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Implementation of Adaptive Critic-Based
Neurocontrollers for Turbogenerators in

a Multimachine Power System
Ganesh Kumar Venayagamoorthy, Senior Member, IEEE, Ronald G. Harley, Fellow, IEEE, and

Donald C. Wunsch, Senior Member, IEEE

Abstract—This paper presents the design and practical hard-
ware implementation of optimal neurocontrollers that replace the
conventional automatic voltage regulator (AVR) and the turbine
governor of turbogenerators on multimachine power systems. The
neurocontroller design uses a powerful technique of the adaptive
critic design (ACD) family called dual heuristic programming
(DHP). The DHP neurocontrollers’ training and testing are
implemented on the Innovative Integration M67 card consisting of
the TMS320C6701 processor. The measured results show that the
DHP neurocontrollers are robust and their performance does not
degrade unlike the conventional controllers even when a power
system stabilizer (PSS) is included, for changes in system oper-
ating conditions and configurations. This paper also shows that
it is possible to design and implement optimal neurocontrollers
for multiple turbogenerators in real time, without having to do
continually online training of the neural networks, thus avoiding
risks of instability.

Index Terms—Adaptive critics, hardware implementations, mul-
timachine power system, neural networks, neurocontrol, optimal
turbogenerator control.

I. INTRODUCTION

P
OWER-SYSTEM control essentially requires a contin-

uous balance between electrical power generation and a

varying load demand, while maintaining system frequency,

voltage levels, and power grid security. However, generator

and grid disturbances can vary between minor and large imbal-

ances in mechanical and electrical generated power, while the

characteristics of a power system change significantly between

heavy and light loading conditions, with varying numbers of

generator units and transmission lines in operation at different

times. The result is a highly complex and nonlinear dynamic

electric power grid with many operational levels made up of

a wide range of energy sources with many interaction points.

As the demand for electric power grows closer to the available

sources, the complex systems that ensure the stability and

security of the power grid are pushed closer to their edge.
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Synchronous turbogenerators supply most of the electrical

energy produced by mankind, and are largely responsible for

maintaining the stability and the security of the electrical net-

work. The effective control of these devices, is therefore, very

important. However, a turbogenerator is a highly nonlinear, non-

stationary, fast acting, multi-input-multi-output (MIMO) device

with a wide range of operating conditions and dynamic charac-

teristics that depend on the power system to which the generator

is connected too. Conventional automatic voltage regulators

(AVRs) and turbine governors are designed based on some

linearized power system model, to control the turbogenerator

in some optimal fashion around one operating point. At any

other operating points the conventional controller technology

cannot cope well and the generator performance degrades, thus

driving the power system into undesirable operating states [1].

Additionally, the tuning and integration of the large number

of control loops typically found in a power station can prove

to be a costly and time-consuming exercise.

In recent years, renewed interest has been shown in

power-system control using nonlinear control theory, partic-

ularly to improve system transient stability [2]–[6]. Instead

of using an approximate linear model, as in the design of

the conventional power system stabilizer, nonlinear models

are used and nonlinear feedback linearization techniques are

employed on the power system models, thereby alleviating

the operating point dependent nature of the linear designs.

Nonlinear controllers significantly improve the power system’s

transient stability. However, nonlinear controllers have a more

complicated structure and are difficult to implement relative to

linear controllers. In addition, feedback linearization methods

require exact system parameters to cancel the inherent system

nonlinearities, and this contributes further to the complexity of

stability analysis. The design of decentralized linear controllers

to enhance the stability of interconnected nonlinear power sys-

tems within the whole operating region remains a challenging

task [7].

However, the use of computational intelligence, especially

artificial intelligence, especially artificial neural networks

(ANNs), offers a possibility to overcome the above mentioned

challenges and problems of conventional analytic methods.

ANNs are good at identifying and controlling nonlinear sys-

tems [8], [9]. They are suitable for multivariable applications,

where they can easily identify the interactions between the

system’s inputs and outputs. It has been shown that a multilayer

perceptron (MLP) neural network using deviation signals

1045-9227/03$17.00 © 2003 IEEE
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(for example, deviation of terminal voltage from its steady

value) as inputs, can identify experimentally the complex and

nonlinear dynamics of a multimachine power system, with

sufficient accuracy [10], and this information can then be used

to design a nonlinear controller which will yield an optimal

dynamic system response irrespective of the load and system

configurations.

Previous publications have reported on the different aspects

of neural network based control of generators. Some have pro-

posed the use of neural-network-based power system stabilizers

(PSSs) to generate supplementary control signals [11]–[15]. Op-

timal PSS parameters have been derived using techniques such

as Tabu search and genetic algorithms and shown to be effec-

tive over a wide range of operating conditions in simulation

[16], [17]. Others have considered a radial basis function (RBF)

neural network in simulation, using actual values of signals, and

not the deviation values of those signals, to replace the AVR

[18], and the AVR and the PSS [19]. Another paper [20] has re-

ported on a MLP neural-network regulator replacing the AVR

and turbine governor, in simulation only, with deviation signals

as inputs and actual signals as outputs of the neural network.

