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Abstract: Commercial off-the-shelf (COTS) field-programmable gate arrays (FPGAs) with a 28-nm
process have become popular devices for computing systems. Although current generation FPGAs
have advantages over previous models, the phenomenon of circuit aging has become more significant
with the sharp reduction in the process size of FPGAs. Aging results in FPGA performance degrada-
tion over time and, ultimately, hard faults. However, few studies have focused on understanding
aging mechanisms or estimating the aging trend of 28-nm FPGAs. For this, we used a ring oscillator
(RO)-based test structure to extract data and build a dataset that could be used to predict aging trends
and determine the primary aging mechanisms of 28-nm FPGAs. Moreover, we proposed a correction
method to correct temperature-induced measurement errors in accelerated tests. Furthermore, we em-
ployed four machine learning (ML) technologies that were based on accurate measurement datasets
to predict FPGA aging trends. In the experiment, 24 XILINX 7-series FPGAs (28 nm) were evaluated
for 10+ years of circuit operation using accelerated tests. The results showed that the aging effects
of negative-bias temperature instability (NBTI) was the primary aging mechanism. The correction
method proposed in this paper could effectively eliminate measurement errors. In addition, the
minimum prediction error rate of the ML model was only 0.292%.

Keywords: FPGA; aging mechanism; NBTI; measurement error correction; aging prediction;
machine learning

1. Introduction

Commercial off-the-shelf (COTS) field-programmable gate arrays (FPGAs) with a
28-nm process have become popular devices for computing systems. Although current
generation FPGAs have advantages over previous models, the continuous scaling of devices
to deep nanotechnology and the inexorable reduction in supply voltage significantly
challenge the reliability assurance that is related to device aging [1–3]. Aging results
in FPGA performance degradation over time and, ultimately, hard faults. Hence, it is
essential to understand the main aging mechanisms of FPGAs [4–6]. Meanwhile, estimating
the aging trends of age-related faults before they occur is crucial for developing aging
prevention/mitigation actions to avoid circuit failures [7,8].

To effectively solve the above problems, many efforts have been devoted to aging
tests for the analysis of aging mechanisms and the prediction of aging trends of FPGAs.
The increase in path delay is the primary indicator of FPGA aging degradation. Hence,
measuring the variations in path delay can quantify the aging degree of a circuit. For a
long time, actual on-chip measurements and sensor-based aging monitoring have been the
mainstream methods [2,9–14]. Almost all of these methods employ ring oscillator (RO)-
based circuits to measure path delay. However, the test processes of the above methods
easily affect the measured delay results and cause errors. Therefore, it is essential to
correct measurement errors to obtain accurate data. In terms of aging prediction, most
studies have used physical aging models to simulate the aging degradation of transistors
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or look-up tables (LUTs) [15–17]. However, the parameters of such models are difficult
to determine. Furthermore, some studies have predicted the aging of circuits based on
machine learning (ML) [18,19]. Nevertheless, these methods only focus on predicting the
path delay degradation that is related to bias temperature instability (BTI).

To make up for the limitations of previous research, we performed an on-chip, accel-
erated aging test to obtain the aging-related data of 28-nm FPGAs. Meanwhile, we also
improved a measurement method to correct measurement errors that were caused by the
accelerated experiment. Based on the above work, on the one hand, we investigated the
primary aging mechanisms of 28-nm FPGAs; on the other hand, we employed a variety
of ML technologies to predict the aging trends of FPGAs. In summary, we achieved the
following novel contributions:

• We performed an on-chip, accelerated aging test to observe the effects of different stress
signals and LUT configurations on FPGA aging, which showed how the frequencies
of ROs change with aging and which aging mechanisms mainly affect 28-nm FPGAs;

• A measurement method was improved to correct measurement errors that were caused
by the accelerated experiment and the corrected data were used for the analysis of the
aging effects and the training of the aging prediction model;

• A variety of machine learning technologies were employed to predict the aging trends
of FPGAs to evaluate the effectiveness of the ML models for the prediction of FPGA
aging trends.

• The experimental results, based on a group of 28-nm XILINX 7-series FPGAs, showed
that negative BTI (NBTI) was the main aging mechanism; moreover, the correction
method proposed in this paper could effectively rectify measurement errors and in
terms of aging prediction, the XGBoost-based ML model was competent for fitting the
actual aging trends of FPGAs.

The structure of this paper is organized as follows. In Section 2, we review the
important aging mechanisms of ICs and describe related works on aging tests and the
aging prediction of FPGAs. Section 3 presents the aging test implementation using FPGAs
and proposes the error correction method. The experimental results are presented in
Section 4, followed by the conclusion in Section 5.

