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Abstract. To increase the Abaqus software capabilities, we propose a strategy to force the software to activate
hidden degrees of freedom and to include extra coupled phenomena. As an illustration, we apply this approach to
the simulation of a reaction diffusion process, the Gray-Scott model, which exhibits very complex patterns.
Several setups have been considered and compared with available results to analyze the abilities of our strategy
and to allow the inclusion of complex phenomena in Abaqus.
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1 Introduction

Simulating the effect of impurities on the integrity of
structures leads to account for several interactions between,
e.g., the mechanical fields, the impurities transport and
trapping, the thermal fields, etc. The simulation of all these
phenomena simultaneously is a complex task, especiallywhen
strong couplings are involved or investigated: in the hydrogen
embrittlement of metals [1], or in the hydrolysis of polymers
[2,3], for instance, mobile species are adsorbed, transported
through the material, and trapped on specific sites whose
density is time and space dependent [4,5] (e.g., through the
development of plasticity for hydrogen in metals [6]).
Furthermore, mechanical fields can be affected by these
species because of induced deformations or through mod-
ifications of mechanical properties [7,8].

Numerous studies account for such interactions in finite
element codes, in various application fields (metal/
hydrogen, water/polymer, metal/lithium ions, see [9–17]
among others), but very few developments include several
phenomena in the computations [18,19], especially in the
commercial finite element codes, due to their inherent
limitations in terms of available degrees of freedoms at each
node. Such an inclusion may, however, be of importance,
e.g., to model the behavior of structures in the presence of
both impurities and evolving thermal boundary conditions
[20]. The aim of this work is thus to introduce some
developments performed in Abaqus to solve coupled
mechanical-multidiffusion finite element problems. This
paper is limited to a reaction-diffusion process between two

species, which is solved by using a coupled mechanical-
diffusion scheme (‘coupled temp-displacement’ in Abaqus)
that allows further developments to account for the
mechanical fields as well. First, the multidiffusion imple-
mentation strategy is presented, and then an application to
the Gray-Scott reaction-diffusion model is presented to
illustrate the new capabilities [21,22]. We would like to
underline that theproposedstrategyallowsan increaseof the
multiphysics simulations in Abaqus (including strong
couplings), while keeping the native features of the software
in term of modeling library (including mechanical behav-
iors). The application is here limited to a classical problem in
order to illustrate such possibilities, but extensions and
applicationsarewidely opentoa lotof coupledproblemsthat
include mechanics (metal/hydrogen, water/polymer,
metal/lithium ions as previously underlined, but also
electro-magneto-mechanics, etc.).

2 Introduction of a multidiffusion process
in Abaqus

In order to solve a complex problem with mechanics and
multidiffusive fields in a finite element (FE) software, it is
mandatory (i) to have a finite element formulation that
includes as many degrees of freedom (DOFs) per node as
the number of unknown fields, and (ii) to introduce the
correct weak formulation for all of these DOFs for solving
the problem. Introducing extra DOFs is complex; one may
exploit the unused mechanical DOFs (rotations, numbered
from 3 to 6, or the third displacement component in
2D problems), adding extra features to the elements
(see [23,24] for phase field implementation in Abaqus)* e-mail: yann.charles@univ-paris13.fr
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through an User ELement (UEL) routine [25]. One
approach of particular interest has been proposed by
Chester [26] to solve coupled thermo-chemo-mechanical
problems in polymers (this work has been applied in [27] for
a simple adsorption process). In this work, anUEL has been
developed that activated extra DOFs, in addition to the
introduction of a relevant weak formulation as specified in
[25]. Such DOFs are included by default in the Abaqus
element library for ‘coupled temp-displacement’ proce-
dures, but they are hidden and cannot be accessed through
the CAE interface or input files1. For the ‘coupled temp-
displacement’ procedure’, there are 7 DOFs at each node of
a 3D mesh, numbered as follows by Abaqus:
– 1 to 3 correspond to displacement;
– 4 to 6 correspond to rotation;
– 11 corresponds to nodal temperature (NT11 in the “Field
Output” section of the CAE).