Experimental results using the RBF neural-network con-

troller with deviations signals as inputs, and actual signals

as outputs of the neural network, to replace the AVR only,

have been considered in [21]. References [18], [21] have

reported that RBFs have some advantages over the MLP neural

networks, with training and locality of approximations, making

them an attractive alternative for online applications. Measured

results for an MLP-based controller replacing the AVR only,

have been reported in [19]. An online trained MLP feedforward

neural-network-based controller, with deviations signals [10]

as inputs and outputs of the neural network, to replace both

the AVR and the turbine governor have been considered in

simulation [22] and in real-time implementation on a PC-based

platform [23].

However, all these neurocontrollers require continual online

training of their neural networks after commissioning. In most

of the above results, an ANN is trained to approximate various

nonlinear functions in the nonlinear system. The information is

then used to adapt an ANN controller. Since an ANN identifier

is only an approximation to the underlying nonlinear system,

there is always residual error between the true plant and the

ANN model of the plant. Stability issues arise when the ANN

identifier is continually trained online and simultaneously used

to control the system. Furthermore, to update weights of the

ANN identifier online, gradient descent algorithms are com-

monly used. However, it is well known in adaptive control that

a brute force correction of controller parameters, based on the

gradients of output errors, can result in instability even for some

classes of linear systems [24], [25]. Hence, to avoid the possi-

bility of instability during online adaptation, some researchers

proposed using ANNs such as radial basis functions, where vari-

able network parameters occur linearly in the network outputs,

such that a stable updating rule can be obtained [26]. To date,

the development of nonlinear control using ANNs is similar to

that of linear adaptive control because the ANNs are used only

in linearized regions. Unfortunately, unlike linear adaptive con-

trol, where a general controller structure to stabilize a system

can be obtained with only the knowledge of relative degrees,

stabilizing controllers for nonlinear systems are difficult to de-

sign. As a result, most research on ANN-based controllers has

focused on nonlinear systems, whose stabilizing controllers are

readily available once some unknown nonlinear parts are iden-

tified, such as

(1)

with full state feedback, where is to be estimated by an ANN.

Even though some methods have been suggested for using

ANNs in the context of a general controller structure [27],

[28], the stability implication of updating a network online

is unknown. Furthermore, since an ANN controller can have

many weights, it is questionable whether the network can

converge fast enough to achieve good performance. Besides,

in closed-loop control systems with relatively short time

constants, the computational time required by frequent online

training could become the factor that limits the maximum

bandwidth of the controller.

Previous work by the authors [29] presented a technique using

adaptive critics for designing a turbogenerator neurocontroller

in simulation on a single machine infinite bus power system,

which overcomes the risk of instability [30], the problem of

residual error in the system identification [31], input uncertain-

ties [32], and the computational load of online training. This

paper extends the work in [29] to the design of multiple adap-

tive critic’s based neurocontrollers experimentally on a multi-

machine power system in real time.

The design and practical laboratory hardware implementa-

tion of nonlinear excitation and turbine neurocontrollers based

on dual heuristic programming (DHP) theory (a member of the

adaptive critics family) for turbogenerators in a multimachine

power system, to replace the conventional automatic voltage

regulators (AVRs) and turbine governors, is presented in this

paper. The DHP excitation and turbine neurocontrollers are im-

plemented on a digital signal processor (DSP) to control the

turbogenerators. The practical implementation results show that

both voltage regulation and power system stability enhancement

can be achieved with these proposed DHP neurocontrollers, re-

gardless of the changes in the system operating conditions and

configurations. These results with the DHP neurocontrollers are

better than those obtained with the conventional controllers even

with the inclusion of a conventional power system stabilizer.

II. ADAPTIVE CRITIC DESIGNS (ACDs)

A. Background

ACDs are neural-network designs capable of optimization

over time under conditions of noise and uncertainty. A family

of ACDs was proposed by Werbos [33] as a new optimization

technique combining concepts of reinforcement learning and

approximate dynamic programming. For a given series of con-

trol actions that must be taken sequentially, and not knowing

the effect of these actions until the end of the sequence, it is

impossible to design an optimal controller using the traditional

supervised learning neural network. The adaptive critic method

determines optimal control laws for a system by successively
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adapting two ANNs, namely an action neural network (which

dispenses the control signals) and a critic neural network (which

“learns” the desired performance index for some function asso-

ciated with the performance index). These two neural networks

approximate the Hamilton–Jacobi–Bellman equation associated

with optimal control theory. The adaptation process starts with

a nonoptimal, arbitrarily chosen, control by the action network;

the critic network then guides the action network toward the op-

timal solution at each successive adaptation. During the adap-

tations, neither of the networks need any “information” of an

optimal trajectory, only the desired cost needs to be known. Fur-

thermore, this method determines optimal control policy for the

entire range of initial conditions and needs no external training,

unlike other neurocontrollers.

