
1. Introduction
Binary decision diagrams (BDD) are used in a wide variety of

applications where it is necessary to have an efficient means of rep-
resenting and manipulating Boolean functions, such as in circuit
verification [13] and combinatorial problems [12]. A problem of
arbitrary size is generally limited by a workstation’s resources, pri-
marily the size of its physical and virtual memory. For instance,
when a BDD application begins to utilize its swap space, it tends to
rely on it heavily. An efficient swapping algorithm was proposed in
[7]. However, an alternative is to combine the resources of several
workstations. This is advantageous because, by combining
resources, there is both more memoryand more processing power.

To date, parallel BDD implementations that have been devel-
oped include packages for shared memory multi-processor systems
[2], for a distributed shared memory (DSM) platform [1], for SIMD
architectures [9], and for vector processors [10]. This paper
describes a different type of parallel BDD library package devel-
oped for use in non-shared distributed memory multi-processing
environments such as a network of workstations (NOW).

Often, parallelism may be extracted from a problem in several
different ways. For instance, [9] explores parallelism in breadth-
first BDD traversals [11]. In [2], parallelism in operation sequences
is examined. This paper describes a technique that allows several
different forms of parallelism to be exploited in depth-first algo-
rithms on a distributed BDD data structure.

A formal presentation of definitions and terminology can be
found in [4]. Our parallel implementation does not currently sup-
port compression techniques such as attributed edges [5] or
dynamic variable re-ordering [6]. However, because the distributed
algorithms are strongly based on an efficient non-parallel BDD
package [3], these techniques will be supported in future work.

2. Implementation
This section introduces the data structures used to store the dis-

tributed BDD. As in [3], our parallel BDD package useshash
tables, hash-based caches, a strong canonical form, a computed
table and aunique table. However, the hash-based cache in this
implementation differs slightly, in that a collision based chain is
used and cache replacements are made in a least recently used
(LRU) manner. The node cache, covered in Section 2.3., and the
computed table, in Section 2.4., use hash-based caches.

A two-level hash table is a data structure that consists ofblocks
of values. To obtain a value associated with akey, one must first use

an initial hash function on the key, which returns a block. A sec-
ondary hash function is then used on the key to return the value
within the block. Section 2.1., describes the construction of the
unique table as a two-level hash table.

2.1. Partitioning the Unique Table
Theunique table, described in [3], is distributed acrossN pro-

cessors. A depth-firstite was chosen over breadth-first to allow par-
allel traversal of sub-trees on a BDD distributed across many
processors. Specifically, anywhere one node points to a node on a
remote processor, traversal of the BDD can be forked to the other
processor. Thus processors work at any level in the tree, as opposed
to performing level-constrained phases as in [7]’s breadth-first
algorithm. This strategy also simplifies redistribution of the BDD
as work progresses. Task partitioning strongly relates to the unique
table partitioning strategy discussed in Section 3.

To achieve a high degree of parallel execution, nodes must be
well distributed across all processors. Yet, it is also necessary to
minimize communications overhead. To suit these purposes, atwo-
level hash table is used to store the unique table. The initial hash
function for the unique table first chooses a block by applying a
pseudo-random function dependent upon a node’s level and the
unique ids of its left and right children nodes. Given a block choice,
a request to get or put a node is sent to the processor which owns
that block. This processor then uses a secondary hash function to
place the node within the block. In cases where a block fills up, it
may become necessary to apply a rehash function in order to
choose a different block.

Each processor maintains ablock location table (see Figure 1)
to indicate dynamically which processor owns which block. Each
block is associated with a range of unique node id’s that correspond
to its position in the block location table. This allows fast location
and placement of distributed nodes while also enabling physical
redistribution of blocks between segments of large calculations.
This feature is advantageous since the distribution of nodes can
change a great deal during garbage collection.

Unique table consistency is critical, especially in a distributed
system. We must insure that multiple instances of the same node
cannot be created. Consistency is maintained by giving each pro-
cessor responsibility for the nodes that it owns. Each processor
updates its portion of the unique table uninterrupted, in an atomic
region of code. Similarly, the system must not create two instances
of the same block when two processors create nodes at the same
time. To avoid this, each processor is given an initial range of block
numbers for which it is responsible. Once a block is created, the
processor that created it sends an asynchronous message to the
other processors which instructs them to add the new block to their
block location tables.

2.2. The Hash Functions
The execution time of this parallel BDD package is very sensi-

tive to changes in the hashing functions for the unique table. Since

Figure 1: Unique table partitioning

Block 0

Node # 0
Node # 1
Node # 2
Node # ...

(on Processor 2)

0
1
2
3
...