2. Background and Related Work
2.1. Aging Mechanisms

Circuit aging refers to the degradation of some of the characteristic hardware parame-
ters in integrated circuits (ICs) over time. It can be summarized as the increase in threshold
voltage that is caused by transistor aging, which eventually leads to transistor failure, and
the increase in resistance that is caused by metal wire aging, which eventually leads to
fracture. The aging mechanisms of transistors and interconnects are dominated by four
main effects at the nanoscale: bias temperature instability (BTI), hot carrier injection (HCI),
time-dependent dielectric breakdown (TDDB), and electromigration (EM).

BTI is considered to be the main limiting factor of the lifetime of nanoscale complemen-
tary metal oxide semiconductor (CMOS) devices and is divided into positive and negative
BTI (PBTI/NBTI) [20,21]. HCI is due to the strong channel electric fields near the drain
in the channel, which causes the carriers to cross the Si–SiO2 barrier and inject into the
oxide medium to form traps and results in the degradation of the threshold voltage [22,23].
TDDB causes local tunnel breakdown and eventually causes dielectric breakdown, which
usually leads to catastrophic hard failure. EM is a mechanism that affects the interconnects
and induces open circuits (due to voids) or short circuits (due to hillocks).

2.2. Aging Tests on FPGAs

FPGA aging degradation can manifest itself as an increase in the probability of tran-
sient/permanent failures [24] or as a change in timing. One of the most intuitive and easily
observable indications is the increase in the path delay of the circuit. Hence, measuring the
variations in path delay can quantify the aging degree of a circuit. In the early stages, a
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transition probability-based delay measurement is the primary method that is used [25].
However, the delay data obtained by this method are not accurate enough since they
usually evaluate the worst-case path delay.

With the popularization of built-in self-tests (BISTs) in IC tests, actual on-chip measure-
ments and sensor-based aging monitoring have become the mainstream methods [2,9–14,26,27].
Naouss et al. [2] established a low-cost test platform to evaluate FPGA reliability, which sup-
ports aging delay measurements for multiple FPGAs at the same time. Miyake et al. and Xiang
et al. [9,10] proposed a measurement method based on ROs concerning on-chip delay, which
is suitable for field testing. Refs. [11–14] employed aging sensors to monitor the delays in
critical circuit paths to evaluate FPGA aging. Almost all of these methods can obtain relatively
accurate delay data and their measurements are based on RO circuits. Hence, this study also
employed RO-based measurement circuits to test FPGA aging.

2.3. Aging Prediction of FPGAs

Most early studies used physical aging models to predict the aging degradation of
transistors and LUTs. Morales et al. [15] developed a general simulation environment to
implement FPGA circuits that can predict the LUT propagation delay of digital circuits.
Jang et al. [16] proposed an on-chip aging sensor circuit to predict and detect circuit failures
caused by the effects of BTI and HCI aging on digital circuits. Yu et al. [17] proposed a fast
time-zero aging prediction and predictive screening methodology based on a novel on-chip
architecture, named ZeroScreen. However, the implementation of the above methods
usually depends on the transistor or LUT model. Therefore, it is difficult to determine the
appropriate formula parameters.

To date, some studies have predicted the aging of circuits based on ML [18,19]. For
example, Karimi et al. [18] proposed a general-purpose IC aging prognosis approach that
considers a comprehensive set of IC operating conditions, including workload, usage time,
and operating temperature. Vijayan et al. [19] proposed a method to perform low-cost and
fine-grained workload-induced stress monitoring for accurate age-induced delay prediction.
However, these methods only focus on predicting the degradation of BTI-related path delay.
In addition, they also have to depend on logic simulation to obtain characteristic values
and labels as inputs for the prediction model. In contrast, our method directly exploits the
measured data to train the ML-based aging prediction model. As a result, we could predict
FPGA aging without depending on physical aging models.

3. Aging Test Implementation for FPGAs
3.1. Design of Test Solution

In this study, the on-chip aging test was performed using an RO circuit. Due to the
self-oscillation characteristics of the RO, the change in its frequency could characterize the
aging degradation of FPGAs.

Figure 1 shows the RO-based structure. The test circuit had two working modes:
accelerated aging mode (0) and test mode (1). The user sent the status-control bit signal to
the circuit through the UART when switching modes. When mode = 1, the circuit was in
an open-loop state to accelerate its aging under test conditions by inputting a signal of a
specific waveform as a stress signal. This could be a static signal (DC0, DC1) or a signal
that was generated via a PLL of the FPGA, for which the user determined the frequency
and duty cycle. When mode = 0, the aging state was be measured. As the circuit was in a
closed-loop condition at this point, a measurement method based on the ring oscillator was
employed and the counter produced the corresponding frequency. During the test, we also
used the XADC IP core [28] to periodically monitor the core temperature and analyze the
influence of temperature on measurement errors.
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Figure 1. RO-based test structure.