Dynamic programming prescribes a search which tracks

backward from the final step, retaining in memory all sub-

optimal paths from any given point to the finish, until the

starting point is reached. The result of this is that the procedure

is too computationally expensive for most real problems. In

supervised learning, an ANN training algorithm utilizes a

desired output and, having compared it to the actual output,

generates an error term to allow the network to learn. The

backpropagation algorithm is typically used to obtain the

necessary derivatives of the error term with respect to the

training parameters and/or the inputs of the network. However,

backpropagation can be linked to reinforcement learning via

the critic network which has certain desirable attributes. The

technique of using a critic, removes the learning process one

step from the control network (traditionally called the “action

network” or “actor” in ACD literature), so the desired complete

trajectory over infinite time is not necessary. The critic network

learns to approximate the cost-to-go or strategic utility function

at each step (the function of Bellman’s equation in dynamic

programming) and uses the output of the action network as one

of its inputs, directly or indirectly. The cost-to-go function is

given as follows:

(2)

where is a discount factor for finite horizon problems

, is the utility function or the local cost and is

an input vector to the critic.

Different types of Critics have been proposed. For example,

Watkins [34] developed a system known as Q-learning,

explicitly based on dynamic programming. Werbos, on the

other hand, developed a family of systems for approximating

dynamic programming [33]; his approach subsumes other

designs for continuous domains. For example, Q-learning

becomes a special case of action-dependent heuristic dynamic

programming (ADHDP), which is a critic approximating the

function (see Section II-B), in Werbos’ family of adaptive

critics. A critic which approximates only the derivatives of the

function with respect to its states, called the dual heuristic

programming (DHP), and a critic approximating both and its

derivatives, called the globalized dual heuristic programming

(GDHP), complete this ACD family. These systems do not

require exclusively neural-network implementations, since any

differentiable structure is suitable as a building block. The inter-

relationships between members of the ACD family have been

generalized and explained in detail by Prokhorov [35], [36],

whose results have been modified for the study in this paper as

shown in Section II-B–D. This paper compares DHP type of

critic for neurocontroller implementations, against the results

obtained using conventional proportional integral derivative

(PID) controllers [37], [38] for multiple turbogenerators.

B. Dual Heuristic Programming Neurocontroller

The critic neural network in the DHP scheme shown in Fig. 1

estimates the derivatives of with respect to the vector

(outputs of the model neural network) and learns minimization

of the following error measure over time:

(3)

where

(4)

where is a vector containing partial derivatives of

the scalar (.) with respect to the components of the vector .

The critic neural network’s training is more complicated than in

HDP, since there is a need to take into account all relevant path-

ways of backpropagation as shown in Fig. 1, where the paths of

derivatives and adaptation of the critic are depicted by dashed

lines. In Fig. 1, the dashed lines mean the first backpropagation

and the dashed-dotted lines mean the second backpropagation.

The model neural-network in the design of DHP critic and ac-

tion neural networks are obtained in a similar manner to that

described in [10], [29].

In the DHP scheme, application of the chain rule for deriva-

tives yields

(5)

where , and ,

are the numbers of outputs of the model, action, and critic neural

networks, respectively. By exploiting (5), each of components

of the vector from (4) is determined by

(6)

The signals in Fig. 1 labeled with a path number represent the

following.

1) Path 1 represents the outputs of the plant fed into the

model neural network #2. These outputs are ,

and .
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Fig. 1. DHP Critic network adaptation. This diagram shows the implementation of (6). The same critic network is shown for two consecutive times, t and t+1.
First and second backpropagation paths are shown by dashed lines and dashed-dotted lines, respectively. The output of the critic network �(t+1) is backpropagated
through the model from its outputs to its inputs, yielding the first term of (5) and @J(t + 1)=@A(t). The latter is backpropagated through the Action from its
output to its input forming the second term of (5). Backpropagation of the vector @U(t)=@A(t) through the action results in a vector with components computed
as the last term of (6). The summation produces the error vector E(t) for critic training.

Fig. 2. Backpropagation of U(t) through the model neural network.

2) Path 2 represents the outputs of the action neural network

fed into the model neural network #2. These outputs are

, and .

3) Path 3 represents the outputs of the plant fed into the ac-

tion neural network. These outputs are ,

, and .

4) Path 4 represents a backpropagated signal of the

output of the Critic neural network #2 through

the model neural network with respect to path 1

inputs. The backpropagated signal on path 4 is

in (5).

5) Path 5 represents a backpropagated signal of the

output of the critic neural network #2 through

the Model neural network with respect to path 2

inputs. The backpropagated signal on path 3 is

in (5).

6) Path 6 represents a backpropagation output of path 5

signal ((iv) above) with respect to path 3. The signal on

path 6 is

in (5).

7) Path 7 is the sum of the path 4 and path 6 signals resulting

in , given in (5).

8) Path 8 is the backpropagated signal of the term

(Fig. 2) with respect to path 3 and is

in (6).