The extra DOFs, activated using an UEL, are
numbered from 12 to 30, corresponding to NT12 to
NT30 (for ‘Nodal Temperature’) variables. Once activated,
their boundary conditions can be imposed in the input file
and their values (NT12!30, HFL12!30, etc.) can be
required in the output database file.

It isworthnoting that all the studiesmentionedabove, in
which an UEL was used to redefine the problem, have also
superimposed an additional layer of element taken from the
Abaqus library in order to visualize the results. As
demonstrated in [29], it is possible to go further and extend
the Abaqus finite element formulation by superimposing an
UEL to an Abaqus element: the terms that are not included
by default in the formulation can be introduced through the
UEL.Theapproachchosen inthepresent studycombines the
advantages of keeping the features of the Abaqus libraries
(materials, elements, etc.) and of adding extra terms and
DOFs in the finite element formulation by using a super-
imposed UEL. Thus, the implementation work is optimized

because the mechanical behavior does not need to be
redefined. Even if amultidiffusion process only is considered
here, the ultimate goal of a fully coupled mechanical-
multidiffusion problem has been kept in mind during the
developments.

3 Implementation process

Our strategy is presented in Figure 1: several element
layers sharing the same nodes are defined, and a ‘coupled
temp-displacement’ procedure is used. In this example, the
three UEL layers have the same numbers of DOFs and,
assuming that DOFs 11, 12, and 13 represent diffusion
DOFs between which a reaction may occur, all user
elements layers share the same UEL routine with different
parameters. Each layer, in this example, has a specific role:

– Layer 1: the Abaqus element (withmechanical DOFs 1 to
6, and 11) involves the mechanical behavior, one
diffusion phenomenon (related to DOF 11), and its
effects on the mechanical behavior. The problem is
strongly coupled (i.e., the diffusion and the mechanical
problems are solved simultaneously), but no effect of
mechanical DOFs on diffusion is possible here (except
with developments beyond the scope of this work).

– Layer 2: this UEL layer activates DOF 12 and its
coupling with the standard ‘coupled temp-displacement’
DOFs 1!6 and 11, through its weak formulation.

– Layer 3 has the same role as layer 2, but for DOF 13.
– Layer 4 defines only the relation betweenDOFs 12 and 13.

It is worth noting that other approaches can be
considered in the superimposition process (for instance,
a single UEL can be used to activate DOFs 12 and 13, and
to introduce all the ingredients needed in Abaqus). Each
element layer leads to the computation of a specific stiffness
matrix, performed either by Abaqus or by the UEL, as
shown below:

see equation (1) above.

1 Their presence can be inferred from [28], sections 28.3.6 and
28.6.5, in the ‘Output’ subsection.

ð1Þ
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In the case presented in Figure 1, the stiffness matrices
are 16� 16 and 20� 20 for the Abaqus element and for the
UEL, respectively. At the end of the superimposition
process, the stiffness matrix of the global problem is
24� 24: due to the activation of the extra nodes, the
initial Abaqus element stiffness matrix has increased
significantly, without any other user manipulation than the
activation of hidden DOFs.

This strategy is applied below, where only DOFs 12 and
13 are considered, for illustration. The transient ‘coupled
temp-displacement’ procedure is used, even if there is no
coupling between DOFs (12,13) and (1,2,3,11) in the
present work.

4 Application

The Gray-Scott model is considered here as a test reaction-
diffusion process to be implemented.

4.1 The Gray-Scott model

The Gray-Scott (GS) reaction-diffusion model represents a
particular case of Turing systems [30], where the reactions
of three chemical species are focused on. These species,U,V
and P, define an autocatalytic system so that [21,22]

U þ 2V ! 3V

V ! P

�

ð2Þ

The space-time evolution of species U and V can be
obtained by solving the following system of differential
equations:

∂u

∂t
¼ DuDu� uv

2 þ F 1� uð Þ

∂v

∂t
¼ DvDvþ uv

2 � F þ kð Þv

8

>

<

>

:

ð3Þ

where u and v denote the concentrations of species U and
V, respectively, Du and Dv represent their diffusion

coefficients, F is the feed rate for U and k the kill rate
for V. This reaction has been widely studied as a simple
model to reproduce the patterns observed in several
chemical reactions (or natural ones [31]), as illustrated in
Figure 2.