The logic function of the test is shown in Figure 2. The core of the test was the controller
module, which was responsible for coordinating the whole test process. The core voltage
supply module provided the required working voltage for the FPGA. The RS232 module
was responsible for the communication between the FPGA and the PC. The input was the
configuration file and stress signal of the circuit under test (CUT) and the output was the
frequency value of the CUT.

Figure 2. Logic function module of the aging test.

3.2. Accelerated Aging Conditions

An accelerated test refers to the accelerated degradation of a tested product by strength-
ening the test conditions, under the premise of ensuring that the failure mechanisms of the
product are not changed, to obtain the necessary information in a relatively short period of
time [29]. The aging speed of FPGAs is normally limited and long-term aging tests cannot
be achieved within set time parameters. Hence, it is incredibly important to carry out
accelerated tests [30]. In line with the principle regarding the aging mechanisms of BTI,
HCI, and the theoretical acceleration model, the aging speed was directly related to the
working voltage and temperature of the circuit and their relationships could be expressed
as in the following formulae [31]:

t f ∝ V−γ
gs (1)

t f ∝ exp(
Ea

kT
) (2)

where t f represents the estimated duration for which the circuit can operate reliably. Based
on the evidence from the available work in the literature [31], the value of γ is usually
6–8, Ea is approximately 1.5 eV, and k is Boltzmann’s constant. T stands for the operating
temperature of the circuit, while Vgs is the gate-source voltage of the transistor.
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The objects of this accelerated aging test were XILINX 7-series FPGAs. According
to the FPGA manual, the range of supply voltage, without causing damage, is 0.5 V to
1.1 V, the general working voltage is 1.0 V, the working temperature is between −40 ◦C
and +100 ◦C, and the general working environment temperature is 27 ◦C. Based on aging
theory and the test conditions, Table 1 presents the theoretical power supply voltages and
operating temperatures for the aging tests and the estimates of the acceleration under
these conditions.

Table 1. Conditions of accelerated tests.

Factor Relationship Stress Condition Acceleration

Core Voltage Supply t f ∝ V−γ
gs 1.1 V ≈10×

Temperature t f ∝ exp( Ea
kT ) 373 K ≈2×

Voltage and
Temperature ≈20×

3.3. Correction Method for Measurement Errors

The aging degree of a device is aggravated by increases in operation time, which
indicates the cumulative growth of the circuit path delay. The acceleration experiment was
carried out in a high-temperature environment and the delay that was measured on-chip
was affected by the temperature. Assuming that the initial delay of the circuit was D0, the
measured value was the sum of the initial delay, the aging delay Daging of the circuit, and
the temperature-related error value Derror:

Dmeasure = D0 + Daging + Derror (3)

At this time, the measurement value could not reflect the real delay of the circuit. Thus,
the influence of delay variation due to temperature change had to be eliminated to obtain
temperature-independent delay measurements. In this regard, we researched the error
correction method. It was assumed that the time delay caused by aging would not increase
over a concise period, i.e., lim∆t→0 ∆Daging = 0, where ∆Daging is the delay variation caused
by aging. Therefore, the delay variation from sampling at different temperatures was the
delay error caused by temperature, i.e., ∆D = Derror = Dmeasure − D0. At this time, the
correlation coefficient λ = ∆D/∆T was introduced, which represented the relationship
between the change in measurement delay and the change in temperature. When λ was
a constant value (i.e., the variation in delay error caused by temperature was in a fixed
proportion to the variation in temperature), the measurement error could be corrected by the
λ value, correction value Dcorrect = λ∆T, and real aging delay Daging = Dmeasure ± Dcorrect.
Then, the research focused on computing the value of λ.

To obtain λ, we first measured the initial circuit delay d0 and then constantly changed
the core temperature (CT) and synchronously measured the change in the on-chip circuit
delay. Meanwhile, we recorded the D value between the current and initial temperatures.
To reduce the difference that was caused by this process, the experiment was carried
out on six FPGAs, with each FPGA running the same CUT. We simultaneously set the
temperature, recorded the relevant data, and obtained the average value of λ across the
six groups of data. Before that, we also determined the relationship between the external
environment temperature (AT) and the CT in order to accurately adjust the core temperature.
Figure 3 shows the relationship between the ambient temperature and the core temperature
throughout the experimental measurements.
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Figure 3. The relationship between the ambient temperature and the core temperature.

