
Implementation of a Transaction Level Assertion Framework in
SystemC

Wolfgang Ecker
Infineon Technologies AG
IFAG COM BTS MT SD
81726 Munich, Germany

Wolfgang.Ecker@infineon.com

Volkan Esen,
Thomas Steininger,

Michael Velten
Infineon Technologies AG

TU Darmstadt - MES
Firstname.Lastname@infineon.com

Michael Hull
Infineon Technologies AG
University of Southampton
mh102@ecs.soton.ac.uk

Abstract
Current hardware design and verification methodologies

reflect a trend towards abstraction levels higher than RTL,
referred to as transaction level (TL). Since transaction level
models (TLMs) are used for early prototyping and as refer-
ence models for the verification of their RTL representation,
the quality assurance of TLMs is vital. Assertion based ver-
ification (ABV) of RTL models has improved quality assur-
ance of IP blocks and SoC systems to a great extent. Since
mapping of an RTL ABV methodology to TL poses severe
problems due to different design paradigms, current ABV
approaches need extensions towards TL. In this paper we
present a prototype implementation of a TL assertion frame-
work using SystemC which is currently the de facto standard
for system modeling.
1 Introduction

The main modeling paradigm in electronic system level
(ESL) is transaction level modeling. Due to a reduction of
implementation details, transaction level models (TLMs) are
used for early system validation and architecture exploration.
So-called virtual prototypes are used for early software de-
velopment and as golden references for the verification of
RTL prototypes. Due to this fact, it is vital to ensure the
quality of a TLM through elaborated verification method-
ologies. Current verification methodologies for complete
systems consist of a combination of scoreboard and cover-
age techniques also taking the embedded software into ac-
count. Assertion based verification (ABV) has shown a great
impact on verification productivity and quality assurance in
RTL flows by improving the visibility of internal objects of a
design. Hence, leveraging ABV on transaction level is desir-
able. However, no ABV approach has been established for
the transaction level (TL). This is due to the fact that RTL-
ABV cannot directly be mapped to TL since the modeling
paradigms differ. The main difference is the concept of syn-
chronization. In RTL models it is achieved by the use of
clocks that define when state changes can happen. In TL syn-
chronization is obtained by mutual dependencies of transac-
tions and by the use of time annotations in addition to the use
of asynchronous communication protocols. Furthermore, the
applied synchronization schemes depend on the abstraction
layer chosen for a TLM. Since a system representation can
consist of TLMs of different abstraction as well as RTL mod-
els, an ABV approach has to be chosen that can cope with

mixes of abstraction layers. In this paper we gather require-
ments that we believe are necessary for lifting ABV to TL
and introduce a SystemC implementation of an ABV frame-
work which is capable of monitoring properties that reason
about both the architecture and the embedded software of a
system.

The paper is structured as follows. After discussing re-
lated work we explain the required features for transaction
level properties. We illustrate the use of these features with
an application example and describe the implementation de-
tails of the suggested framework followed by experimental
results. We close with conclusions and discuss the next steps
to be done.

2 Related Work
SystemC, the de facto standard for system level design,

does not yet have standard native temporal assertion support.
Work has been presented for migrating current RTL-ABV
approaches to SystemC as e.g. in [11],[6], and [7]. In con-
trast to that, the concepts shown in this paper aim at higher
levels of abstraction since RTL concepts cannot be mapped
directly to TLM. Concurrent assertions on RTL are modeled
clock based. The lack of clock synchronous behavior re-
quires more expressive control expressions for the evaluation
of concurrent assertions in TLMs.

