
Implementation of an Authenticated Dictionary
with Skip Lists and Commutative Hashing∗

Michael T. Goodrich
Department of Computer Science

Johns Hopkins University
Baltimore, Maryland 21218

goodrich@cs.jhu.edu

Roberto Tamassia Andrew Schwerin
Department of Computer Science

Brown University
Providence, Rhode Island 02912

{rt,schwerin}@cs.brown.edu

Abstract

We present the software architecture and implementation
of an efficient data structure for dynamically maintaining
an authenticated dictionary. The building blocks of the data
structure are skip lists and one-way commutative hash func-
tions. We also present the results of a preliminary experi-
ment on the performance of the data structure. Applications
of our work include certificate revocation in public key in-
frastructure and the publication of data collections on the
Internet.

1. Introduction

We present the software architecture and implementation
of an efficient and practical data structure for dynamically
maintaining a distributed collection of elements in an au-
thenticated manner. Applications of our work include cer-
tificate revocation in public key infrastructure and authenti-
cated publication of data collections on the Internet.

The problem we address involves three parties: a trusted
source, an untrusted directory, and a user. Thesource
defines a finite setS of elements that evolves over time
through insertions and deletions of elements. Thedirectory
maintains a copy of setS. It receives time-stamped updates
from the source together withupdate authentication infor-
mation, such as signed statements about the update and the
current elements of the set. Theuserperforms membership
queries on the setS of the type “is elemente in setS?”
but instead of contacting the source directly, it queries the
directory. The directory provides the user with a yes/no an-
swer to the query together withanswer authentication in-
formation, which yields a proof of the answer assembled by
combining statements signed by the source. The user then

∗Research supported in part by DARPA Grant F30602–00–2–0509.

verifies the proof by relying solely on its trust in the source
and the availability of public information about the source
that allows to check the source’s signature. The data struc-
ture used by the directory to maintain setS, together with
the protocol for queries and updates is called anauthenti-
cated dictionary[18, 29]. Figure 1 shows a schematic view
of an authenticated dictionary.

source directory user
query

answer
auth. info

update
auth. info

Figure 1. Authenticated dictionary.

1.1 Design Goals

The design of an authenticated dictionary should address
the following goals:

• low computational cost:the computations performed
internally by each entity (source, directory, and user)
should be simple and fast; also, the memory space
used by the data structures supporting the computation
should be as small as possible;

• low communication overhead:source-to-directory
communication (update authentication information)
and directory-to-user communication (answer authen-
tication information) should be kept as small as possi-
ble;

• high security:the authenticity of the data provided by
a directory should be verifiable with a high degree of
reliability.

1.2 Metrics and Applications

We can formalize the above goals as the algorithmic
problem of minimizing the following cost parameters of an
authenticated dictionary for the setS:

1. space used by the data structures maintained by the
source, directory, and user;

2. time spent by the directory to perform an update initi-
ated by the source;

3. size of the update authentication information sent by
the source in an update (source-to-directory);

4. time spent by the directory to answer a query and re-
turn the answer authentication information as a proof
of the answer;

5. size of the answer authentication information sent by
the directory together with the answer (directory-to-
user);

6. time spent by the user to verify the answer to a query.

Authenticated dictionaries have a number of applica-
tions, including scientific data mining (e.g., genomic query-
ing [20] and astrophysical querying [24, 10, 25]), geo-
graphic data servers (e.g., GIS querying), third-party pub-
lication on the Internet [12], and certificate revocation in
public key infrastructure [21, 28, 29, 1, 11, 19, 15].

In the third-party publication application [12], the source
is a trusted organization (e.g., a stock exchange) that pro-
duces and maintains integrity-critical content (e.g., stock
prices) and allows third party publishers (e.g., Web portals),
to publish this content on the Internet so that it is widely
disseminated. The publishers store copies of the content
produced by the source. They perform content updates orig-
inating from the source and process queries on such content
made by the users. However, the publishers are not assumed
to be trustworthy, for a given publisher may be processing
updates from the source incorrectly or it may be the vic-
tim of a system break-in. Thus, in addition to returning the
result of a query, a publisher should also return a proof of
authenticity of the result.

In the certificate revocation application [21, 28, 29, 1, 11,
19, 15], the source is acertification authority(CA) that dig-
itally signs certificates binding entities (e.g., identities or at-
tributes) to their public keys, thus guaranteeing this binding.
Nevertheless, certificates are sometimes revoked (e.g., if a
private key is lost or compromised, or if someone loses their
authority to use a particular private key). Thus, the user of a
certificate must be able to verify that a given certificate has
not been revoked. To facilitate such queries, the set of re-
voked certificates is distributed tocertificate revocation di-
rectories, which process revocation status queries on behalf

of users. The results of such queries need to be trustwor-
thy, for they often form the basis for electronic commerce
transactions.

1.3 Organization of the Paper

The rest of this paper is organized as follows: Section 2
overviews previous work on authenticated dictionaries, es-
pecially in the context of certificate revocation. Our soft-
ware architecture for authenticated dictionaries is described
in Section 3. Our prototype implementation of an authenti-
cated dictionaries based on skip lists and commutative hash-
ing is outlined in Section 4. In Section 5, we report the re-
sults of a preliminary experiment on the performance of our
data structure, and we conclude in Section 6.

2. Previous and Related Work

In this section, and throughout the rest of this paper, we
denote withn the current number of elements of the setS
stored in the authenticated dictionary.

Authenticated dictionaries are related to research in dis-
tributed computing (e.g., data replication in a network [5,
23]), data structure design (e.g., program checking [6, 8, 9,
32] and memory checking [7, 13]), and cryptography (e.g.,
incremental cryptography [2, 3, 13, 14]).