The red circle in Figure 3 represents the measured CT and it can be seen that the CT had
a linear relationship with ∆T. It was found that they accorded with CT = 0.9375× AT + 15
(dotted line) by calculation. It should be noted that the environment was a sealed aging
test chamber. When the AT reached 91 ◦C, the CT could reach 100 ◦C, which was the upper
limit of the CT of the FPGAs. We could adjust the CT accurately, according to the formula.
In the experiment, the initial temperature was 27 ◦C. We adjusted the core temperature
from 40 ◦C to 100 ◦C in 5-◦C intervals and calculated the corresponding λ temperature,
which was denoted as λ1~λ12. The results are shown in Table 2.

Table 2. The results of λ.

Coefficient λ1 λ2 λ3 λ4 λ5 λ6

Value 0.0087 0.0083 0.0069 0.0074 0.0063 0.0063

Coefficient λ7 λ8 λ9 λ10 λ11 λ12

Value 0.0053 0.0038 0.0033 0.0027 0.0016 0.0001

It can be seen that the λ values that corresponded to different temperatures obviously
changed, which indicated that the correction method mentioned above could not be used
directly. We proposed the hypothesis that when the λ value does not change with the
increase in duration at the same temperature, the delay variation measured over two time
periods is equal to the delay variation that is caused by aging. Then, the actual aging delay
could be corrected by calculating the correction value Dcorrect = λT × ∆T, where λT is the
coefficient at the current temperature. To verify the feasibility of this method, we calculated
the λ coefficient at different aging times. We designed a 1000-h experiment and calculated
the λ coefficients every 100 h. The λ coefficients corresponded to 60 ◦C (λ1), 80 ◦C (λ2), and
100 ◦C (λ3). Similarly, to reduce the difference caused by the process, the experiment was
carried out on 10 FPGAs, with each FPGA running the same CUT. We simultaneously set
the temperature, recorded the relevant data, and obtained the average value across the ten
data groups. The experimental results are shown in Table 3.



Sensors 2022, 22, 4439 7 of 13

Table 3. The results of λ over time.

Coefficient 100 h 200 h 300 h 400 h 500 h

λ1 0.0074 0.0076 0.0075 0.0074 0.0075
λ2 0.0038 0.0039 0.0038 0.0039 0.0038
λ3 0.0000 0.0002 0.0000 0.0001 0.0000

Coefficient 600 h 700 h 800 h 900 h 1000 h

λ1 0.0075 0.0074 0.0074 0.0074 0.0074
λ2 0.0038 0.0040 0.0038 0.0039 0.0038
λ3 0.0000 0.0000 0.0001 0.0000 0.0000

It can be seen from the table that there were slight differences (measurement errors) in
the measured λ values at different temperatures. Generally speaking, it could be proved
that the temperature-dependent delay did not change with the duration increase. In
practice, we calculated the corresponding λ value at the temperature that corresponded
to the core temperature and then, we could correct any errors in the measurement. By
restoring the measurement errors, the accurate aging delay could be obtained by way of
on-chip measurements. The chip could be continuously accelerated without waiting for
the temperature to return to the average temperature to obtain accurate measurements. It
is evident that each heating and cooling process was time-consuming and that the critical
data were unstable.

4. Test Results and Analysis
4.1. Experimental Setup

We used 24 XILINX 7-series FPGAs (28 nm) for the aging tests in our experiment. The
host computer was a Xeon(R) Silver 4116 (2.10 GHz) CPU with 32 GB DDR4 RAM, which
was running Windows 10. The reconfiguration fabrics of each FPGA were divided into
16 reconfigurable regions to execute the CUTs.

To understand the primary aging mechanisms of 28-nm FPGAs, we combined different
stress signals and LUT configurations as the test conditions. In this experiment, five
common frequencies (DC0, DC1, 50 MHz, 100 MHz, and 300 MHz) and three duty cycles
(DC25, DC50, and DC75) were selected as the combined stress signals and were input into
the CUTs. The LUTs of the ROs were configured as BUFFER, AND, XOR, and INV and
were executed in each of the four groups of chips. Hence, degradation due to certain test
conditions was the mean value of the degradation of the six circuits under test.

The conditions of V and T under this setting were approximately equal in order to
eliminate any differences in the manufacturing process. The value of each data point was
the average value of the same six CUTs. Moreover, the voltage was provided by external
stabilized power and the high temperatures were produced by a 101-0B high-temperature
test chamber, as shown in Figure 4, which was capable of providing a stable temperature
environment for the test from 50 ◦C to 300 ◦C, thus meeting the needs of the accelerated
degradation tests.