Work towards formal model checking of system level
models exists as shown in [13], [12], [5], and [4]. These
approaches rely on state space exploration based on abstract
representations of system level models. However, formal
methods unfortunately involve state space explosion prob-
lems that pose limitations on the tasks at hand. The work
presented in this paper rather focuses on dynamic verifica-
tion approaches using transaction level assertions for sim-
ulation rather than for static verification. In [10] and [2]
new approaches for transaction level assertions are intro-
duced. However, in [10] transactions are mapped to signals
and therefore the approach is restricted only to transactions
which are invoked by suspendable processes. Our approach
works on the basis of events in contrast to signals. Hence,
it is not restricted to a certain kind of transaction. In [2]
transactions are recorded and written into a trace to do post
processing. Trace based assertion checking however requires
that everything to be recorded must be annotated in the code
and the creation of simulation data bases can become very
resource intensive. Furthermore this approach does not con-

978-3-9810801-2-4/DATE07 © 2007 EDAA

sider start and end of transactions. Therefore overlaps of
transactions and parent child relations cannot be detected.

The implementation work presented within this paper is
SystemC compliant and hence, other TL verification ap-
proaches can be used along. Therefore our assertion ap-
proach can complement verification in frameworks like the
Advanced Verification Methodolgy [9].

3 Required Features for Transaction Level
Assertions

In this section we briefly gather features that enable and
ease the monitoring of transaction level properties.

The functionality of a transaction level model can be char-
acterized by the use of transaction sequences as described in
[12]. A transaction sequence corresponds to a user specifi-
able pattern of transactions which occur during a simulation
run. Such sequences can be used to build properties about
the system behavior.

On RTL, sequences are patterns of boolean propositions
observed on signals or registers. The evaluation of a se-
quence is performed synchronously to the design by using
the value change of the design clock or a similar signal as a
trigger for the evaluation of boolean propositions. Tempo-
ral relations between such propositions are mainly specified
in terms of clock cycles. On TL, however, clocks are not
modeled in order to reduce the number of delta cycles and
events that lead to context switches. Instead the design func-
tionality is modeled in a more abstract way, neglecting micro
architectural details. Synchronization is used only at points
where the default scheduling of processes would lead to data
and control conflicts. Since TL sequences do not necessarily
start and end at a synchronization point, we require that the
evaluation of sequences is triggered asynchronously, i.e., by
using the start and end events of transactions as triggers.

This approach however might lead to starving sequence
evaluations since the occurence of awaited events is no
longer ensured. Using timeout mechanisms (called timer
events) easily resolves this issue.

Another required feature is the notion of positive and neg-
ative triggering events. If an event is declared negative, the
evaluation of a transaction level sequence returns a negative
result. This can be used for terminating a sequence if a trans-
action occurs that is not supposed to happen during the eval-
uation.

Further on, combining single events using boolean oper-
ators and combining these event expressions with time con-
straints offers further possibilities when formulating proper-
ties.

TL sequences also need to support multi threaded evalua-
tion modes, as e.g. in SystemVerilog Assertions (SVA, [8]).

Finally properties that form an implication require evalu-
ation modes that allow both the overlapping concept of SVA
and the “Restart”, “NoRestart” modes known from the open
verification library (OVL, [1]).

4 Application Example
In this section we introduce a simple transaction level

PVT (Programmer’s View with Timing) model and explain
how the required features from Section 3 can be used for

specifying properties. The Listings used here show exam-
ples of a descriptive assertion language that we developed.
Descriptions in this language are used as input for a com-
piler that generates the SystemC implementation which is
discussed here. A detailed introduction of the language can
be found in [3].
4.1 CPU-Queue

Figure 1 depicts the application model including proxy
monitors used for the detection of start and end of a transac-
tion passing the monitored port.

proxy
sub

system

sub

system

sub

system
proxy

Master

CPU

sort

subsystem

proxy proxy

Figure 1. CPU-Queue

The model consists of a queue of 16 subsystems, each
including one CPU and I/O ports for data transfers. The
communication between a CPU and its I/O devices utilizes
blocking transactions for reading and writing the peripherals.
The CPU blocks when the addressed device is not ready for
that access. The input port of the first subsystem is accessed
from the outer driving module. The output port of the last
subsystem is connected to the outer module’s input port.

The software running on the CPUs implements a dis-
tributed algorithm for sorting non zero values. At first the
number of data values to be sorted is read in and then passed
on to the next subsystem. After the first sorted value has
propagated through the queue, the remaining values have to
follow with exactly 10 time steps distance.