2.1. Certificate Revocation

Previous work on authenticated dictionaries has been
conducted primarily in the context of certificate revocation
in public-key infrastructure (PKI). The traditional method
for certificate revocation (e.g., see [21]) is for the CA
(source) to sign a statement consisting of a timestamp plus
a hash of the set of all revoked certificates, calledcertifi-
cate revocation list(CRL), and periodically send the signed
CRL to the directories. A directory then just forwards that
entire signed CRL to any user who requests the revoca-
tion status of a certificate. This approach is secure, but it
is inefficient, for it requires the transmission of the entire
set of revoked certificates for both source-to-directory and
directory-to-user communication. This scheme corresponds
to an authenticated dictionary where both the update au-
thentication information and the answer authentication in-
formation has sizeO(n). Because of the inefficiency of the
underlying dictionary, CRLs are not a scalable solution for
certificate revocation.

Micali [28] proposes an alternate approach, where the
source periodically sends to each directory the list of all is-
sued certificates, each tagged with the signed time-stamped
value of a one-way hash function (e.g., see [31]) that indi-
cates if this certificate has been revoked or not. This ap-
proach allows the system to reduce the size of the answer

authentication information toO(1) words: namely just a
certificate identifier and a hash value indicating its status.
Unfortunately, this scheme requires the size of the update
authentication information to increase toO(N), whereN
is the number of all non-expired certificates issued by the
certifying authority, which is typically much larger than the
number,n, of revoked certificates.

2.2. Hash Trees

The hash treescheme introduced by Merkle [26, 27]
can be used to implement a static authenticated dictionary,
which supports the initial construction of the data structure
followed by query operations, but not update operations
(without complete rebuilding). A hash treeT for a setS
stores the elements ofS at the leaves ofT and a labelf(v)
at each nodev, defined as follows:

• if v is a leaf,f(v) = x, wherex is stored atv;

• else (v is an internal node),f(v) = h(f(u), f(w)),
whereu andw are the left and right child ofv, respec-
tively, andh is a collision-resistant cryptographic hash
function, such as MD5 or SHA1.

The authenticated dictionary forS consists of the hash tree
T plus the signature of a statement consisting of a times-
tamp and the labelf(r) stored at the rootr of T . An ele-
mentx is proven to belong toS by reporting the labels of
the nodes on the path inT from the leaf storingx to the
root, together with the values of all nodes that have siblings
on this path. Each node in this path must be identified as a
left or right child, and the path must be given in order, so
that the user can recompute the root’s hash value and com-
pare it to the current signed value. It is important that all this
order and connectivity information be presented to the user,
for without it the user would have great difficulty recomput-
ing the hash value for the root. This hash tree scheme can
be extended to validate that an itemx is not inS by keep-
ing the leaves ofT sorted and then returning the leaf-to-root
paths, and associated hash values, for two elementsy andz
such thaty andz are stored at consecutive leaves ofT and
y < x < z, or (in the boundary cases)y is undefined andz
is the left-most leaf orz is undefined andy is the right-most
leaf. Again, the user is required to know enough about bi-
nary trees to be able to verify from the topology of the two
paths thaty andz are stored at consecutive leaves.

Kocher [22] also advocates a static hash tree approach
for realizing an authenticated dictionary, but simplifies
somewhat the processing done by the user to validate that
an item is not in the setS. In his solution, the leaves of
the hash tree store the intervals defined by the consecutive
elements in the sorted sequence of the elements ofS. A
membership query for an itemx always returns a leafv and

the interval[y, z] stored atv such thaty ≤ x < z, together
with the path fromv to the root and all sibling hash values
for nodes along this path. The user validates this path by
recomputing the hash values of the nodes in this path, keep-
ing track of whether nodes are left children or right children
of their respective parents. Although there is a minor extra
overhead of now having to have a way of representing−∞
and+∞, this method simplifies the verification for the case
when an item is not inS (which will usually be the case
in certificate revocation applications). It does not support
updates of the setS, however.

2.3. Dynamic Hash Trees

Using techniques from incremental cryptography, Naor
and Nissim [29] dynamize hash trees to support the in-
sertion and deletion of elements. In their scheme, the
source and the directory maintain identically-implemented
2-3 trees. Each leaf of such a 2-3 treeT stores an element
of setS, and each internal node stores a one-way hash of
its children’s values. Hence, the source-to-directory com-
munication is reduced toO(1) items, since the source sends
insert and remove instructions to the directory, together with
a signed statement consisting of a timestamp and the hash
value of the root ofT .

A directory responds to a membership query for an ele-
mentx as follows: ifx is in S, then the directory supplies
the path ofT from the leaf storingx to the root, together
with all siblings of nodes on this path; else (x is not inS),
the directory supplies the leaf-to-root paths from two con-
secutive leaves storingy andz such thaty < x < z, to-
gether with all siblings of the nodes on these paths. By trac-
ing these paths, the user can recompute the hash values of
their nodes, ultimately recomputing the hash value for the
root, which is then compared against the signed hash value
of the root for authentication. One can apply Kocher’s in-
terval idea to this scheme as an alternative way of validating
items that are not in the dictionaryS. There are neverthe-
less some drawbacks of this approach. Dynamic 2-3 trees
are not trivial to program correctly. In addition, since nodes
in a 2-3 tree can have two or three children, one must take
special care in the structuring of the answer authentication
information sent by the directory to the user. Namely, all
sibling nodes returned must be classified as being left chil-
dren, middle children (if they exist), or right children. Re-
computing the hash value at the root requires that a user be
able to match the computation done at the source as regards
a particular leaf-to-root path.