To evaluate the ML-based models for the application of FPGA aging prediction, we
employed four ML technologies (XGBoost, SVM, LR, and ANN) to model the reconfigura-
tion circuits. In the experiments, we extracted the data from all 24 XILINX 7-series FPGAs
from the aging tests and aging simulation experiments to build our dataset (frequency, duty
cycle, operation time, LUT configuration, delay variation, etc.) and this dataset was then
used to train and test the prediction model. We used the root mean squared error (RMSE)
as the evaluation metric in this experiment.
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Figure 4. Operation state of the high-temperature test chamber.

4.2. Influence of Stress Signals on FPGA Aging

Here, we present the influences of different stress signals on FPGA aging degradation
and their analysis to find the primary aging mechanisms of 28-nm FPGAs.

4.2.1. The Influence of Frequency

Dynamic stresses (50 Mhz, 100 Mhz, and 300 Mhz) and static stresses (DC0 and DC1)
that related to different operating frequencies were selected as the inputs for the stress
signals. Figure 5 shows the frequency degradation of the ROs under other test conditions.
As expected, the degradation that was caused by the NBTI and HCI mechanisms increased
as the temperature rose. After 1000 h of accelerated testing, we found that the degradation
was 1.8% at a working temperature of 100 ◦C and 0.9% at a working temperature of
25 ◦C. However, we did not observe regularity in the aging degradation that was caused
by dynamic AC stress. One possible explanation could be that this degradation results
from the combined effect of two aging mechanisms: NBTI and HCI. Existing studies have
demonstrated that the aging effects of NBTI decrease with increasing stress frequency,
while the aging effects of HCI increase with increasing stress frequency [32,33]. When the
stress frequency changes, these two aging mechanisms change in opposite directions at the
same time. Therefore, it could not be analyzed whether there was a (positive or negative)
correlation between the change in frequency and the aging degradation.

4.2.2. The Influence of Duty Cycle

Three duty cycles (25%, 50%, and 75%) were selected as the stress signals input.
Figure 6 shows the frequency degradation of the ROs due to different AC stress signals
with the different duty cycles. For the same stress signal frequency, the 25% duty cycle
had a more significant drop than the 50% duty cycle, while the 50% duty cycle had a
more significant drop than the 75% duty cycle. We could see that this difference was
more pronounced at higher temperatures (100 ◦C vs. 25 ◦C) and at higher stress signal
frequencies (300 MHz vs. 10 MHz). This could be explained by the fact that the period
of the low-frequency signal was long enough to restore the NBTI aging mechanism to
some extent.
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Figure 5. Impacts of stress signal frequency on the frequency degradation of ROs.

Figure 6. Impacts of duty cycle on the frequency degradation of ROs.

4.3. Evaluation of Correction Method

In the experiments, we set the core temperature to 90 ◦C. We sampled 10 data groups
and measured the path delay at 100 h, 200 h, 300 h, 400 h, 500 h, 600 h, 700 h, 800 h, 900 h,
and 1000 h. To eliminate measured errors/noise points, the experiment was carried out
synchronously on 10 FPGAs and each data point was the mean value across the 10 groups
of measured data. After the measurements, we corrected the errors and recorded the
corrected data. To evaluate the effectiveness of the correction method, we used ModelSim
to simulate the aging of the XILINX 7-series FPGAs and recorded the delay data that
corresponded to the simulation time points. As shown in Figure 7, it was found that the
difference between the corrected delay and the simulation delay was within 1%, which
proved that the correction method was effective.
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Figure 7. Comparison of the correction delay and simulation delay.

4.4. Results of Aging Prediction

The results of the RMSE of the XGBoost, SVM, LR, and ANN models are presented
in Figure 8. It can be seen that the RMSE of the ANN was very stable, but there were
still significant errors when the predicted values of frequency degradation were low. The
RMSE of LR and SVM were relatively high and there were also significant prediction errors.
Compared to the other three models, the RMSE of XGBoost was minimal. The increase
in RMSE was due to the predicted frequency degradation value also increasing, but the
prediction error did not change significantly. The mean error rate of the XGBoost prediction
was only 0.292%.

Figure 8. RMSEs of the different ML models.