Further details of the application model are not relevant
for the remainder of this paper.
4.2 Assertions for the Application Model

Many properties can be specified for this simple system.
We will focus on two properties we want to monitor:

• prop-SortVal-pv: Each subsystem propagates either the
value at the input or the internally stored value to the
output, depending on which is greater; the other one is
stored.

• prop-17in17out-pvt: Pushing 17 values in the queue im-
plies 17 values at the output of the queue where the first
value pushed in equals the first value at the output. Ad-
ditionally, the last 16 values have to have a temporal
distance of 10 time steps to each other.

The first property does not involve timing, whereas the sec-
ond property requires further timing information.

Property “prop-SortVal-pv” has to hold 15 times for each
instantiated subsystem. Listing 1 shows a sample notation
of this property. The antecedent sequence matches whenever
CPU read end event occurs after which the CPU’s R1 reg-
ister does not equal zero. The delay element (#) delays the
evaluation of the boolean condition by one CPU read end
event. The antecedent also contains local variables L1 and

L2 which store the two values to be compared by the pro-
gram for a later point in the evaluation.

The consequent sequence is only evaluated after a match
of the antecedent and is triggered by the end of a write trans-
action invoked by the CPU.
property prop−Sor tVa l−pv (AnyMatch , ReportOnRestart)

s c u i n t <12> L1 , L2 ;
#1(CPU read end) (CPU . R1 != 0 , L1 = CPU . R1 , L2 = CPU . R0)
|−>
#1(CPU wri te end) ((L1 > L2) ? CPU wri te . d a t a == L1

: CPU wri te . d a t a == L2) ;
endproperty

Listing 1. Property: “prop-SortVal-pv”

It matches when the right value has been propagated out
using the write transaction. The identifier CPU write.data is
a reference to the monitor that detects write transactions and
stores their payload in a member variable called data.

The evaluation mode for the antecedent is “AnyMatch”1

since the sequence has to detect any completed read trans-
action. The evaluation mode of the property is “ReportOn-
Restart”2 for the occurrence of a further read transaction
prior to a write transaction is illegal behavior.

The second property is formulated in Listing 2.
property prop−17 i n 1 7 o u t−p v t (AnyMatch , ReportOnRestart)

s c u i n t <12> L1 ;
#1(b p u t i n s t) (true , L1 = b p u t i n s t . d a t a)
#16(b p u t i n s t) t rue
|−>
#1(b p u t o u t e n d) (L1 == b p u t o u t e n d . d a t a)
#1(b p u t o u t e n d) t rue
#15(b pu t ou t end@10 ; t imer (1 1)) t rue ;

endproperty

Listing 2. Property: “prop-17in17out-pvt”

The identifier b put in st refers to the start of the blocking
transaction put in that drives a value into the queue. The
identifier b put out end denotes the end of the transaction
put out that propagates a value out of the queue.

For the antecedent we chose the start event of put in as
a trigger because the blocking mechanism allows that the
first value propagates out of the queue while the last value
is driven in. The first delay operator is for catching the first
occurrence of put in in order to store its payload in the local
variable L1. After 16 further occurrences of put in the an-
tecedent produces a match which starts the implication. Note
that the property mode is specified as “ReportOnRestart”.
Since several evaluation attempts of a sequence may overlap,
new evaluation attempts are created with every occurrence of
put in. By choosing this property mode we check that there
is no further put in transaction while the consequent is under
evaluation.

The first delay operator of the consequent sequence
catches the first put out transaction in order to compare its
payload with the first value being sent into the queue. The
second delay operator matches the second put out trans-
action and the third delay operator matches the remaining
put out transactions, while checking that they occur exactly

1The default matching strategy in SVA for sequences that are
not used as consequent expressions

2This OVL mode throws a report if the antecedent has matched
while an implication was being active.

in a 10 time steps distance to each other. The delay operator
in the middle is necessary since the temporal delay between
the first and the second put out transaction is not specified.
The last delay operator utilizes a time constraint operator
(@10) to ensure that the corresponding event triggers only
if it occurs 10 time steps after the last triggering event of this
sequence. The timer operator is applied in order to ensure
that the sequence will produce a result. Note that within this
delay operator’s trigger list, we utilize a semicolon to sepa-
rate positive (left) from negative (right) triggers. Therefore
in case the timer occurs the sequence will produce a “not
matched” result.