Other certificate revocation schemes based on variations
of hash trees have been recently proposed in [11, 15], as
well, but do not deviate significantly from the above ap-
proaches.

method space update time update info query time answer info validation time
CRL’s O(n) O(n) O(n) O(n) O(n) O(n)

Micali [28] O(N) O(N) O(N) O(N) O(1) O(t)
Naor-Nissim [29] O(n) O(log n) O(1) O(log n) O(log n) O(log n)

Goodrich-Tamassia [18] O(n) O(log n) O(1) O(log n) O(log n) O(log n)
Goodrich-Schwerin-Tamassia [16] O(n) O(p + n/p) O(p) O(n/p) O(1) O(1)

Table 1. Comparison of data structures for authenticated dictionaries. We use n to denote the size
of the dictionary, t to denote the number of updates since a queried element has been created, and
N to denote the size of the universe the elements of the dictionary come from. We denote with p an
integer such that 1 ≤ p ≤ n. The time and information size bounds of the Goodrich-Tamassia scheme
are expected with high probability, while they are worst-case for the other schemes.

2.4. Skip Lists

Goodrich and Tamassia [18] have devised a data struc-
ture for an authenticated dictionary based on skip lists
[30]. They introduce the notion of commutative hashing
and show how to embed in the nodes of a skip list a com-
putational DAG (directed acyclic graph) of cryptographic
computations based on commutative hashing. This data
structure matches the asymptotic performance of the Naor-
Nissim approach [29], while simplifying the details of an
actual implementation of a dynamic authenticated dictio-
nary. In particular, the choice of a skip list and commuta-
tive hashing to implement an authenticated dictionary has
the following benefits over approaches based on hash trees:

• It replaces the complex details of 2-3 trees with the
easy-to-implement details of skip lists.

• It avoids the complication of storing intervals at leaf
nodes [22], and instead returns to the intuitive concept
of storing actual items at the leaf nodes.

• It greatly simplifies the verification process for a user,
while retaining the basic security properties of signing
a collection of values via cryptographic hashing.

2.5. One-Way Accumulators

The authors [16] have recently developed a data struc-
ture for authenticated dictionaries based on one-way accu-
mulators [4, 31]. An advantage of this approach is that the
validation of a query result performed by the user takes
constant time and requires computations simple enough
to be performed in devices with very limited computing
power, such as a smart card or a wireless phone. This ap-
proach achieves a tradeoff between the cost of updates at
the source and queries at the directories, with updates tak-
ing O(p + log(n/p)) time and queries takingO(n/p) time,
for any fixed integer parameter1 ≤ p ≤ n. For example,
one can achieveO(

√
n) time for both updates and queries.

We compare the asymptotic performance of data struc-
tures for authenticated dictionaries in Table 1.

3. Software Architecture

We have designed a general object-oriented software ar-
chitecture for authenticated dictionaries and we have imple-
mented it in Java. A high-level view of the software archi-
tecture is shown in Figure 2. In our architecture, an entity,
calledcertification authority, or CA, has been added to the
participants of the authenticated dictionary protocol. The
CA is the only trusted entity in the system. It initiates up-
dates and provides a signed statement to authenticate each
update. This statement is modeled by an object called the
Basis. In our formalization, the source acts as the inter-
mediary between the CA and the directory. It forwards to
the directory each update and its associated basis. The di-
rectory replies to queries made by the user by returning an
object calledAuthenticResponse, whose data fields pro-
vide the answer authentication information.

We use six interfaces (APIs) to describe our au-
thenticated dictionary system:AuthenticatedDictionary,
with its subinterfacesMirrorAuthenticatedDictionary and
SourceAuthenticatedDictionary, AuthenticResponse,
Update, andBasis.

3.1. Queries

Interfaces AuthenticatedDictionary, AuthenticRe-
sponse, andBasis relate to querying. At the heart of the
query system is theAuthenticatedDictionary. Its principal
methods are

• AuthenticResponse contains(Object o): queries
the membership of an element and retrieves the answer
as anAuthenticResponse object;

• Basis getBasis(): requests theBasis object provid-
ing the answer authentication information.

AX234H3

Directory

User

PQ765F3

Update

Source

CA

PQ765F3

Query

Basis
(signed)

AuthenticResponse

YES
Proof:

Figure 2. High-level view of our object-oriented software architecture for authenticated dictionaries.

An instance ofAuthenticResponse has a method,sub-
ject, to identify the element of the query for which the re-
sponse is issued, and a method,subjectContained, to de-
termine whether or not the element is contained by the dic-
tionary. There is also a method for determining whether or
not the response is valid, calledvalidatesAgainst, which
takes an instance ofBasis as its parameter.

The user should trust that the answer about the member-
ship of the object returned bysubject in the dictionary pro-
vided thatsubjectContained is correct and the following
are verified:

1. the user trusts that thedata stored in the instance of
Basis has not been tampered with, e.g., because it has
been signed by the CA.;

2. the user trusts that thecodeexecuted by the methods of
theAuthenticResponse has not been tampered with,
e.g., because it has been signed by the CA;

3. methodvalidatesAgainst returnstrue.

A schematic interaction diagram for a query is shown in
Figure 3. Note that methodverifyBasis() is not part of the
interfaces discussed above.

The data represented by theBasis and AuthenticRe-
sponse objects are implementation-dependent. For exam-
ple, in the hash tree data structure, the basis is the label of
the root of the tree, and theAuthenticResponse object for
an element in the set contains the sequence of labels (and
associated left-child/right-child) indicators, for the siblings
of the nodes in the path from the leaf containing the element

to the root. MethodvalidatesAgainst recomputes the label
of the root by hashing the labels in the sequence in the ap-
propriate order and compares the value so obtained with the
one provided by the basis.