Figure 9 presents the aging prediction results of the four ML models under different
stress signals and LUT configurations of CUTs. The base represents the measured aging
degradation. As the results show, the aging trends that were predicted by all ML models
were similar to the actual aging trends (red), particularly the prediction of the XGBoost
model, which almost entirely coincided with the actual aging trend. Hence, the above
experiments illustrated that it would be very feasible to use the ML models to predict the
aging degradation of FPGAs.
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Figure 9. Aging prediction results of the different ML models under different stress signals and
LUT configurations.

4.5. Discussion

With the shrinking CMOS manufacturing process, NBTI has proven to be the most
important aging mechanism. While existing studies have validated this conclusion by
performing aging tests on XILINX ARTIX7 FPGAs, we attempted to further validate this
conclusion by performing aging tests on a larger number/type of XILINX 7-series FPGAs.
The experiments in this paper also demonstrated that NBTI is the most important aging
mechanism for 28-nm FPGAs. Moreover, it is also worth noting that there were two other
contributions of this paper for the community: the error correction method for the aging
test and the prediction of FPGA aging based on machine learning models.

To reduce the duration of FPGA aging tests, common practice is to place the device in
a high-temperature test box to accelerate aging. However, due to the measurement errors
that are caused by high-temperature environments, the delay that is measured does not
reflect the actual degree of aging degradation of the device. To this end, we proposed
an error correction method for the aging tests. Our experiments showed that the error
correction method proposed in this paper is effective. In addition, as far as the literature
that was reviewed by the authors is concerned, there are few studies on predicting FPGA
aging based on ML. To evaluate the aging trends of devices more efficiently, we explored
the use of machine learning models to build an FPGA aging prediction model. Through
experimental evaluation, the aging prediction model that was based on machine learning
can better fit the real aging trends of devices.

5. Conclusions and Future Work

In this work, we studied the main aging mechanisms of 28-nm FPGAs. Different
stress signals and LUT configurations were applied in aging tests. The results showed
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that NBTI is the main reason for FPGA aging degradation. To collect accurate aging data,
we further analyzed the influence of temperature on measurement errors and proposed
an error correction method. The results showed that the difference between the corrected
measurement results and the simulation results was less than 1%, thereby proving that the
correction method is efficient. Moreover, we employed four ML models that were trained
using aging data to predict FPGA aging. Among them, the mean error rate of the XGBoost
prediction was only 0.292%, which proves that it would be very feasible to use the ML
model to predict the aging trends of FPGAs.

In future work, we will evaluate the effectiveness of the error correction and aging
prediction methods that were proposed in this paper more comprehensively by testing
different types of FPGAs. In addition, we will investigate more age-related features (e.g.,
failure rate) and incorporate them into the prediction models to further improve the
accuracy of the model prediction. For the established aging prediction model, we will
apply it to preventive maintenance in order to evaluate and predict the trends and extent of
the circuit aging of FPGAs under different stress signals and LUT configurations. This will
support the rational use of age-aware scheduling strategies to achieve aging mitigation.

Author Contributions: Conceptualization, Q.W. and Z.H.; methodology, Z.H., N.L. and Z.L.; soft-
ware, Z.L. and J.W.; validation, Z.H., N.L. and Z.L.; writing—original draft preparation, Z.L. and
J.W.; writing—review and editing, Z.H. and J.W.; supervision, Q.W.; project administration, Q.W.;
funding acquisition, Q.W., N.L. and Z.H. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under grant number 61972302, in part by the Fundamental Research Fund for the Central Universities
under grant number XJS220306, in part by the Natural Science Basic Research Program of Shaanxi
under grant number 2022JQ-680, in part by the Key Research and Development Program of Shannxi
Province under grant numbers 2021GY-086 and 2021GY-014, and in part by the Key Laboratory of
Smart Human–Computer Interaction and Wearable Technology of Shaanxi Province.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stott, E.A.; Wong, J.S.; Sedcole, P.; Cheung, P.Y. Degradation in FPGAs: Measurement and modelling. In Proceedings of the 18th

Annual ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2010;
pp. 229–238.

2. Naouss, M.; Marc, F. Design and implementation of a low cost test bench to assess the reliability of FPGA. Microelectron. Reliab.
2015, 55, 1341–1345. [CrossRef]

3. Kiamehr, S.; Weckx, P.; Tahoori, M.; Kaczer, B.; Kukner, H.; Raghavan, P.; Groeseneken, G.; Catthoor, F. The impact of process
variation and stochastic aging in nanoscale VLSI. In Proceedings of the 2016 IEEE International Reliability Physics Symposium
(IRPS), Pasadena, CA, USA, 17–21 April 2016; pp. CR–1–1–CR–1–6.

4. Karapetyan, S.; Schlichtmann, U. Integrating aging aware timing analysis into a commercial STA tool. In Proceedings of the VLSI
Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 27–29 April 2015; pp. 1–4.