9) Path 9 is a product of the discount factor and the path

7 signal, resulting in term in

in (6).

10) Path 10 represents the output of the critic neural network

#1, .

11) Path 11 represents the term (Fig. 2).

12) Path 12 represents given in (6) and as follows:

The partial derivatives of the utility function with re-

spect to , and , and ,

respectively, are obtained by backpropagating the utility func-

tion, through the model network [29] as shown in Fig. 2.

The adaptation of the action network in Fig. 1, is illustrated

in Fig. 3 which propagates back through the model

network to the action network. The goal of such adaptation can

be expressed as follows [35], [36]:

(7)

The error signal for the Action network adaptation is, therefore,

given as follows:

(8)
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Fig. 3. DHP Action network adaptation. Backpropagation paths—dashed lines. The output of the critic �(t+ 1) at time (t+ 1) is backpropagated through the
model from its outputs to its inputs, and the resulting vector is multiplied by 
 and added to @U(t)=@A(t). Then an incremental adaptation of the action network
is carried in accordance with (9).

The weights’ update expression [35] when applying backprop-

agation is as follows:

(9)

where is a positive learning rate and are weights of the

DHP Action neural network.

The word “Dual” is used to describe the fact that the target

outputs for the DHP Critic training are calculated using back-

propagation in a generalized sense; more precisely, it does use

dual subroutines (states and co-states) to backpropagate deriva-

tives through the model and action neural networks, as shown

in Fig. 1. The dual subroutines and more explanations are found

in [33] and [39].

III. MULTIMACHINE POWER SYSTEM

The micromachine laboratory at the University of Natal in

Durban, South Africa has two microalternators, and each one

represents both the electrical and mechanical aspects of a typical

1000 MW alternator. All the per-unit parameters are the same as

those normally expected for 1000 MW alternators. The machine

parameters were determined by the standard IEEE methods and

are given for microalternators #1 and #2 in Tables I and II, re-

spectively [40].

A practical laboratory three machine power system shown in

Fig. 4 is set up by using the two microalternators/turbogener-

ators and the infinite bus as the third machine. A photo of the

laboratory consisting of microalternators, transmission line sim-

ulators, high computing machine, etc. is shown in Fig. 5.

The block diagram of the exciter and AVR combination is

shown Fig. 6 where the saturation factor is given by (10).

The AVR and exciter time constants are given in Table III

(10)

An interconnected power system, depending on its size, has

hundreds to thousands of modes of oscillations. In the analysis

TABLE I
MICROALTERNATOR #1 PARAMETERS

TABLE II
MICROALTERNATOR #2 PARAMETERS

and control of system stability, two distinct types of system os-

cillations are usually recognized. One type is associated with

generators at a generating station swinging (or oscillating) with

respect to the rest of the power system. Such oscillations are

referred to as “local plant mode” oscillations. The frequencies

of these oscillations are typically in the range 0.8–2.0 Hz. The

second type of oscillations is associated with the swinging of

many generators in the one part of the power system against gen-

erators in other parts. These are referred to as “inter-area mode”

oscillations, and have frequencies in the range 0.1–0.7 Hz. The

basic function of the power system stabilizer is to add damping

to both types of system oscillations. Other modes which may be

influenced by a PSS include torsional modes, and control modes

such as the “exciter mode” associated with the excitation system

and the field circuit [41]. The block diagram of a typical PSS

used to achieve damping of the system oscillations is shown in

Fig. 7 [38]. The considerations and procedures used in the se-

lection of the PSS parameters are similar to those found in [38]

and these parameters are given in Table IV.

A separately excited 5.6–kW dc motor is used as a prime

mover, called the microturbine, to drive the microalternator.

The torque-speed characteristic of the dc motor is controlled to

follow a family of rectangular hyperbola in order to emulate

different positions of the steam valve, as would occur in a
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Fig. 4. Multimachine power system consisting of two microalternators/turbogenerators G1 and G2 which are conventionally controlled by the AVRs, governors,
and PSS.

Fig. 5. Micromachines laboratory at the University of Natal, Durban, South Africa.

real typical turbine. Appropriately scaled flywheels represent

the different turbine inertia. The microturbine and governor

transfer function block diagram is shown in Fig. 8, where

is the turbine input power set point value, is the turbine

output power and is the speed deviation. The governor

and turbine time constants are given in Table V.

Transmission lines are modeled using the laboratory trans-

mission line simulator, which consists of banks of lumped in-

ductors and capacitors, which can be switched in or out of the

circuit. Each inductance bank contains three of each of the fol-

lowing size inductors per phase:

1) 0.005 p. u.;

2) 0.007 p. u.;

3) 0.010 p. u.;

4) 0.012 p. u.

These banks of lumped inductors and capacitors can be con-

nected to represent transmission lines in excess of 1700 km, at
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Fig. 6. Block diagram of the AVR and exciter combination.