3.2. Updates

Interfaces Update, MirrorAuthenticatedDictionary
and SourceAuthenticatedDictionary, relate to updating
an authenticated dictionary.

The SourceAuthenticatedDictionary interface de-
scribes the updates to the authenticated dictionary main-
tained at the source. It allows the CA to add or remove
items from the dictionary. It has two methods:insert and
remove. Both methods have a single parameter, the ele-
ment, and return anUpdate object. TheUpdate object is
used to transmit changes in the dictionary to the directory.
TheUpdate interface contains anexecute method that car-
ries out the action of the update on a directory, which could
be a single insert/remove operation or a sequence of them.
The MirrorAuthenticatedDictionary is the view given to
an object of typeUpdate of the authenticated dictionary
maintained at the directory. Its only method is used to ini-
tialize the directory.

It is assumed that a transport mechanism exists form dis-
tributingUpdate objects and their associatedBasis objects
to the directory. A schematic interaction diagram for up-
dates is shown in Figure 4. Note that methodssignBa-
sis() anddistribute() are not part of the interfaces discussed
above.

Because specific implementations of authenticated dic-

User Directory

getBasis()

BasisBasis

AuthenticResponseAuthenticResponse

verifyBasis()

contains(Object)

<<create>>

validatesAgainst(Basis)

Boolean

AuthenticResponse

YES
Proof:

Basis

<<create>>

Figure 3. Query interaction diagram.

insert(Object)

Basis

remove(Object)

signBasis()

distribute(Update)

distribute(Basis)

CA Source Directory

Figure 4. Update interaction diagram.

tionary systems may restrict the types of data that may be
stored in the dictionaries, thecontains method ofAuthen-
ticatedDictionary, as well as theinsert andremove meth-
ods ofSourceAuthenticatedDictionary and theinitialize
method ofMirrorAuthenticatedDictionary may throw ex-
ceptions if the user attempts to insert incompatible data.
Also, if a directory is not fed instances ofUpdate in the or-
der in which they were generated at the source, exceptions
may arise, depending upon specific implementations.

We show the source code for the above interfaces at the
end of this paper, in Figures 10 through 15.

4. Implementation

To validate our software architecture for authenticated
dictionaries, we have done a prototype implementation of
an authenticated dictionary based on skip lists.

4.1. Skip Lists

In this section, we review theskip listdata structure [30],
which is an efficient means for storing a setS of elements
from an ordered universe. It supports the following opera-

17 31 38

555012 17 20 25 31 38 39 44

4412

17 5531

17

17 55

55

25

25

25

S5

S4

S3

S2

S1

S0

8-

8-
8-

8-

8-

8- 8+

8+

8+

8+

8+

8+22

Figure 5. Example of a skip list.

tions:

• find(x): determine whether elementsx is in S.

• insert(x): insert elementx into S.

• delete(x): remove elementx from S.

A skip list stores a setS of elements in a series of linked
listsS0, S1, S2, . . ., St. The base list,S0, stores all the ele-
ments ofS in order, as well as sentinels associated with the
special elements−∞ and+∞. Each successive listSi, for
i ≥ 1, stores a sample of the elements fromSi−1. To de-
fine the sample from one level to the next, we choose each
element ofSi−1 at random with probability1/2 to be in
the listSi. The sentinel elements−∞ and+∞ are always
included in the next level up, and the top level,t, is main-
tained to beO(log n). The top level is guaranteed to contain
only the sentinels. We therefore distinguish the node of the
top list St storing−∞ as thestart nodes.

An element that exists inSi−1 but not inSi is said to be
a plateauelement ofSi−1. An element that is in bothSi−1

andSi is said to be atowerelement inSi−1. Thus, between
any two tower elements, there are some plateau elements.
In deterministic skip lists, the number of plateau elements
between two towers is at least one and at most three. The
expected number of plateau elements between two tower
elements is one. (See Figure 5.)

For each nodev of list Si, we denote with elem(v) the
element stored atv. Also, we denote with down(v) the node
in Si−1 belowv, which stores the same element asv, unless
i = 0, in which case down(v) = null . Similarly, we de-
note with right(v) the node inSi immediately to the right
of v, unlessv is the sentinel storing+∞, in which case
right(v) = null .

To perform a search for elementx in a skip list, we begin
at the start nodes. Let v denote the current node in our
search (initially,v = s). The search proceeds using two
actions,forward hopand drop down, which are repeated
one after the other until we terminate the search.

• Hop forward: We move right along the current list
until we find the node of the current list with largest

element less than or equal tox. That is, while
elem(right(v)) < x, we updatev = right(v)

• Drop down: If down(v) = null , then we are done with
our search: the nodev stores the largest element in the
skip list less than or equal tox. Otherwise, we update
v = down(v).

The outer loop of the search process continues while
down(p) 6= null , performing inside the loop one hop for-
ward followed by one drop down. After completing such a
sequence of hops forward and drops down, we ultimately
reach a nodev with down(v) = null . If, at this point,
elem(v) = x, then we have found elementx. Otherwise,
v is the node of the base list with the largest element less
thanx; likewise, in this case, right(v) is the a node of the
base list with the smallest element greater thanx, that is,
elem(v) < x < elem(right(v)). Figures 6 shows an exam-
ple of a search in the skip list of Figure 5.

The above searching process runs in expectedO(log n)
time, for, with high probability, the heightt of the random-
ized skip list isO(log n) and the expected number of nodes
visited on any level is three (e.g., see [17]). Moreover, ex-
perimental studies (e.g., see [30]) have shown that skip lists
often outperform 2-3 trees, red-black trees, and other deter-
ministic search tree structures.