4.2 Numerical implementation

The patterns induced by the GS model have been the
subject of numerous studies from the seminal work by
Pearson [36] (see, e.g., [37–42]), including many for
entertainment purposes2, and a classification of the GS
patterns has been proposed (see Fig. 3), depending on the
(F,k) values. Consequently, many implementations of the
GS reaction can be found, based on finite differences and
forward Euler integration scheme for efficiency reasons
([43–45], among others, and the very complete webpage of
R. Munafo [46]), mainly in 2D. Very few [47–49] apply the
finite element method, especially Abaqus. One study [50]
includes mechanical coupling, but no indication on the
implementation process is given, nor if extra DOFs have
been introduced, unfortunately.

We have implemented the GS reaction in Abaqus by
introducing DOFs 12 and 13; the details of the RHS vector
and of the AMATRX matrix have been adapted from [48]
by considering constant diffusion coefficients, in particu-
lar. Computations have been performed with the ‘coupled
temp-displacement’ procedure, even if no mechanical nor
temperature field is computed. It is especially worth
noting that, in addition to the GS reaction simulation
presented here, a full “coupled-temp displacement”
Abaqus simulation can be run in the same computation.
In order to evaluate the ability of our implementation to
simulate a GS process accurately, all the results are
compared with those given by the Python script written
by D. Bennewies [44].

4.3 Configuration studied

The configuration studied is a square domain 2.5� 2.5mm2,
which is meshed with 250� 250 fully integrated
linear square elements (i.e., with an element size of
0.01� 0.01 mm2), over which an user element is super-
imposed, sharing the same nodes, for the activation of
DOFs 12 and 13 (representing the concentrations of U
and V, respectively) and for the integration of the
reaction-diffusion process. A transient ‘coupled temp-
displacement’ procedure is applied. Periodic boundary
conditions are prescribed to DOFs 12 and 13 along the
border of the domain, as set in [44]. The following initial
conditions for u and v are defined using a DISP user
subroutine:

x∈V⟹u ¼ 0:5� 0:01dðxÞ; x∉V⟹u ¼ 1

x∈V⟹ v ¼ 0:25þ 0:01dðxÞ; x∉V⟹ v ¼ 0

(

ð4Þ

2 For instance, ‘Gray-Scott reaction diffusion’ keywords in
YouTube gives 779 results.

Fig. 1. Principle of the implementation of a multidiffusion
process.
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where V is a rectangular domain 0.125(1 + d)�
0.125(1 + d) with d ∊ [01] a random perturbation.
Finally, Du and Dv have been set to 10�5 mm2/s

and 2� 10�5 mm2/s, respectively. Several (F,k)
parameters have been considered, as listed in
Table 1.

Fig. 2. Examples of chemical patterns.

Fig. 3. (a) Types of patterns obtained with the GS reaction, and (b) their position in the (F,k) plane (using Du=Dv=2�
10�5 mm2 s�1) as defined in [36]. For (F,k) points where no pattern is specified, a constant homogeneous field for u as well as for v is
expected (denoted as B and R for “Blue” �u ≈ 0.3 and v ≈ 0.25– and “Red” �u=1 and v=0– respectively).
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4.4 Results

The Abaqus results for u (NT12) and v (NT13) are
presented in Figures 4a–8a, with the corresponding Python
reference results for u shown in Figure 4b. All Abaqus

computations have been performed with a constant time
increment of 10 s, while the python’s one is equal to 1 s. It
can be observed that our implementation in the Abaqus
code is able to reproduce quite well the results obtained
with another software, for various configurations.