Block 2
Processor 0

Block Location Table

2
2
0
1

Block Processor

Block 1
Processor 2

Block 0

Block 3
Processor 1

Implementation of an Efficient Parallel BDD Package
Tony Stornetta Forrest Brewer

Department of Electrical and Computer Engineering
University of California, Santa Barbara, U.S.A.

Abstract
Large BDD applications push computing resources to their

limits. One solution to overcoming resource limitations is to dis-
tribute the BDD data structure across multiple networked worksta-
tions. This paper presents an efficient parallel BDD package for a
distributed environment such as a network of workstations (NOW)
or a distributed memory parallel computer. The implementation
exploits a number of different forms of parallelism that can be
found in depth-first algorithms. Significant effort is made to limit
the communication overhead, including a two-level distributed
hash table and an uncomputed cache. The package simultaneously
executes multiple threads of computation on a distributed BDD.

33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

the unique table is a two level hash, one must be especially careful
in choosing the hashing functions. If the block-level hashing func-
tion is well distributed, nearly all blocks in the system are allo-
cated, helping to distribute the nodes evenly. At the node-level, a
rehash threshold is used to control the number of times the package
performs a rehash for a node in one block. Our experiments indi-
cate that the block-level hashing function has much more of an
effect on performance than the rehash threshold.

In the current implementation, each block contains 1,024
nodes. The package makes allowances for up to 2K blocks in the
unique table, for a total of up to 2M nodes overall. As long as both
the number of nodes in a block and the total number of blocks
equal a power of 2, these specifications can be easily changed. In
future work, these values will be varied in order to find the optimal
block size and unique table maximum since both parameters affect
the performance of this hash-based implementation.

2.3. Node Cache
Accessing nodes stored on other processors is a time consum-

ing event that should be done only when necessary. Therefore, each
processor has a read-only hash-based cache of nodes, used to store
frequently used nodes that are located on other processors. Since
they are so frequently accessed, the0 and1 terminal nodes are per-
manently cached. All other nodes are cached in an LRU fashion.

2.4. Computed and Uncomputed Tables
The computed table is a distributed hash-based cache that is

used to store intermediate computational results [3]. Theuncom-
puted table is a distributed hash table used to keep track of ongoing
computations. The uncomputed table is necessary because results
in an ongoing recursive BDD computation are most likely not
immediately available. For instance, the current thread of computa-
tion may be waiting because it requires a result from another pro-
cessor. It is necessary to keep a record of having started a
computation to prevent it from being started multiple times. Both
tables are tied to the tree traversal strategy and are always locally
accessible, as will be described in Section 3.1.

The uncomputed table provides aforward mechanism that
allows stopped threads of computation to receive the results of a
step in a computation that has already been started but not yet com-
pleted. This forward points to the thread of computation that is
expecting the uncomputed result. An uncomputed result may have
multiple forwards by the time it is finally computed. Thus, when it
is obtained, the result is propagated via the forwarding mechanism
so that any threads of computations that were waiting for the result
are restarted. When results are put into the computed table, they are
removed from the uncomputed hash table. An advantage of the for-
ward mechanism is that it coordinates the processing of multiple
simultaneous threads of computation.

3. Division of Labor
Section 2 described how the unique table was partitioned

among processors. This section discusses howwork is partitioned
among processors. Work is defined as a small chunk of a tree tra-
versal algorithm, such as anite (if-then-else) or node counting
computation. Several new data structures are required to support
parallel computation.

A work queue is a data structure which consists of a list of vari-
ous different types of tasks that need to be completed. The work
queue is discussed in Section 3.2.

A global stack frame is similar to the idea of a program’s stack
frame within its heap. In order to keep track of the state of a recur-
sive BDD computation that spans multiple processors, space must
be set aside, analogous to a recursive procedure’s stack frame. Sec-
tion 5.3 contains more details on the implementation of the global
stack frame.

A thread of computation performs individual work queue items
on a single processor. The next sections will describe how multiple
threads of computation are supported.

3.1. Tree Traversal
The tree traversal strategy is related to the node partitioning. As

in depth-first algorithms, a recursive operation similar toite is
applied to the BDD. In our strategy, thenode with the highest level
in a given operation’s arguments determines which processor per-

forms the actual work. Thus, when the children of this node point
to remote nodes, the effort forks new threads (work items) on the
other processors. Given a distribution of nodes across processors,
children will frequently point to nodes on other processors, and so
all processors will be busy working on some portion of the calcula-
tion.