To insert a new elementx, we determine which lists
should contain the new elementx by a sequence of simu-
lated random coin flips. Starting withi = 0, while the coin
comes up heads, we use the stackA to trace our way back
to the position of listSi+1 where elementx should go, add
a new node storingx to this list, and seti = i + 1. We
continue this insertion process until the coin comes up tails.
If we reach the top level with this insertion process, we add
a new top level on top of the current one. The time taken by
the above insertion method isO(log n) with high probabil-
ity. To delete an existing elementx, we remove all the nodes
that contain the elementx. This takes time isO(log n) with
high probability.

22

17 31 38

555012 17 20 25 31 38 39 44

4412

17 5531

17

17 55

55

25

25

25

S5

S4

S3

S2

S1

S0 8-

8-

8-
8-

8-

8- 8+

8+

8+

8+

8+

8+

v1v2

v3v4

v5v6

v7v8

v9v10

v11

Figure 6. Search for element 39 in the skip list of Figure 5. The nodes visited and the links traversed
are drawn with thick lines. This successful search visits the same nodes as the unsuccessful search
for element 42.

4.2. Commutative Hashing

For this paper, we view a cryptographic hash function
as a function that takes two integer arguments,x and y,
and maps them to an integerh(x, y) that is represented
using a fixed numberk of bits (typically fewer than the
number of bits ofx and y). Intuitively, h(x, y) is a di-
gest for the pair(x, y). We can also use the hash func-
tion h to digest a triple,(x, y, z), ash(x, h(y, z)). Like-
wise, we can useh to digest larger sequences. Namely,
to digest a sequence(x1, x2, . . . , xm) we can compute
h(x1, h(x2, . . . h(xm−2, h(xm−1, xm)) · · ·)).

To simplify the verification process that a user has to
do in an authenticated dictionary scheme, Goodrich and
Tamassia introducecommutative cryptographic hash func-
tions [18]. A hash functionh is commutativeif h(x, y) =
h(y, x), for all x andy. Such a function requires that we
modify what we mean by acollision resistanthash func-
tion, for the conditionh(x, y) = h(y, x) would normally be
considered as a collision. We therefore say that a hash func-
tion iscommutatively collision resistantif, given (a, b), it is
difficult to compute a pair(c, d) such thath(a, b) = h(c, d)
while (a, b) 6= (c, d) and(a, b) 6= (d, c).

Given a cryptographic hash functionh that is collision
resistant in the usual sense, we construct a candidate com-
mutative cryptographic hash function,h′, as follows [18]:

h′(x, y) = h(min{x, y}, max{x, y}).
It can be shown thath′ is commutatively collision resis-
tant [18].

4.3. Authenticated Dictionary Based on a Skip List

The authenticated dictionary approach introduced in [18]
consists of a skip list where each nodev stores a label com-
puted accumulating the elements of the set with a commu-
tatively cryptographic hash functionh. For completeness,
let us review how hashing occurs. See [18] for details.

For each nodev we define labelf(v) in terms of the
respective values at nodesw = right(v) andu = down(v).
If right(v) = null , then we definef(v) = 0. The definition
of f(v) in the general case depends on whetheru exists or
not for this nodev.

1. u = null , i.e.,v is on the base level:

(a) If w is a tower node, thenf(v) =
h(elem(v), elem(w)).

(b) If w is a plateau node, thenf(v) =
h(elem(v), f(w)).

2. u 6= null , i.e.,v is not on the base level:

(a) If w is a tower node, thenf(v) = f(u).
(b) If w is a plateau node, thenf(v) =

h(f(u), f(w)).

We illustrate the flow of the computation of the hash val-
ues labeling the nodes of a skip list in Figure 7. Note that
the computation flow defines a directed acyclic graph, not a
tree.

After performing the update in the skip list, the hash
values must be updated to reflect the change that has oc-
curred. The additional computational expense needed to
update all these values is expected with high probability to
beO(log n).

The verification of the answer to a query is simple,
thanks to the use of a commutative hash function. Recall
that the goal is to produce a verification that some element
x is or is not contained in the skip list. In the case when the
answer is “yes,” we verify the presence of the element itself.
Otherwise, we verify the presence of two elementsx′ and
x′′ stored at consecutive nodes on the bottom levelS0 such
thatx′ < x < x′′. In either case, the answer authentication
information is a single sequence of values, together with the
signed, timestamped, labelf(s) of the start nodes.

22

17 31 38

555012 17 20 25 31 38 39 44

4412

17 5531

17

17 55

55

25

25

25

S5

S4

S3

S2

S1

S0 8-

8-
8-

8-

8-

8- 8+

8+

8+

8+

8+

8+

555012 17 20 25 31 38 39 448- 8+22

Figure 7. Flow of the computation of the hash values labeling the nodes of the skip list of Fig. 5.
Nodes where hash functions are computed are drawn with thick lines. The arrows denote the flow of
information, not links in the data structure.

Let P (x) = (v1, · · · , vm) be the sequence of nodes that
are visited when searching for elementx, in reverse or-
der. In the example of Fig. 6, we haveP (39) = P (42) =
(v1, · · · , v11). Note that by the properties of a skip list, the
sizem of sequenceP (x) is O(log n) with high probabil-
ity. We construct from the node sequenceP (x) a sequence
Q(x) = (y1, · · · , ym) of values such that:

• ym = f(s), the label of the start node;

• ym = h(ym−1, h(ym−2, h(· · · , y1) · · ·)))
The computation of the node sequenceP (x) can be done
by pushing onto a stack the nodes visited while searching
for elementx. When the search ends, the stack contains the
nodes ofP (x) ordered from top to bottom. Using this stack,
we easily construct the sequenceQ(x) of node labels.