5. Dogan, H.; Forte, D.; Tehranipoor, M.M. Aging analysis for recycled FPGA detection. In Proceedings of the 2014 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Amsterdam, The Netherlands, 1–3
October 2014; pp. 171–176.

6. Maiti, A.; McDougall, L.; Schaumont, P. The impact of aging on an FPGA-based physical unclonable function. In Proceedings of
the 2011 21st International Conference on Field Programmable Logic and Applications, Chania, Greece, 5–7 September 2011;
pp. 151–156.

7. Ebrahimi, M.; Sadeghi, R.; Navabi, Z. LUT input reordering to reduce aging impact on FPGA LUTs. IEEE Trans. Comput. 2020,
69, 1500–1506. [CrossRef]

8. Alam, M.M.; Tehranipoor, M.; Forte, D. Recycled FPGA detection using exhaustive LUT path delay characterization and voltage
scaling. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 2897–2910. [CrossRef]

9. Miyake, Y.; Sato, Y.; Kajihara, S. On-Chip Delay Measurement for In-Field Test of FPGAs. In Proceedings of the 2019 IEEE 24th
Pacific Rim International Symposium on Dependable Computing (PRDC), Kyoto, Japan, 1–3 December 2019; pp. 130–1307.

10. Xiang, Z.J.; Liu, W.; Wang, L.h; Wang, L.L. A System for FPGA Aging Test. In Proceedings of the 2018 10th International
Conference on Communications, Circuits and Systems (ICCCAS), Chengdu, China, 22–24 December 2018; pp. 471–474.

http://doi.org/10.1016/j.microrel.2015.06.087
http://dx.doi.org/10.1109/TC.2020.2974955
http://dx.doi.org/10.1109/TVLSI.2019.2933278


Sensors 2022, 22, 4439 13 of 13

11. Ebrahimi, M.; Ghaderi, Z.; Bozorgzadeh, E.; Navabi, Z. Path selection and sensor insertion flow for age monitoring in FPGAs. In
Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 14–18 March
2016; pp. 792–797.

12. Ghaderi, Z.; Ebrahimi, M.; Navabi, Z.; Bozorgzadeh, E.; Bagherzadeh, N. SENSIBle: A highly scalable sensor design for
path-based age monitoring in FPGAs. IEEE Trans. Comput. 2016, 66, 919–926. [CrossRef]

13. Firouzi, F.; Ye, F.; Chakrabarty, K.; Tahoori, M.B. Aging-and variation-aware delay monitoring using representative critical path
selection. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 2015, 20, 1–23. [CrossRef]

14. Valdes-Pena, M.D.; Freijedo, J.F.; Rodriguez, M.J.M.; Rodriguez-Andina, J.J.; Semião, J.; Teixeira, I.M.C.; Teixeira, J.P.C.; Vargas, F.
Design and validation of configurable online aging sensors in nanometer-scale FPGAs. IEEE Trans. Nanotechnol. 2013, 12, 508–517.
[CrossRef]

15. Morales, J.A.; Marc, F.; Bensoussan, A.; Durier, A. Simulation and modelling of long term reliability of digital circuits implemented
in FPGA. Microelectron. Reliab. 2018, 88, 1130–1134. [CrossRef]

16. Jang, B.; Lee, J.K.; Choi, M.; Kim, K.K. On-chip aging prediction circuit in nanometer digital circuits. In Proceedings of the 2014
International SoC Design Conference (ISOCC), Jeju, Korea, 3–6 November 2014; pp. 68–69.

17. Yu, L.; Ren, J.; Lu, X.; Wang, X. NBTI and HCI Aging Prediction and Reliability Screening During Production Test. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2019, 39, 3000–3011. [CrossRef]

18. Karimi, N.; Huang, K. Prognosis of NBTI aging using a machine learning scheme. In Proceedings of the 2016 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Storrs, CT, USA, 19–20 September 2016;
pp. 7–10.

19. Vijayan, A.; Chakrabarty, K.; Tahoori, M.B. Machine Learning-Based Aging Analysis. In Machine Learning in VLSI Computer-Aided
Design; Springer: Berlin/Heidelberg, Germany, 2019; pp. 265–289.

20. Joshi, K.; Mukhopadhyay, S.; Goel, N.; Mahapatra, S. A consistent physical framework for N and P BTI in HKMG MOSFETs.
In Proceedings of the 2012 IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, USA, 15–19 April 2012;
pp. 5A.3.1–5A.3.10.

