. Furthermore, as the semi-
conductor process scales to 45 nm, tapeout cost is more vital

compared to silicon efficiency, thus more weight should to be
put on the flexibility of hardware in the design phase.

8.3. Fixed-Functional vs. Programmable

The last but not the least, aside from the LMMSE detector, the
programmable hardware can be reused for other kernel oper-
ations. For example, with a minimum of extra hardware (two

adders), it can execute a 512-point FFT in around 2300 clock
cycles. By time-division hardware multiplexing (reuse), the
programmable hardware occupies smaller silicon area, which
reduces the leakage-power. This is especially important be-
cause leakage power increases significantly when the semi-
conductor process reaches nanoscale.

9. CONCLUSION

In this paper, a programmable LMMSE detector for MIMO-
OFDM is presented. By comparing it with other existing so-
lutions in Sec. 7, our implementation is the fastest with the
lowest silicon cost. The result shows that application specific

programmable hardware allows us to achieve both efficiency
and flexibility. On the other hand, this can only be achieved
when a good trade-off is made based on algorithm/hardware
codesign.

10. ACKNOWLEDGEMENT

The work of J. Eilert, D. Wu and D. Liu is supported partly by
the STRINGENT program from SSF. The authors would like
to thank ST Microelectronics for supplying 65nm process and
D. Wang at UT Dallas for discussion on STBC algorithms.

11. REFERENCES

[1] S. M. Alamouti, “A Simple Transmit Diversity Technique for

Wireless Communications”, IEEE J. Select. Areas Commun,

vol. 16, no. 8, pp. 1451-1458, 1998

[2] J. Andrews, A. Ghosh, R. Muhamed, “Fundamentals of

WiMAX: Understanding Broadband Wireless Networking”,

Prentice Hall, Mar 2007

[3] G. H. Golub, C. F. Van Loan, “Matrix Computations, Third Edi-

tion”, The Johns Hopkins University Press, 1996.

[4] J. Eilert, D. Wu, D. Liu, “Efficient Complex Matrix Inversion

for MIMO Software Defined Radio”, Proc. IEEE ISCAS, 2007.

[5] D. Wu, J. Eilert, D. Liu, D. Wang, N. Al-Dhahir and H. Minn,

“Fast Complex Valued Matrix Inversion for Multi-User STBC-

MIMO Decoding”, Proc. IEEE ISVLSI, 2007.

[6] F. Edman, V. Öwall, “A Scalable Pipelined Complex Valued

Matrix Inversion Architecture”, Proc. IEEE ISCAS, 2005.

[7] M. Myllylä, J. Hintikka, J. R. Cavallaro and M. Juntti, M.

Limingoja, A. Byman, ”Complexity Analysis of MMSE Detec-

tor Architectures for MIMO OFDM Systems”, Proc. 39th Asilo-

mar Conference on Signals, Systems and Computers, 2005.