Fig. 5. Same as Figure 4, with (F,k)= (0.022, 0.049) at t=800 s.

Fig. 4. (a) u and v fields obtained with Abaqus and (b) u field computed with python following [44], using (F,k)= (0.006,0.037) at
t=800 s.

Table 1. Reaction parameters considered (among those of [44]).

F 0.006 0.022 0.026 0.046 0.062

k 0.037 0.049 0.061 0.063 0.0609

Expected pattern
[44,46]

Propagating
wavefronts (Type j)

Chaotic oscillations
(Type b)

Solitons
(Type l)

Worms
(Type m)

Negatons
(Type p)

Fig. 6. Same as Figure 4, with (F,k)= (0.026, 0.061) at t=2500 s.
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It may be noted that the U-skate geometries
exhibited by Munafo [41,46]) could not be generated,
as in [44].

5 Discussion

An important feature observed in our simulations is a non
constant velocity of the pattern front, with a strong influence
of the (F,k) parameters. This behavior is consistent with
results obtainedbyothermethods, especially in [44].Fromthe
Figures 4 to 8, it might be observed that the front velocity
computed by Abaqus has the same order of magnitude than
the one obtained using Python.

We have also investigated the effects of the element size
and of the time increment (see [46] for a more complete
investigation of the time increment influence). The
influence of the element size is illustrated in Figure 9 for
(F,k)= (0.006, 0.037). When the element size increases, the
generated pattern is strongly influenced by the mesh
structure and tends to a square rather than a circle.
Moreover, the velocity of the pattern front is increased
because of a rapidly vanishing V field that annihilates the
reaction process.

In contrast, decreasing the time increment has
no influence on the Abaqus results and on their
consistency with [44], except for (F,k) = (0.022, 0.049)
where the intensities of the pattern oscillations decrease
and a steady state is finally reached for t about 3400 s.

For this configuration, the influence of the time
increment is shown in Figure 10 when it is decreased
from 10 s to 1 s, no steady state is reached with Abaqus
up to 5000 s and chaotic oscillations are observed, as in
[44].

6 Conclusion

An appropriate application of user elements allows the
extension of Abaqus capabilities, including the modifi-
cation of library elements, the activation of hidden
DOFs, and the addition of various physical processes
with or without couplings. This study has been focused
on the activation of DOFs and on the addition of
chemical reactions in Abaqus. An application to the
Gray-Scott model has been made successfully. However,
this model, though spectacular, has very complex
features in term of spatio-temporal evolution, intimately
linked with the used parameters. This complexity leads
to some difficulties in the definition of the finite element
setup in terms of time increment and mesh. Further work
will extend the proposed approach to 3D simulations,
reactions involving 3 species or more, and mechanical
coupling.

To include mechanical DOFs, in the frame of
hydrogen transport-trapping-thermomechanic interac-
tions especially, it will be only necessary to introduce
in the UELs the related contribution to the weak

Fig. 8. Same as Figure 4, with (F,k)= (0.062, 0.0609) at t=5000 s.

Fig. 7. Same as Figure 4, with (F,k)= (0.046, 0.063) at t=5000 s.
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Fig. 10. Influence of the time increment on the Abaqus results at t=5000 s for u (left) and v (right), with (F,k)= (0.022, 0.049).

Fig. 9. Influence of the element size on the Abaqus results at t=800 s for u (left) and v (right), with (F,k)= (0.006, 0.037).

E. Vasikaran et al.: Mechanics & Industry 21, 508 (2020) 7



formulation. Furthermore, a 4th layer might be added to
include the coupling between DOF 11 and mechanical
fields. Equation (1) thus becomes:

see equation (5) above.

Such an extension work is in progress [51].

Nomenclature

U and V Species used in the Gray-Scott equation
F Feed rate of U (mol s�1)
k Kill rate of V (mol s�1)
uv Diffusion coefficient of U (m2 s�1)
Dv Diffusion coefficient of V (m2 s�1)
u Concentration of U (molm�3)
v Concentration of V (molm�3)
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