5 Implementation
In this section we give a detailed overview of a SystemC

framework that supports the specification of transaction level
assertions.

5.1 Monitor
In order to detect transactions we used proxy monitors

which are linked in between two communicating modules.
The monitor inserts call backs at the beginning and at the
end of a transaction. This is similar to an instrumentation
for transaction recording using SCV (SystemC Verification
Library). Note that the monitor does not utilize sc events.
Such events interact with the scheduling algorithm of the
SystemC kernel; however, throwing events does not sus-
pend the monitored transaction and the process that called it.
Hence, the corresponding transaction would have to reach a
synchronization point to invoke a context switch in the kernel
which then takes the notified events into account for further
scheduling. Since a transaction can be “non-blocking”, the
information of the start and end has to be propagated to an
assertion immediately through callbacks, i.e., child transac-
tions of the monitored transaction. The monitor also stores
the values transported by a transaction. These values are
not passed to the assertions, but are accessible through cross
module references. Therefore the values are only read when
required by an evaluation of an assertion.

5.2 Structure
Since SystemC supports object oriented design it is pos-

sible to model all functionality as classes or modules. Such
a modular concept allows an easy assembly of any sequence,
property, and assertion. Our implementation is divided into
three hierarchical layers:

• Verification Layer: Specifies which properties are to be
asserted or covered

• Property Layer: Specifies properties as either a combi-
nation of simpler properties using property operators or
as an implication built up from several sequences

• Sequence Layer: Specifies sequences as either a com-
bination of simpler sequences using sequence operators
or as basic boolean expressions correlated by events

Figure 2 demonstrates the interaction between the different
layers, as well as how the different components are con-
nected together. The “B L” objects are modules that perform
the evaluation of boolean conditions and handle local vari-
ables. These modules are skipped in the remaining sections

since they do not introduce TL specific features. For details
concerning the other modules see the next sections.

Trigger

#* #xB L B L

Trigger

F

I

L

T

E

R

F

I

L

T

E

R

|->

Trigger

proxy1

proxy3

proxy2 system

verify

property

antecedent

seq
Trigger

#x B L B L#x

consequent

seq

assert

cover

EV_EX

EV_EX EV_EX EV_EX EV_EX

Figure 2. Structural Overview

5.3 Sequences
This section describes the basic building blocks of a se-

quence. A sequence is constructed of delay operators, event
expressions, and boolean expressions. Before explaining the
blocks in detail we explain how the evaluation is handled in
general.
5.3.1 Token Based Evaluation

The key idea in our implementation is the fact that all
objects perform their operations on dynamic data structures.
One evaluation thread of a sequence is modeled with a token
that propagates through all elements of a sequence3. The
solid arrows in Figure 2 denote the path of tokens through an
assertion. A token object contains the following entries:

ThreadID Global identifier per evaluation attempt
SubthreadID Identifier per branch of an evaluation at-

tempt; the evaluation is split into sev-
eral branches called subthreads in case
a sequence contains delay ranges (e.g.,
#[1:3](. . .))

IDSpace Specifies maximum number of Subthreads
and is used for calculating SubthreadIDs
dynamically within a sequence evaluation

Creation
Time

Stores at which simulation time a thread
has started

Result The result of the evaluation attempt that is
represented by ThreadID

LocalVars Declaration of local variables
5.3.2 The Delay Operator

Figure 3 depicts the general structure of a delay opera-
tor. A token is put in a delay operator using its input port
“start p”. At first the token is stored in a “deque” object,
which preserves the order of arriving tokens. In the second
step the token is combined with an initial counter value and
sent to the event expression logic via the event control port.
When a token arrives at the event expression logic it enables
the logic. The token arrives back at the delay operator when