21. Naphade, T.; Goel, N.; Nair, P.; Mahapatra, S. Investigation of stochastic implementation of reaction diffusion (RD) models for
NBTI related interface trap generation. In Proceedings of the 2013 IEEE International Reliability Physics Symposium (IRPS),
Monterey, CA, USA, 14–18 April 2013; pp. XT.5.1–XT.5.11.

22. Naouss, M.; Marc, F. FPGA LUT delay degradation due to HCI: Experiment and simulation results. Microelectron. Reliab. 2016,
64, 31–35. [CrossRef]

23. Khaleghi, B.; Rosing, T. Reliability Degradation in Nanoscale CMOS: A Review of Modeling, Monitoring, and Mitigation Techniques;
ACM: New York, NY, USA, 2019; pp. 1–23.

24. Gao, Z.; Zhu, J.; Han, R.; Xu, Z.; Ullah, A.; Reviriego, P. Design and implementation of configuration memory SEU-tolerant
viterbi decoders in SRAM-based FPGAs. IEEE Trans. Nanotechnol. 2019, 18, 691–699. [CrossRef]

25. Wong, J.S.; Sedcole, P.; Cheung, P.Y. A transition probability based delay measurement method for arbitrary circuits on FPGAs.
In Proceedings of the 2008 International Conference on Field-Programmable Technology, Taipei, Taiwan, 8–10 December 2008;
pp. 105–112.

26. Glocker, E.; Chen, Q.; Schlichtmann, U.; Schmitt-Landsiedel, D. Emulation of an ASIC power and temperature monitoring system
(eTPMon) for FPGA prototyping. Microprocess. Microsystems 2017, 50, 90–101. [CrossRef]

27. Prashanth, S.; Sucheta, R.; Vishva, R.; TR, G.K.; Mohan, N. BIST Based Aging Fault Prediction Using Machine Learning. In
Proceedings of the 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC),
Coimbatore, India, 4–6 August 2021; pp. 1715–1722.

28. Zhou, P. AXI DMA v7.1 LogiCORE IP Product Guide Vivado Design Suite; Xilinx: San Jose, CA, USA, 14 June 2019.
29. Guo, X.; Burleson, W.; Stan, M. Modeling and experimental demonstration of accelerated self-healing techniques. In Proceedings

of the 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 1–5 June 2014; pp. 1–6.
30. Gaskin, T.; Cook, H.; Stirk, W.; Lucas, R.; Goeders, J.; Hutchings, B. Using novel configuration techniques for accelerated

FPGA aging. In Proceedings of the 2020 30th International Conference on Field-Programmable Logic and Applications (FPL),
Gothenburg, Sweden, 31 August–4 September 2020; pp. 169–175.

31. Li, X.; Qin, J.; Bernstein, J.B. Compact modeling of MOSFET wearout mechanisms for circuit-reliability simulation. IEEE Trans.
Device Mater. Reliab. 2008, 8, 98–121. [CrossRef]

32. Cai, H.; Petit, H.; Naviner, J.F. Reliability aware design of low power continuous-time sigma–delta modulator. Microelectron.
Reliab. 2011, 51, 1449–1453. [CrossRef]

33. Junior, N.G.; Costa, F.J.; Trevisoli, R.; Barraud, S.; Doria, R.T. Influence of interface traps density and temperature variation on the
NBTI effect in p-Type junctionless nanowire transistors. Solid-State Electron. 2021, 186, 108097.

http://dx.doi.org/10.1109/TC.2016.2622688
http://dx.doi.org/10.1145/2746237
http://dx.doi.org/10.1109/TNANO.2013.2253795
http://dx.doi.org/10.1016/j.microrel.2018.07.151
http://dx.doi.org/10.1109/TCAD.2019.2961329
http://dx.doi.org/10.1016/j.microrel.2016.07.048
http://dx.doi.org/10.1109/TNANO.2019.2925872
http://dx.doi.org/10.1016/j.micpro.2017.03.001
http://dx.doi.org/10.1109/TDMR.2008.915629
http://dx.doi.org/10.1016/j.microrel.2011.06.054

	Introduction
	Background and Related Work
	Aging Mechanisms
	Aging Tests on FPGAs
	Aging Prediction of FPGAs

	Aging Test Implementation for FPGAs
	Design of Test Solution
	Accelerated Aging Conditions
	Correction Method for Measurement Errors

	Test Results and Analysis
	Experimental Setup
	Influence of Stress Signals on FPGA Aging
	The Influence of Frequency
	The Influence of Duty Cycle

	Evaluation of Correction Method
	Results of Aging Prediction
	Discussion

	Conclusions and Future Work
	References