TABLE III
AVR AND EXCITER TIME CONSTANTS

400 kV. For the studies in this paper, only the inductance banks

are used.

IV. DSP IMPLEMENTATION PLATFORM FOR THE DHP

NEUROCONTROLLERS

The critic, action, and model networks in Figs. 1 and 2 are all

feedforward neural networks with three layers (input, hidden

and output). The implementation of multilayered feedforward

neural networks is a numerically computationally intensive

process. The multiply–accumulate operations are very involved

during both the forward and backward passes. Currently avail-

able DSPs that provide high computing power by employing a

high-level of on-chip parallelism, integrated hardware multi-

pliers, specific instruction sets, memory organization schemes

and sophisticated addressing modes, provide a good choice for

neural networks hardware implementation. This is because fast

multiply–accumulate time, integrated on-chip random access

memory (RAM), large addressing space and high precision

are necessary for efficient virtual implementation of neural

networks. For the hardware implementation described in this

paper, one such device is the TMS320C6701 DSP on the Inno-

vative Integration M67 card. This DSP is chosen in contrast to a

FPGA for example, from the Xilinx XC4000 family, because of

the user friendliness and support tools available when it comes

to implementation of very intense complex codes, such as the

adaptive critic designs implementation. The implementation of

the DHP neurocontrollers on two generators simultaneously

in a multimachine power system was not feasible on a PC

hardware in the laboratory. The PC-based implementation

will require maximum code optimization and the training

cycles of the action and critic networks will be limited due

to the slower platform speed especially with numerous I–O

interfaces. Therefore, no comparison was carried out on timing

performances of the DSP against the PC. For the application

considered in this paper, the cost of the DSP hardware is very

small (less than 0.3%) compared to the cost of power plant.

The DSPs intrinsic functions are used when appropriate. The

huge computational power was used to the advantage of the ap-

plication in implementing a dual DHP neurocontroller for two

generators. The speed of the I–O capability and the interface

with the A4D4-I/O card are exploited in this application.

The critic, action (neurocontroller), and model neural net-

works are all implemented on the Innovative Integration M67

card [42] based on the TMS3 206 701 digital signal processor,

operating at 160 MHz, hosted on a Pentium III 433 MHz per-

sonal computer. The M67 DSP card is equipped with two A/D

conversion and D/A conversion modules [43]. The input and

output signals of the laboratory microalternators differ in their

range, the terminal voltage is 127 V, the speed is 1500 r/min,

the exciter input voltage is 10 V and the turbine input voltage

is 4 V. Therefore, the signals are all normalized before the

neural network processing is carried out. An overview of the

DSP hardware interface to the laboratory power system is shown

in Fig. 9. The M67 DSP card and, the A/D and D/A modules are

described briefly below.

M67 DSP Hardware: The M67 card is a PCI bus compat-

ible DSP card based upon the Texas Instruments TMS320C6701

floating point processor. Implementing a modular I–O expan-

sion system, the M67 is particularly well suited to data acqui-

sition and control tasks, and is supported by a collection of

I/O bus function cards, which provide hardware interfacing to

real-world equipment. Fig. 10 gives a block diagram of the M67

DSP card. The M67’s features include:

1) TMS320C6701 160 MHz processor;

2) 1.8 W Power consumption at 160 MHz;

3) optional external zero wait-state SBSRAM and one wait-

state SDRAM memory pools;

4) two inter-board communications ports (up to 80

Mbytes/s transfer rate);

5) six channels of on-board timing (two on-chip timers,

three custom 16-bit timers in FPGA logic and the 9850

DDS time-base);

6) OMNIBUS module compatible (two available slots on

M67);

7) 32 bits of digital I–O;
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Fig. 7. Block diagram of a typical conventional power system stabilizer.

TABLE IV
PSS TIME CONSTANTS AND GAIN

8) two serial port connectors;

9) external mux board control connectors;

10) JTAG hardware emulation support.

The OMNIBUS standards provide a fast, flexible, 32-bit

wide mezzanine I–O expansion capability for Innovative

Integration’s DSP and data acquisition boards. OMNIBUS

compatible hosts can be equipped with modules supporting a

wide range of I–O specifications and signal standards.

The A4D4 OMNIBUS module [43] provides the target card

processor with four channels of high-speed 200-kHz 16-bit res-

olution output A/D conversion per module slot. In addition,

four channels of high-speed 200-kHz 16-bit resolution D/A con-

version. The A4D4 module uses two pairs of Analog Devices

AD976AA A/Ds with each channel having independent input

six-pole anti-alias filters and programmable gain amplifiers for

flexible input. Two pairs of Analog Devices AD7846 D/As with

output amplifiers and independent channel filtering, gain, and

trim, provide for high-speed data output signals.

The four analog inputs on the A4D4 module are succes-

sive approximation type A/D converters, which allow for low

data latency that is critical in control applications and multi-

plexed channel configurations. In addition, each A/D channel

is calibrated for offset and gain errors allowing accurate mea-

surements for a variety of applications. The converters can

be triggered via hardware timer or software access and are

capable of interrupting the target processor in interrupt driven

applications.