The user verifies the answer for elementx by sim-
ply hashing the values of the returned sequenceQ(x) in
the given order, and comparing the result with the signed
valuef(s), wheres is the start node of the skip list. If the
two values agree, then the user is assured of the validity of
the answer at the time given by the timestamp.

4.4. Implementation Details

The six interfaces described in Section 3 have been im-
plemented as Java classes. Additional auxiliary classes have
been used. Some implementation details are overviewed be-
low.

• A class CommutativeHash serves as a wrap-
per that adds commutativity to a standard
java.security.MessageDigest.

• The class implementing theBasis interface stores the
label of the start node of the skip list and a reference to
theCommutativeHash used by the data structure.

• The class implementing theAuthenticResponse in-
terface stores the sequence of label valuesQ(x) and
an integer flag to distinguish among the various cases
of validation of the answer.

• Two classes are used to implement theUpdate inter-
face. One represents insertion updates and stores the
height of the tower associated with the newly inserted
element. The other represents deletion updates.

• The class implementing theAuthenticatedDictionary
interface uses finite sentinel values. Also, it limits to a
given value the height of any tower.

5. Performance

We have conducted a preliminary experiment on the per-
formance of our data structure for authenticated dictionar-
ies on randomly generated sets of128-bit integers ranging
in size from100, 000 to 700, 000. For each operation, the
average was computed over30, 000 trials.

The experiment was conducted on a 440MHz Sun Ultra
10 with 256M of memory running Solaris. The Java Virtual
Machine was launched with a 200M maximum heap size.
Cryptographic hashing was performed using the standard
Java implementation of the MD5 algorithm. The signing
of the basis by the CA and the signature verification by the
user were omitted from the experiment. The highest level
of a tower was limited to20.

The results of the experiment are summarized in Fig-
ure 9. Note that validations, insertions and deletions take
less than1ms, while queries take less than0.1ms. Thus,
we feel the use of skip lists and commutative hashing is a
scalable solution for the authenticated dictionary.

22

17 31 38

555012 17 20 25 31 38 39 44

4412

17 5531

17

17 55

55

25

25

25

S5

S4

S3

S2

S1

S0 8-

8-

8-
8-

8-

8- 8+

8+

8+

8+

8+

8+

555012 17 20 25 31 38 398- 8+22

v1v2

v3v4

v5v6

v7v8

v9v10

v11

w3

u4

u6

w7

u8

u10

44

Figure 8. The answer authentication information for the presence of element x = 39 (and for the
absence of element 42) consists of the signed time-stamped value f(v11) of the source element and
the sequence Q(x) = (44, 39, 38, f(w3), f(u4), f(u6), f(w7), f(u8), f(u, 4), f(u10)). The user recomputes
f(v11) by accumulating the elements of the sequence with the hash function h, and verifies that the
computed value of f(v11) is equal to the value signed by the source. As in Figure 7, the arrows denote
the flow of information, not links in the data structure.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

- 100,000 200,000 300,000 400,000 500,000 600,000 700,000

number of elements

av
er

ag
e

tim
e

(m
s)

insertion
deletion
validation
query

Figure 9. Average time per operation (in milliseconds) of our Java implementation of an authenticated
dictionary using a skip list.

6. Conclusion

We presented an object-oriented software design of an
authenticated dictionary and a prototype implementation of
an efficient and practical data structure for realizing an au-
thenticated dictionary. Preliminary experiments show we
are able to retain the basic security properties of previous
schemes but make the dynamic maintenance of an accu-
mulated dictionary more practical, particularly for contexts
where user computations must be performed on simple de-

vices, such as PDAs and smart cards.

Acknowledgments We would like to thank Giuseppe
Ateniese and Robert Cohen for helpful discussions on the
topics of this paper, Benety Goh for assisting in the imple-
mentation of the data structure, and James Lentini for con-
ducting runtime experiments. We also thank Jeremy Mul-
lendore, Joel Sandin, and Michael Shin for additional soft-
ware support.

References

[1] W. Aiello, S. Lodha, and R. Ostrovsky. Fast digital iden-
tity revocation. InAdvances in Cryptology – CRYPTO ’ 98,
Lecture Notes in Computer Science. Springer-Verlag, 1998.

[2] M. Bellare, O. Goldreich, and S. Goldwasser. Incremen-
tal cryptography: The case of hashing and signing. InAd-
vances in Cryptology—CRYPTO ’94, volume 839 ofLec-
ture Notes in Computer Science, pages 216–233. Springer-
Verlag, 1994.

[3] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental
cryptography and application to virus protection. InPro-
ceedings of the Twenty-Seventh Annual ACM Symposium on
the Theory of Computing, pages 45–56, 1995.

[4] J. Benaloh and M. de Mare. One-way accumulators: A de-
centralized alternative to digital signatures. InAdvances in
Cryptology—EUROCRYPT 93, volume 765 ofLecture Notes
in Computer Science, pages 274–285, 1993.

[5] J. J. Bloch, D. S. Daniels, and A. Z. Spector. A weighted
voting algorithm for replicated directories.Journal of the
ACM, 34(4):859–909, 1987.

[6] M. Blum. Program result checking: A new approach to mak-
ing programs more reliable. In S. C. Andrzej Lingas, Rolf G.
Karlsson, editor,Automata, Languages and Programming,
20th International Colloquium, volume 700 ofLecture Notes
in Computer Science, pages 1–14. Springer-Verlag, 1993.

[7] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor.
Checking the correctness of memories.Algorithmica,
12(2/3):225–244, 1994.

[8] M. Blum and S. Kannan. Designing programs that check
their work. J. ACM, 42(1):269–291, Jan. 1995.