For instance, in the case ofite(f, g, h) , if nodef has the
highest level amongf, g, or h, the processor on which the nodef
resides is the processor that performs this stage of the computation.
Figure 2 illustrates a typical scenario. If nodesg and h are not
locally accessible and do not exist in the node cache, they must first
be obtained from their respective remote processors. This function
typically generates two more recursive if-then-else operations, each
of which might also execute on remote processors.

At any given step of a thread of computation, there are three
cases to consider: (1) work may be continued on two other proces-
sors, (2) work may be continued both the current processor and a
remote processor, or (3) the current processor continues all the
work itself. In the first case, the processor must stop working on the
current thread of computation. It checks the work queue and begins
on a different thread of computation. In the second case, part of the
computation is dependent upon another processor’s result, how-
ever, the thread of computation is still active on this processor as
well. In the last case, the local processor performs the next step of
the computation.

As part of the strategy of assigning work to the processor that
owns the node with the highest level, the portions of the computed
and uncomputed tables relating to that node also reside on the same
processor. Space in each block is reserved for the portions of these
tables that correspond to the nodes within that block. Thus, the
computed and uncomputed tables are also tied to the tree traversal
strategy so that they can always be accessed locally. For example,
at the beginning of a step in anite call, the computed and uncom-
puted tables will always reside on the same processor where this
step is being computed. This allows for efficient speedup of the tra-
versal. An added benefit of this strategy is that when blocks move,
the computed and uncomputed tables move with them.

3.2. Work Queue
The work queue facilitates parallel tree traversals and is the

mechanism by which simultaneous threads of computation may be
executed. It is an unordered, prioritized queue to which any proces-
sor may add tasks. Each processor examines its queue, one item at
a time, and, as work is completed, asynchronous messages are sent
to remote processors to add tasks to their appropriate work queues.
Every time work is assigned to a remote processor, the computation
bifurcates, allowing parallel execution of both sub-trees. It should
be noted that the order in which this computation is completed is
nondeterministic. There is no predefined ordering of interprocessor
messages nor of tasks in the work queue. Consequently, the order
in which cache replacements occur will also be nondeterministic.
This randomness is reflected in the total number of if-then-else
calls, in the number of garbage nodes generated, and in the execu-
tion times for a given application. Nonetheless, the output of the
computation and the structure of the unique table for a computed
function are always the same after every execution.

A benefit of the work queue design is that multiple types of par-
allel operations can be performed simultaneously. For instance,
while one processor helps calculate the number of nodes in a func-
tion, several other processors work on multipleite operations at the

x(p2) g (p3)

h (p0)y (p3) z(p1)

Arbitrary nodes in a distributed BDD:

In ite (f, g, h), processor 2 performs the work

f (p2)

Figure 2: Work partitioning

same time. The package can thus support parallel execution of mul-
tiple user functions. Ideally, all processors will be kept busy gener-
ating results for one or more operations.

3.3. Global Stack Frames
A mechanism is required to temporarily store a portion of the

recursive computation until it can be continued at a later time. In
other words, processors continually process their work queue and
do not wait for results from other processors. It is also necessary to
orchestrate the transfer of information between processors for each
step of the calculation which cross processor boundaries. To meet
these needs, a persistent data structure, the global stack frame, was
constructed so that processors can obtain the required information
and perform steps of the calculation at their own convenience. The
work queue and global stack frames cooperate to simulate multiple
threads of computation.

Each stack frame keeps state information necessary to com-
plete that step of the computation. It also points to the parent stack
frame to which it can send its result. In addition, global stack
frames contain forwards to any other stack frames that are waiting
for the same result. As in a recursive procedure, objects in this glo-
bal stack are created during recursive call and are deleted on return.

Figure 3 illustrates the use of global stack frames in part of an
if-then-else computation. In this example, processor 0 generated a
stack frame as a result of an if-then-else computation. To finish, it
requires the result of the next step from processor 1, so it sends the
work queue on processor 1 a work item. Meanwhile, processor 0
addresses other items in its work queue. Processor 1 creates a stack
frame which contains a pointer to the parent stack frame (A). Next,
processor 1 obtains the then/else information from processor 0 nec-
essary to complete that step of the computation (B). Once proces-
sor 1 has a result, it is sent back to processor 0 as a work item (C).
At some point during this computation, processor 2 discovered, via
the uncomputed table, that it also needed the same result, so it left a
forward on processor 1. Before the stack frame on processor 1 is
deleted, the result is also forwarded to processor 2 (D).

4. Experimental Results
The Parallel BDD package is implemented in C++ with a

Split-C [8] communications interface. In Split-C, each processor
runs asingle thread of execution. This thread may either be a local
thread of execution or one or more remote requests, however only
one of these is serviced by the processor at a time. The threads do
not execute in lock-step, however, as primitives are provided to the
programmer for blocking and barriers. While the Split-C environ-
ment is single threaded, the work queue and global stack frames
allow us to simulate multiple simultaneous threads of computation.