3Where necessary the token object is stored in dynamic lists.

negative

timer

positive

trigger
event

operator

control

start_p
result_p

ID_X

deque

attach counter

cnt

ID_X

CNT=0

event expression logic
enable/

delete/

disable ID_X

CNT=0

negative

trigger

positive

timer

Evaluation Logic

POP
matched

not matched

ID_X

disable

trigger

Figure 3. Delay Module

the event expression logic produces a result. Depending on
the result the token arrives at the corresponding input port
of the delay operator; i.e., if a negative timer occurs the to-
ken arrives via the negative timer port of the delay operator
and invokes a corresponding method in the evaluation logic.
When a token arrives back at the delay operator this token
and its counter value is deleted from the event expression
logic. Then the counter of the token is incremented in the
evaluation logic in order to indicate that the token has been
delayed one step. If the token has been delayed the desired
amount of steps a positive result is produced for this token
and sent via the result port and the token is deleted from the
input list; otherwise the token is sent back to the event ex-
pression logic. If the token arrives at the negative ports a
negative result for this token is produced and sent via the re-
sult port and deleted from the input list. The disable input is
used for canceling all pending evaluations.

The first delay element in a property has to be a special-
ized version of the one depicted in Figure 3, since the first
element has to create the tokens for the further evaluation.
5.3.3 Event Expression Operators

For building event expressions we implemented special
event operators “and” and “or”. Both operators send the cor-
responding tokens out via a call on their result port if the
operator evaluates to true. The “and” operator produces a
call when its two operands have occurred within the same
simulation time slot. The “or” operator produces a call as
soon as one of its operands occurs.

Additionally we implemented a time constraint operator.
This operator has only one operand. It requires that the
operand occurs within the specified time interval. The time
interval is relative to the point in time when the operator is
enabled by a token object. All arriving tokens are stored in
an associative object and linked to their corresponding time
of arrival. When the operand occurs, all associations are
checked for their time stamp value. All associations with
a time stamp that is already out of range are cleared. The
associations where the time stamp is in the specified range
are cleared as well, however, the tokens associated with that
time stamp are sent out via the output port in the same order
they had arrived.

5.3.4 Timer Operator
This operator has no operands. It is enabled with each

arriving token. An event in an “sc event queue” is sched-
uled for the specified time when a token arrives; the token
is then stored in a list along with a boolean value that sig-
nals whether there was a delete attempt for this token4 or
not. When the scheduled event arrives, this boolean value is
checked. If there was no delete attempt for this token, the
operator produces a call on its output port.
5.3.5 Splitter and Merger

If ranges of delays are required, one evaluation thread
is split into parallel subthreads by explicitly unrolling the
ranges. Hence, for each step in a range a delay is instanti-
ated with an exact delay value. A range of 1 to 3 steps for
instance is unrolled to three delay operators in parallel with
delay amounts 1, 2, and 3, respectively. Everything follow-
ing a delay operator is instantiated three times as well, and
so forth. Since the evaluation of subthreads has to happen in
parallel, the token has to be copied for each subthread with
a unique subthread ID. This is accomplished by a splitter
module. The splitter module has one input and the required
amount of outputs. The splitter computes the new subthread
IDs by analyzing the available space, which is stored in the
token. Each new token has a new entry for its subthread ID
and its available ID space.

At the end of a sequence the results of all parallel instanti-
ations have to be merged again such that the outgoing tokens
can be streamed through one port.

5.3.6 Sequence Evaluation Modes
In SVA two sequence evaluation modes are defined:

AnyMatch Every subthread producing a match results
in a corresponding match for the whole se-
quence.

FirstMatch The first subthread producing a match re-
sults in a match for the whole sequence.
All remaining subthreads are ignored.

These evaluation modes do not affect the basic structure of
the sequence, however they determine how to interpret the
tokens which are propagating out of a sequence. Thus, a
module is connected to the end of a sequence that filters out
irrelevant tokens.