Fig. 11 shows the conceptual arrangement of the component

circuitry featured on the board. The DSP card is equipped with

two such modules.

V. TRAINING PROCEDURE FOR THE CRITIC, ACTION, AND

MODEL NEURAL NETWORKS

The training procedure is like the one suggested in [35] and it

is applicable to any ACD. It consists of two separate training cy-

cles: one for the critic , and the other for the action .

An important measure is that the action neural network is pre-

trained with conventional controllers (AVR and Governor) con-

trolling the plant in a linear region. The critic’s adaptation is

done initially with the pretrained action network, to ensure that

the whole system, consisting of the ACD and the plant remains

stable. Then the action network is trained further while keeping

the critic neural-network weights fixed. This process of training

the critic and the action one after the other, is repeated until an

acceptable performance is reached. It is assumed that there is

no concurrent adaptation of the pretrained model neural net-

work, briefly described below. The output of the microalternator

is sampled at 50 Hz, allowing 20 ms for the critic and action

training to take place.

Model Neural Network: The model network training has

been described for a multimachine power system in [10]. The

same model network is used in the critic and action networks

training and is shown in Fig. 12. The weights of the model

network are fixed during the critic and action networks training.

The sigmoidal functions in the hidden layer were computed on

the DSP using the exp instruction of TMS320C6701.

Training the Critic Neural Network: In the critic’s training

cycle, an incremental optimization of (3) is carried out using

a suitable optimization technique such as the backpropaga-

tion. The flowchart for the critic neural network (Fig. 13)

training is given in Fig. 14. The functions ,

and represent the

critic, action, and model neural networks with their weights

, respectively.

The critic neural network’s error and weight update equations

are given in (11) and (12) with the discount factor and

the learning rate . The critic training is carried out for

cycles until the weights of the network have converged.

is initialized to small random values at beginning of the training.

(11)

(12)

where the utility function is given by (13) [44]

(13)
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Fig. 8. Block diagram of the microturbine and governor combination.

TABLE V
MICROTURBINE AND GOVERNOR TIME CONSTANTS

Training the Action Neural Network: The action neural

network weights’ update expression [35], [36], when applying

backpropagation, is as follows:

(14)

where 0.03 is the learning rate, is the weights of the action

neural network in the DHP scheme and the subscript A2 in (14)

represents the DHP action. The flowchart for the adaptation of

DHP action neural network (Fig. 15) is shown in Fig. 16. The

action training is carried out for cycles until the weights of

the network have converged. During the action network, training

weights of the critic network are fixed.

The overall training procedure of the DHP critic and action

neural networks under the different conditions is shown in the

flowchart in Fig. 17. The training of the critic and action neural

networks are alternated until both networks have attained

training convergence over a wide range of system operating

conditions and configurations. It is important that the whole

system consisting of the neurocontroller and the system remains

stable while both of the critic and action networks undergo

adaptation.

Computation Cycles for Critic and Action Neural Net-

works: Table VI gives the approximate cycles and time

required by the TMS320C6701 160-MHz processor for the

forward and backward passes in the critic, action, and model

neural networks. The add and multiply (MPY) instructions

used here take one and four cycles, respectively.

For the critic network training (Fig. 1), it takes two forward

passes (FPs) through the critic network, one FP through the

action network, two FPs through the model network, one

backward pass (BP) through the critic network, two BPs through

the action network and two BPs through the model network.

For the action network training (Fig. 2), it takes one FP through

the critic network, one FP through the action network, one FP

through the model network, one BP through the action network,

and two BPs through the model network. Table VII gives the

approximate critic and action networks’ training time per cycle.

One cycle of critic and action training takes approximately

110 s. In a 20-ms sampling time, about 100–150 cycles of

critic and action network trainings can be carried out, allowing

enough time for other processing to take place. For all the

calculations in this paper, the floating point format with 32-bit

single precision was used.

VI. RESULTS WITH THE DHP NEUROCONTROLLERS

The two microalternators and the trained DHP neurocon-

trollers with fixed weights shown in Fig. 18 are now tested

and their performances are evaluated against the conventional

controllers and the power system stabilizer. The DHP neurocon-

troller sampling frequency is 50 Hz and the required time to do

a forward pass through the action network with fixed weights is

about 2.3 s. The training of the DHP neurocontroller is carried

out in number of steps as explained in the paper. The offline

training involves training the model, action, and critic neural

networks. The Model training can take 60–100 s and the action

and critic training can take 30–50 s. In addition to the offline

training, an online training (natural training; see Fig. 17) is

carried for another 30–50 s. But the time for the natural training

depends on the different conditions under which the training is

carried out and can take a longer time.