[9] M. Blum and H. Wasserman. Program result-checking: A
theory of testing meets a test of theory. InProceedings of the
35th Annual Symposium on Foundations of Computer Sci-
ence, pages 382–393, 1994.

[10] R. J. Brunner, L. Csabai, A. S. Szalay, A. Connolly, G. P.
Szokoly, and K. Ramaiyer. The science archive for the Sloan
Digital Sky Survey. InProceedings of Astronomical Data
Analysis Software and Systems Conference V, 1996.

[11] A. Buldas, P. Laud, and H. Lipmaa. Accountable certifi-
cate management with undeniable attestations. InACM Con-
ference on Computer and Communications Security. ACM
Press, 2000.

[12] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Au-
thentic third-party data publication. InFourteenth IFIP 11.3
Conference on Database Security, 2000.

[13] Fischlin. Incremental cryptography and memory checkers.
In EUROCRYPT: Advances in Cryptology: Proceedings of
EUROCRYPT, LNCS 1233, pages 393–408, 1997.

[14] M. Fischlin. Lower bounds for the signature size of incre-
mental schemes. In38th Annual Symposium on Foundations
of Computer Science, pages 438–447, 1997.

[15] I. Gassko, P. S. Gemmell, and P. MacKenzie. Efficient and
fresh certification. InInternational Workshop on Practice
and Theory in Public Key Cryptography ’ 2000 (PKC ’2000),
Lecture Notes in Computer Science, pages 342–353, Mel-
bourne, Australia, 2000. Springer-Verlag, Berlin Germany.

[16] M. T. Goodrich, A. Schwerin, and R. Tamassia. An efficient
dynamic and distributed cryptographic accumulator. Tech-
nical Report, Johns Hopkins Information Security Institute,
2000.

[17] M. T. Goodrich and R. Tamassia.Data Structures and Algo-
rithms in Java. John Wiley & Sons, New York, NY, 1998.

[18] M. T. Goodrich and R. Tamassia. Efficient authenticated dic-
tionaries with skip lists and commutative hashing. Technical
Report, Johns Hopkins Information Security Institute, 2000.

[19] C. Gunter and T. Jim. Generalized certificate revocation. In
Proc. 27th ACM Symp. on Principles of Programming Lan-
guages, pages 316–329, 2000.

[20] R. M. Karp. Mapping the genome: Some combinatorial
problems arising in molecular biology. InProceedings of
the Twenty-Fifth Annual ACM Symposium on the Theory of
Computing, pages 278–285, 1993.

[21] C. Kaufman, R. Perlman, and M. Speciner.Network Secu-
rity: Private Communication in a Public World. Prentice-
Hall, Englewood Cliffs, NJ, 1995.

[22] P. C. Kocher. On certificate revocation and validation. In
Proc. International Conference on Financial Cryptography,
volume 1465 ofLecture Notes in Computer Science, 1998.

[23] B. Kroll and P. Widmayer. Distributing a search tree among
a growing number of processors.SIGMOD Record (ACM
Special Interest Group on Management of Data), 23(2):265–
276, 1994.

[24] R. Lupton, F. M. Maley, and N. Young. Sloan digital sky
survey. http://www.sdss.org/sdss.html.

[25] R. Lupton, F. M. Maley, and N. Young. Data collection
for the Sloan Digital Sky Survey—A network-flow heuris-
tic. Journal of Algorithms, 27(2):339–356, 1998.

[26] R. C. Merkle. Protocols for public key cryptosystems. In
Proc. Symp. on Security and Privacy. IEEE Computer Soci-
ety Press, 1980.

[27] R. C. Merkle. A certified digital signature. In G. Bras-
sard, editor,Advances in Cryptology—CRYPTO ’89, volume
435 ofLecture Notes in Computer Science, pages 218–238.
Springer-Verlag, 1990.

[28] S. Micali. Efficient certificate revocation. Technical Report
TM-542b, MIT Laboratory for Computer Science, 1996.

[29] M. Naor and K. Nissim. Certificate revocation and certificate
update. InProceedings of the 7th USENIX Security Sympo-
sium (SECURITY-98), pages 217–228, Berkeley, 1998.

[30] W. Pugh. Skip lists: a probabilistic alternative to balanced
trees.Commun. ACM, 33(6):668–676, 1990.

[31] B. Schneier. Applied cryptography: protocols, algorithms,
and sourcecode in C. John Wiley and Sons, Inc., New York,
1994.

[32] G. F. Sullivan, D. S. Wilson, and G. M. Masson. Certification
of computational results.IEEE Trans. Comput., 44(7):833–
847, 1995.

/**
* Interface implemented by objects that represent the bases of the validatable
* responses returned by AuthenticatedDictionary objects. Implementations of
* this class should have a public constructor that takes no parameters, and
* a means to distinguish between initialized and uninitialized instances.
*
**/
public interface Basis {
/**
* Get the encoded form of this basis.
**/
public byte [] getEncoded() throws NotYetInitializedException;

/**
* Read the basis from an array of bytes, initializing this instance of
* the basis. This should at least be able to read the encodings produced
* by the getEncoded() method.
**/

public void readEncoded(byte [] encoding)
throws AlreadyInitializedException, IncompatibleDataException;

}

Figure 10. Basis interface.

