
Implementation of an Augmented Reality System on a PDA

Wouter Pasman
Delft University of Technology,

Faculty of Information Tech. and Systems
W.Pasman@twi.tudelft.nl

Charles Woodward
Technical Research Centre of Finland,

VTT Information Technology
Charles.Woodward@vtt.fi

Abstract
We present a client/server implementation for running
demanding mobile AR applications on a PDA device. The
system incorporates various data compression methods to
make it run as fast as possible on a wide range of
communication networks, from GSM to WLAN.

1. Introduction

Handheld displays provide an attractive way to present
mobile augmented reality to the user. In particular, PDA
devices are much easier to carry around than backpack
PCs, and also nicer to handle than HMDs. For many
applications a handheld display is even more useful than
HMD, for instance it can be viewed by multiple users, and
the screen can be frozen to study and discuss details of a
certain view.

Figure 1. Fully equipped iPAQ with the test
model (an outdoors AR demonstration).

Previously only a few attempts have been made to
implement mobile AR on handheld devices, c.f. [1, 2].
There are a number of challenges to be resolved, such as
limited processing power, and lack of 3D hardware
support. Many of such problems are overcome with the
client/server AR implementation presented here. While
the PDA is used primarily as the display device, tracking

and rendering is done on the server. This makes the
system practically independent of the 3D model size.
Furthermore, we wanted the solution to scale such that it
can be used not just with WLAN but even with GSM
phone links. Thus, we investigate how different
compression methods can be combined to minimize the
amount of data transmitted between the client and server.

2. Software Architecture

Figure 2 shows the software architecture of the system.
First, the camera in the client captures an RGB image, and
the original image is stored away for later use. Once the
virtual objects have been rendered on the server, their
image is sent to the client and overlaid on top of the
original image.
In the server, we use the ARToolkit software to track the
markers and to render the virtual objects. ARToolkit
internally thresholds the camera image for tracking
purposes. To exploit this, we threshold the image already
on the client, and send only a bitmap image to the server.
Note that this is also more accurate than thresholding a
lossy compressed RGB image on the server.
Thresholding compresses the camera image size with a
factor 24. On top of this, we apply run length encoding
(RLE) to the thresholded image. Each run is encoded with
a variable length Elias Gamma code [3] which in practice
gives a compression factor of about 5.
The overlay image (just the smallest rectangle area
containing the virtual objects) is encoded using Motion
Vector Quantization (MVQ), a video coder developed by
our research group at VTT [4]. Decoding with MVQ is
extremely light, it mainly relies on just lookup tables and
motion vectors, which suits well our application on
handheld processing units.
Using a color for indicating transparency would be tricky,
as colors will be changed and blurred out a bit in video
coding. Therefore we transmit a 320x240 binary image as
a separate transparency mask, RLE compressed with
practical compression ratios now around 9. The mask will
also correct contours that may have been blurred out by
the MVQ coder, making the images look quite sharp even
when the MVQ-encoded overlay image has low quality.

ARToolkit

display

camera

Mobile/ClientBackbone/Server

Thres
holdtrack markers

make overlay

Estimate cam position

MVQ
Encode

RLE
Encode

get
image

get
trans-

parency

MVQ
Decode

RLE
Decode

RLE
Encode

RLE
Decode

Figure 2. Software architecture. Dashed blocks
show optional compression components.

3. Hardware

Our prototype system consists of the following hardware.
The client is a Compaq iPAQ H3800 series, a LiveView
FlyJacket with LiveView FlyJacket iCAM, and a D-Link
DCF-650W WLAN card (see Figure 1). We used two
different servers, a 1.8 GHz Pentium 4 with GeForce4 440
Go for WLAN (11Mbit/s), and a 800 MHz Pentium 3
with Matrox Millenium G400 for GSM HSCSD data link
(41 kbit/s). When using GSM, the iPAQ communicates
via Bluetooth to a Nokia 7650 mobile phone, which in its
turn contacts the server.

4. Performance

Table 1 shows some of the measurements we did on our
prototype system. When using WLAN, the video image
was MVQ compressed to “high quality” 30 kbytes/frame
(PSNR 28.2 on average), and with GSM to “moderate
quality” 4 kbytes/frame (PSNR 22.8).
We used a 3D model with 60,000 polygons, occupying
most of the 320x240 PDA screen. With WLAN, the
achieved refresh rate was 800 ms per image. When the
virtual object occupied a smaller part of the screen (as in
Figure 1), the refresh time went down to some 600 ms.
Using the slow GSM connection, communication
overhead takes half of the time alone, and rest of the time
is mainly used for transmission of the images. The
achieved refresh time then varied between 3 to 5 seconds,
depending on the virtual model’s size on the screen.
Performing parts of the computation in parallel might
improve the overall performance, but not more than some
30 % as the PDA is already being quite busy most of the
time. Comparisons with other implementations, e.g., [2],
are difficult to make due to hardware differences, such as
discussed in [5]. Nevertheless, slow transmission channels

such as GSM or UMTS would in principle make
comparisons favourable to our architecture, where RGB
images are transmitted only from server to client.

Table 1. Timing of prototype performance
(worst case). All times are in milliseconds.

Step WLAN /
Pentium 4

GSM /
Pentium 3

Capture camera image 110 110
Camera image threshold 10 10
Transmission to server 2 400
Tracking + Rendering 150 220
Get overlay & mask 20 110
MVQ compress 200 200
Communication overhead 100 2500
Transmission to client 25 1280
MVQ decompress 50 50
Overlay virtual objects 60 60
Show result on screen 60 60
Total time per refresh 800 5000

5. Acknowledgements

Wouter Pasman was invited to carry out this work in
Finland with funding by VTT Information Technology.
Many thanks to Mika Hakkarainen and Petri Honkamaa
for their instantaneous support on many implementation
and for writing the basic communication code for the
system. Mr. Ale Torkkel kindly provided the CAD model
of the virtual building used in our tests and presentation.

6. References

[1] Matsuoka, H., Onozawa, A., Hosoya, E. (2002).
Environment Mapping for Objects in the Real
World: A Trial Using ARToolkit. Proc. First IEEE
Intl. Augmented Reality Toolkit Workshop (ART02),
Darmstadt, Germany, 29 September 2002.

[2] Geiger C., Kleinjohann B., Reimann C., Stichling D.
(2001): Mobile AR4All, in Proc. The Second IEEE
and ACM International Symposium on Augmented
Reality (ISAR’01), New York, October 2001.

[3] Soboroff, I. (2002). Compression for IR: Lecture 5.
Available Internet: http://www.csee.umbc.edu/
~ian/irF02/lectures/05Compression-for-IR.pdf.

[4] Valli, S. (2002). Video Coding. VTT Information
Technology, Finland. Available Internet:
http://www.vtt.fi/multimedia/index_vc.html.

[5] Pasman, W. (2002). Speed of FlyJacket Grabber.
Internal Report, VTT Information Technology,
Helsinki. Available internet: http://
graphics.tudelft.nl/~wouter.