Performance Evaluation of the Two DHP Neurocontrollers

on Micro-Alternators #1 and #2: Once the DHP neurocon-

trollers’ weights have converged, the training is terminated and

the neurocontrollers are allowed to control the microalternators

with their weights fixed. The DHP neurocontrollers are tested

for dynamic and transient operation for the following three

disturbances:

• an inductive load addition along the transmission line by

closing switch S1;

• an increase in the transmission line impedance by opening

switch S2;

• a temporary three-phase short circuit on bus 7.

The tests carried out with different controller combinations

are summarized in Table VIII. The performances of DHP neu-

rocontrollers (case studies c) in all the above tests are compared
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Fig. 9. Overview of the data capturing and processing system interface to the power system.

Fig. 10. Innovative Integration M67 DSP card block diagram.

against that of the conventional controllers, the AVR and gov-

ernor (case studies a), as well as with that of a governor plus

an AVR equipped with a PSS (case studies b), for different

operating points. Measured results are presented for two op-

erating points, namely: 1) p.u. and p.u. and

2) p.u. and p.u. (at bus bars 1 and 2 in Figs. 4

and 18). The PSS parameters are carefully tuned [38] for the

first set of operating condition ( p.u., p.u.,

and p.u., p.u.). The two microalternators

with their trained DHP neurocontrollers and fixed weights are
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Fig. 11. A4D4 OMNIBUS module block diagram.

Fig. 12. Model neural-network structure with 12 inputs, 14 sigmoidal hidden
layer neurons, and two linear neurons.

Fig. 13. DHP Critic neural-network structure with six inputs, ten sigmoidal
hidden layer neurons, and two linear neurons.

now tested and their performances are evaluated against the con-

ventional controllers and the power system stabilizer.

Case Study 1: An Inductive Load Addition at the First Op-

erating Condition ( p.u., p.u.): At the first

operating condition, an inductive load, p.u. at power

factor (pf) of 0.85, is added to the transmission line at bus

Fig. 14. Flowchart for the DHP critic neural-network training.

7 by closing switch S3 at time s. Fig. 19 shows the

load angle response of microalternator #2 for the three dif-

ferent controller combinations (case studies 1a to 1c), since
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Fig. 15. DHP action neural-network structure with six inputs, ten sigmoidal
hidden layer neurons, and two linear output neurons.

Fig. 16. Flowchart for the DHP action neural-network training.

the load angle is widely accepted as measure of controller

damping. The DHP neurocontrollers (case study 1c) ensure

minimal overshoot on the load angle unlike with the conven-

tional controllers. This is to be expected since the AVR and

the governor parameters have been tuned for only small distur-

bances at this operating point. The terminal voltage response

of microalternator #2 is not shown, because relatively little

disturbance and improvement are experienced since the fault

is closer to microalternator #1. For the same disturbance, the

load angle response of microalternator #1 is shown in Fig. 20.

The PSS (case study 1b) on microalternator #1 improves the

performance of the conventional controllers. It is clear that the

two DHP neurocontrollers (case study 1c) give the best per-

formance of the three different controller combinations (case

studies 1a–1c).

Case Study 2: An Addition of a Series Transmission

Line at the First Operating Condition ( p.u.,

p.u.): At the first operating condition, the series

transmission line impedance is increased at time s

from p.u. to p.u.

by opening switch S2. Fig. 21 shows the load angle response

Fig. 17. Overall training steps for the DHP critic and action neural networks.

of microalternator #2 for this test with the three different

controller combinations. Clearly the DHP neurocontrollers

(case study 2c) again exhibit superior damping and allow lesser

overshoots compared to the performance of the conventional

controllers even when equipped with a PSS. The load angle

response of microalternator #1 for the same disturbance is

shown in Fig. 22. It is clear the DHP neurocontrollers exhibit

the best damping of the controllers.

Case Study 3: A Temporary 125 ms 3-Phase Short Circuit

at the First Operating Condition ( p.u. and

p.u.): At the first operating condition, a temporary 125 ms du-

ration three-phase short circuit at bus 7 is carried out at s.

Figs. 23 and 24 show the terminal voltage and the load angle re-

sponses of microalternator #2 for this test with the three different

controller combinations. The fault is placed close to microalter-

nator #1 and as a result the disturbance is felt more severe on

microalternator #1 than on microalternator #2. Fig. 25 shows

the load angle response of microalternator #1.

Case Study 4: An Inductive Load Addition at the Second Op-

erating Condition ( p.u. and p.u.): At the

second operating condition, an inductive load, p.u.

at power factor (pf) of 0.85, is added to the transmission line at

bus 7 by closing switch S3 at time s. Fig. 26 shows the

load angle response of microalternator #2 for the three different

controller combinations. The two DHP neurocontrollers (case

study 4c) ensure minimal overshoot and better damping on the

load angle compared to the other controller combinations. This

is to be expected since the conventional AVR and the governor

parameters have been tuned for only small disturbances at the

first operating point. For the same disturbance, the load angle re-

sponse of microalternator #1 is shown in Fig. 27. The PSS (case

study 4b) on microalternator #1 improves the performance of
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TABLE VI
FORWARD AND BACKWARD PASS CYCLES AND TIME BASED ON A 160-MHZ CLOCK SPEED

TABLE VII
CRITIC AND ACTION NETWORK TRAINING TIME

Fig. 18. Multimachine power system consisting of turbogenerators G1 and G2 controlled by DHP neurocontrollers.

the conventional controllers. It is clear that the two DHP neuro-

controllers again give the best performance of the four different

controller combinations.