For “AnyMatch” mode the filter basically does nothing,
whilst in “FirstMatch” mode the filter utilizes a hash object5
for storing the first matching token of one Thread ID by using
the ID value as the key. Hence, the filter ignores all tokens
belonging to one thread ID as long as this ID exists as a key
in the hash object. If the token of the last possible subthread
arrives, the filter checks for the key in the hash object. If the
key exists it is deleted. If it does not exist the result indicated
for that token is returned.

5.4 Properties
This section describes the basic building blocks of a prop-

erty. A property is constructed of an implication operator and
event expressions.

4A delete attempt is sent by the delay operator as soon as there
is a legal trigger event.

5We used a map from the Standard Template Library.

5.4.1 The Implication Operator
Figure 4 depicts the general structure of an implication

operator. A token arrives through the port “ante p” and is

ante_p

ignore deque

event expression logic

Evaluation Logic

disable

trigger

input deque

start

cons_p

cons_p

result_p

Figure 4. Implication Module

passed to the evaluation logic. The evaluation logic deter-
mines when to start the consequent depending on the chosen
evaluation mode (see next section). The consequent is en-
abled by passing the token to the port “start cons p”. If an
evaluation is started the antecedent token is also stored in
the input list. A successful completion of the consequent se-
quence is signaled via the “cons p” port. If the implication is
fulfilled the token is finally passed to the “result p” port and
deleted from the input list. The ignore list is only used for
some modes (details see below). Again the disable input is
used for canceling all pending evaluations.

5.4.2 Property Evaluation Modes
In OVL three property evaluation modes are defined while

SVA uses a fourth one:
Restart Every match of the antecedent restarts the

evaluation of the implication.
NoRestart Any further match of the antecedent while

an evaluation is active are ignored.
ReportOn-
Restart

Any further matches of the antecedent
while an evaluation is active are reported.

Overlap Any further matches of the antecedent
while an evaluation is active start further
evaluation threads.

These evaluation modes do not affect the basic structure of
the property, however they determine how to interpret the
evaluation results of antecedents and consequents.

In Restart mode a match of the antecedent during an ac-
tive evaluation results in copying the input list to the ignore
list and clearing the input list afterwards. As long as the ig-
nore list contains data all matches of the consequent lead to
a step by step reduction of the ignore list entries. Thus, con-
sequent evaluations matching the tokens in the ignore list do
not affect the result of the implication.

In NoRestart mode further matches of the antecedent are
ignored as long as the input list is not empty.

In ReportOnRestart mode the behavior is similar except
for the fact that the user is notified of the restart attempt.

In Overlap mode every match of the antecedent is stored
in the input list and the consequent is started immediately.

A successful completion of the consequent removes the top-
most token from the input list.

5.5 Verification Layer
This layer always associates properties with correspond-

ing verification directives. A verification directive can be
parameterized by the severity level and an info string; fur-
ther on it can be specified if the property should be asserted,
covered or both.

6 Experimental Results
In this section we present some experimental results that

we obtained using several different application scenarios:
• Single CPU: In combination with a multiplication pro-

gram several properties for the correct execution of the
most frequently executed instructions were used.

• CPU Queue: The system was built from 16 and 32 sub-
systems respectively; the properties for sorting data as
presented in the previous chapters had to be adapted for
the larger example.

We measured the necessary execution time for all examples
both with and without assertions on a single CPU system
with 1.6 GHz and 1 GB RAM running a Linux OS. We used
SystemC 2.1.v1 in combination with the GNU C Compiler
(gcc) version 3.4.4 with optimization -O3. In order to lessen
the impact of workload or similar effects all tests were run
several times and afterwards the average time was computed.

All tests were run several times with varying iteration
depths. The results of the evaluations with iteration depths of
1000, 2000, and 3000 are presented in Table 1. The first line
shows the execution time in seconds per CPU without and
with assertions, while the second line holds the total num-
ber of successful property evaluations per CPU for the given
test case; this number represents the overall activity of all
assertions.