/**
* Interface implemented by all objects representing updates to
* instances of MirrorAuthenticatedDictionary .
**/
public interface Update extends java.io.Serializable {
/**
* An udpate that doesn’t do anything at all. Never throws an exception,
* and may be executed upon any MirrorAuthenticatedDictionary.
**/

public static final Update NOOP = new NoUpdate();
static class NoUpdate implements Update {

public void execute(MirrorAuthenticatedDictionary dict)
throws IncompatibleDataException, InconsistentUpdateException, NotYetInitializedException
{ /* do nothing */ }
public String toString() { return "NOOP"; }

};

/**
* Update the given MirrorAuthenticatedDictionary dict
* Throws IncompatibleDataException if this update object cannot update
* the given data structure because of an incompatible implementation.
* Throws InconsistentUpdateException if this update object cannot update
* the given data structure because the data structure does not have the
* appropriate initial state, or if the data structure has not yet been initialized.
* Throws NotYetInitializedException if the mirror is uninitialized.
**/
public void execute(MirrorAuthenticatedDictionary dict)

throws IncompatibleDataException, InconsistentUpdateException, NotYetInitializedException;
}

Figure 11. Update interface.

public interface AuthenticatedDictionary {
/* Include the basic dictionary methods size() and isEmpty() */

public int size() throws NotYetInitializedException;
public boolean isEmpty() throws NotYetInitializedException;

/**
* Responds as to whether or not the given object o is contained in the
* dictionary. The response takes the form of an instance of the
* AuthenticResponse class which, whenever possible, answers the question
* of containment in the dictionary in a verifiable manner.
* Returns A response as to whether or not <code>o</code>
* is in the dictionary.
* Throws IncompatibleDataException If o is not a valid
* object to store in this instance of the AuthenticatedDictionary
* Throws NotYetInitializedException if this instance is a mirror,
* and has yet to be initialized
**/
public AuthenticResponse contains(Object o)

throws IncompatibleDataException, NotYetInitializedException;
/**
* Get’s the basis of the verifiable responses returned by this data
* structure. If the user trusts the basis, then the user may trust all
* validatable responses concluded
* from that basis. The user might come to trust a particular basis by
* receiving it from a trusted source over secure channels, or by receiving
* a copy of it that has been signed by a trusted source.
* Throws NotYetInitializedException if this instance is a mirror,
* and has yet to be initialized.
**/
public Basis getBasis() throws NotYetInitializedException;

/**
* Determines whether or not the basis b of the validatable responses created
* by this AuthenticatedDictionary is the same as the parameter to the method.
* To be the same, the two bases need to be able to validate exactly the
* same set of responses. If the basis of the data structure validates
* responses that b does not, or b validates responses that the data
* structure’s basis does not, then the two bases are not the same;
* otherwise, they are.
* Throws NotYetInitializedException if this instance is a mirror,
* and has yet to be initialized.
**/
public boolean validatesAgainst(Basis b) throws NotYetInitializedException;

/**
* Gets data that may be used to initialize a compatible mirror
* authenticated dictionary via its
* initialize(AuthenticatedDictionaryInitialization) method.
* Throws NotYetInitializedException if this instance is a mirror,
* and has yet to be initialized.
**/

public AuthenticatedDictionaryInitialization getInitializationData() throws NotYetInitializedException;
}

Figure 12. AuthenticatedDictionary interface.

public interface AuthenticResponse {

/**
* Returns the object whose membership in a particular
* AuthenticatedDictionary this response authentically confirms or denies.
* Returns The subject of the response.
**/

public Object subject();

/**
* Return <code>true</code> iff the subject of this response is contained
* within the authenticated dictionary that issued this response.
**/

public boolean subjectContained();

/**
* Checks to see if the response is actually validatable. It is possible
* that a given instance of AuthenticatedDictionary might only be able to
* provide validatable responses when the result of a query is postive.
* Such instances must still be able to supply a response when the result
* is negative, even if that response isn’t validatable.
*
* Returns true iff this response is validatable
**/

public boolean isValidatable();

/**
* Checks to see of the response is a valid conclusion from the given basis.
* If the response is a valid conclusion from the given basis, and if the
* user trusts the basis, then the user may also trust the validity of the
* response.
*
* @param b The basis against which to check this response.
* @return true iff the response is a valid conclusion from the given basis.
* Must return false if <code>isValidatable()</code> returns false.
**/

public boolean validatesAgainst(Basis b);
}

Figure 13. AuthenticResponse interface.

public interface SourceAuthenticatedDictionary
extends AuthenticatedDictionary

{

/**
* Add o to the AuthenticatedDictionary;
* returns an update object describing how mirror copies of this data
* structure should modify themselves in order to be consistent with
* this insertion
* @param o The object to insert
* @throws IncompatibleDataException if o is not an object
* that may be stored in this AuthenticatedDictionary
**/
public Update insert(Object o)

throws IncompatibleDataException;

/**
* Remove o from the AuthenticatedDictionary,
* returns an update object describing how mirror copies of this data
* structure should modify themselves in order to be consistent with
* this removal
* @param o The object to remove
* @throws IncompatibleDataException if o is not an object
* that may be stored in this AuthenticatedDictionary
**/
public Update remove(Object o)

throws IncompatibleDataException;
}

Figure 14. SourceAuthenticatedDictionary interface.

public interface MirrorAuthenticatedDictionary
extends AuthenticatedDictionary {

/**
* Initialize the otherwise uninitialized data structure according to the
* given initialization data, which was presumably issued by the
* getInitializationData() method of a compatible
* implementation of SourceAuthenticatedDictionary.
* @param initData The initialization data
* @exception AlreadyInitializedException If the data structure has already
* been initialized
* @exception IncompatibleDataException if the initialization data object is
* not compatible with this implementation of
* MirrorAuthenticatedDictionary.
* @see SourceAuthenticatedDictionary#getInitializationData()
**/
public void initialize(AuthenticatedDictionaryInitialization initData)

throws AlreadyInitializedException, IncompatibleDataException;
}

Figure 15. MirrorAuthenticatedDictionary interface.