The neurocontrollers have also been tested at other operating

points for the transmission line impedance change and the

three-phase short circuits. Compared to the conventional

controllers, the neurocontrollers’ performance never degraded

during these tests and the DHP neurocontrollers consistently

had better damping. Depending on the type of test carried out,

the DHP neurocontrollers have settling times faster than that

with the other controllers by 2–10 s. This improvement in

controller performance is significant and plays a major role in

restoring power plants that are operating close to their stability

limits and undergoing severe disturbances, like a three-phase

short circuit.

In order to implement these DHP neurocontrollers on a

commercial power station platform, a procedure similar to

the laboratory will have to be carried out but in a stepwise

fashion, like starting with a supplementary DHP neurocontroller

to the AVR and eventually over time replacing the AVR first,

and then the governor as well. The DHP neurocontrollers

could be implemented on a number of commercially available
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TABLE VIII
SUMMARY OF TEST CARRIED OUT

DSP or microprocessor platforms that have high precision

(32 bits or higher) and clock speeds of at least 100 MHz

allowing a number of critic and action neural-network training

cycles within a sample period of 50–60 Hz. The DSP platform

used in the laboratory implementation in this paper can be

the starting implementation platform for a commercial power

station. Cost of the DSP implementation platform will not be

a major consideration since it would be a small fraction of the

overall cost of the power plant. The first problem would probably

be in persuading operators of power plants to accept this new

unknown technology, and initially one would probably still need

the conventional controllers to be on standby in parallel to the
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Fig. 19. Load angle of alternator #2 for an inductive load addition at bus 7 for P = 0:2 p.u. and Q = 0 p.u.

Fig. 20. Load angle of alternator #1 for an inductive load addition at bus 7 for P = 0:2 p.u. and Q = 0 p.u.

Fig. 21. Load angle of alternator #2 for series transmission line impedance increase by opening switch S2 for P = 0:2 p.u. and Q = 0 p.u.

Fig. 22. Load angle of alternator #1 for series transmission line impedance increase by opening switch S2 for P = 0:2 p.u. and Q = 0 p.u.

neurocontrollers with the ability to rapidly switch from one to

the other in the event of a malfunction with the neurocontrollers.

When solid-state diodes were first used in high power rectifiers

during the early 1960s, many customers insisted on having

their tried and trusted mercury arc rectifier on standby with

a changeover switch in case the new diodes malfunctioned.

The second problem would be to obtain sufficient training

data for a wide range of operating conditions which could

take minutes, hours, or even days to obtain. The Model neural

network will have to be trained first and then followed by the

action and the critic neural networks.

VII. CONCLUSION

An adaptive critic design based DHP neurocontroller

strategy has been proposed and implemented on an Innovative

Integration M67 DSP hardware platform in real time to control

the exciters and turbines of multiple turbogenerators in a power
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Fig. 23. Terminal voltage of alternator #2 for a temporary 125 ms 3-phase short at bus 7 for P = 0:2 p.u. and Q = 0 p.u.

Fig. 24. Load angle of alternator #2 for a temporary 125 ms three-phase short at bus 7 for P = 0:2 p.u. and Q = 0 p.u.

Fig. 25. Load angle of alternator #1 for a temporary 125 ms 3 phase short at bus 7 for P = 0:2 p.u. and Q = 0 p.u.

Fig. 26. Load angle of alternator #2 for an inductive load addition at bus 7 for P = 0:3 p.u. and Q = 0 p.u.

system. These hardware implementation studies on detailed

specially designed turbogenerator systems have evaluated

the robust performance of the adaptive critic design-based

neurocontrollers. Once the critic and action neural networks

have converged the parameters of the neurocontroller are fixed.

This leads to the fact that there are no adaptive parameters

with the neurocontroller online and therefore avoids the risk of

instability. The convergence guarantee of the critic and action

neural networks during offline training has been shown in

[30], [45]. In addition, the enormous computational load only

arises during the offline training phase which is handled by

the M67 DSP card, and therefore makes the online real-time

implementation cost of the neurocontrollers cheaper. The DHP

neurocontrollers have better damping when compared to the

conventional controllers (which are fine tuned at particular

operating point and system configuration) even when equipped

with a power system stabilizer, especially when the operating

conditions and system configurations changes. Such neurocon-
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Fig. 27. Load angle of alternator #1 for an inductive load addition at bus 7 for P = 0:3 p.u. and Q = 0 p.u.

trollers replacing conventional automatic voltage regulators

and governors could allow power plants to be operated closer to

their steady-state stability limits, thus producing more electrical

power per dollar invested.
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