1000 2000 3000
SORT16 0.2 / 0.5 0.4 / 1.0 0.6 / 1.6

15078 30141 45203
SORT32 0.4 / 1.4 0.8 / 2.8 1.1 / 4.2

31063 62094 93125
CPU 0.3 / 3.5 0.6 / 7.0 0.9 / 10.5

129000 254000 381000
Table 1. Experimental Results

As can be seen there are big differences concerning the
execution times, especially for the single CPU example. On
the other hand, the properties show a much higher activity
compared to the other systems.

The relative performance impact of the assertions remains
almost constant for each example and is thus nearly indepen-
dent from the iteration depth.

Even though the performance loss due to the inclusion
of the assertions can become quite large, this does not in-
validate our approach. Since the implementation presented
here represents mostly a proof of concept, no performance
optimizations were included within the assertion framework,
yet.

7 Conclusion and Outlook
The discussions in the previous sections show that apply-

ing ABV to TLMs offers new ways of high level system veri-
fication. We have gathered requirements for TL-ABV where
we introduced transaction events (START,END) for synchro-
nizing the concurrent evaluation of assertions. Further on we
abstracted time by using timer events and time constraints.
Additionally we also combined evaluation modes which are
distributed over several ABV approaches into one concept.
An application example was given in order to demonstrate
a couple of TL properties. Afterwards we provided details
about a possible implementation of the different operators
based on SystemC classes and the integration of these oper-
ators in order to build up the complete assertion monitor.

Further additions have to be developed that allow e.g.
combinations of sequences or properties using correspond-
ing operators. In addition to that we work on a fully pipelined
evaluation mode that allows exact matches in sequences.
Acknowledgment

This work is partially funded by the European Commis-
sion under SPRINT IST-2004-027580.
8 References

[1] Accellera. Open Verification Library.
http://www.accellera.org/activities/ovl/.

[2] X. Chen, Y. Luo, H. Hsieh, L. Bhuyan, and F. Balarin. Assertion
Based Verification and Analysis of Network Processor Architectures.
Design Automation for Embedded Systems, 2004.

[3] W. Ecker, V. Esen, M. Hull, T. Steininger, and M. Velten. A Prototypic
Language for Transaction Level Assertions. In Design and Verifica-
tion Conference (DVCon), February 2007.

[4] D. Große and R. Drechsler. Formal Verification of LTL Formulas For
SystemC Designs. In International Symposium on Circuits and Sys-
tems, volume 5, pages 245–248, May 2003.

[5] A. Habibi and S. Tahar. Assertion and Model Checking of SystemC.
In North American SystemC Users Group Meeting, San Diego, Cali-
fornia, USA, June 2004.

[6] A. Habibi and S. Tahar. On the extension of SystemC by SystemVer-
ilog Assertions. In Canadian Conference on Electrical & Computer
Engineering, volume 4, pages 1869–1872, Niagara Falls, Ontario,
Canada, May 2004.

[7] A. Habibi and S. Tahar. Towards an Efficient Assertion Based Ver-
ification of SystemC Designs. In In Proc. of the High Level Design
Validation and Test Workshop, pages 19–22, Sonoma Valley, Califor-
nia, USA, November 2004.

[8] IEEE Computer Society. SystemVerilog LRM P1800.
http://www.ieee.org.

[9] Mentor Graphics. Advanced Verification Methodology Cookbook.
Mentor Graphics, http://www.mentor.com, 2006.

[10] B. Niemann and C. Haubelt. Assertion Based Verification of Trans-
action Level Models. In ITG/GI/GMM Workshop, volume 9, pages
232–236, Dresden, Germany, February 2006.

[11] T. Peng and B. Baruah. Using Assertion-based Verification Classes
with SystemC Verification Library. Synopsys Users Group, Boston,
2003.

[12] P. Peranandam, R. Weiss, J. Ruf., and T. Kropf. Transactional Level
Verification and Coverage Metrics by Means of Symbolic Simulation.
In ITG/GI/GMM Workshop, February 2004.

[13] R. J. Weiss, J. Ruf, T. Kropf, and W. Rosenstiel. Efficient and Cus-
tomizable Integration of Temporal Properties into SystemC. Lau-
sanne, Switzerland, September 2005.