The machine used in this implementation was a Meiko CS-2,
configured with 64 scalar processor nodes. Each processor featured
a SPARCstation 10 with 32MB of memory, 25 MB of swap space,
and a 1MB external cache. Furthermore, processors were net-
worked together by an Elan fat-tree interconnection. Each proces-
sor featured a communications coprocessor that performed
internode communication via DMA transfers. In the following
experiments, a 32 processor partition was used to generate results
for the parallel version of our BDD library. For comparison pur-
poses, some of the experiments were also executed using a conven-
tional, optimized BDD library that runs on a single workstation.
We tested this package on a puzzle application and on various
ISCAS85 benchmarks.

Parent stack frame
Forwards
Info for then/else

Processor 1

Results

Parent stack frame
Forwards
Info for then/else

Processor 0

Results

Parent stack frame
Forwards
Info for then/else

Processor 2

Results

B

A

C

D

Figure 3: Global Stack Frames forite()

4.1. Puzzle Application
The first application utilized the BDD package to compute the

number of solutions on an arrangement puzzle. The puzzle con-
sisted of a square grid,n x n, cut along grid lines intop pieces of
arbitrary shapes. Given the pieces and the size of the grid, the
application computed the number of placements by which all the
pieces could be arranged onto the square grid. This application was
chosen because the bulk of the computation, several large Boolean
and operations, do not parallelize cleanly. Unlike BDD construc-
tion benchmarks, the puzzle application preforms complex opera-
tions on the BDD to generate a useful result. Thus, it was a good
test of the parallel package’s usefulness in non-specific problems of
large sizes.

In the first experiment, we generated a 7x7 puzzle problem with
9 pieces to test the performance of the parallel library. Table 1 illus-
trates the results of a number of configurations. The parallel ver-
sion did not complete on one processor, having run out of virtual
memory. The non-parallel version, running on a single processor,
took nearly an hour to complete and spent a fair amount of time
thrashing. By combining resources, our parallel version was able to
beat this time by more than a factor of 10 with just 8 processors.

As described in section 3, the number of if-then-else calls is
nondeterministic. However, in Table 1, the number of if-then-else
calls decreased for increasing numbers of processors. The reason
for this is that as more processors cooperated in the computation,
the cumulative size of the cache increased. Thus, the cache size for
32 processors was much larger than the cache on one processor and
consequently had more hits. A much larger version of the problem
was run on a version of the package with 8M available nodes.
Although at this size, each of the processors in the distributed ver-
sion actually swapped, there was still significant speedup as shown
in Table 2. In this example, the non-parallel version is also a Sparc-

10 but one with 128MB of RAM and 200MB of swap space. Even
though both implementations required swapping, the parallel ver-
sion was more than 8 times as fast, even given the communication
overhead.

Table 3 shows some statistics generated for a smaller puzzle
problem. Part of the execution overhead time is the time required to
load the program executable to all processors involved in the com-
putation (a few seconds). There is clearly significant overhead in
processing the distributed BDD structure. In fact, the lack of any
communication overhead allowed one processor to finish the paral-
lel application more quickly than two processors. The non-parallel
BDD package, which has no communications overhead and is opti-
mized for a single processor, finished this small problem in about 4
seconds. However, the distributed version must contend with com-
munication delays between the components performing the calcu-
lation. It is clear that much of this communication is performed in
parallel in the large partitions to obtain the observed performance.
Small problems on the distributed BDD package may take several

Table 1: 7x7 Puzzle, 9 pieces

Processors Time (sec)
Total
Nodes

 Nodes/
Processor

if-then-else
Calls

non-parallel 3357 358,261 358,261 1,285,853
1 ------ >109,154 >109,154 >162,846
2 1,340.0 361,501 180,750 1,204,262
4 343.0 363,440 90,860 995,981
8 138.8 361,229 45,153 951,464
16 82.8 361,370 22,585 937,945
32 58.0 362,124 11,316 860,963

Table 2: 8 x 8 Puzzle, 12 Pieces

Processors
Time

(seconds)
Total
Nodes

Nodes/
Processor

if-then-else
calls

32 3,015 6,971,273 217,852 15,358,229
non-parallel 23,980 6,950,150 6,950,150 25,450,950

times as long as a non-parallel implementation. However, this per-

formance penalty is tolerable compared to that incurred when local
workstation resources are exhausted.

4.2. Hashing Function Results
Several portions of the implementation required tuning to

obtain best performance, of these, the hashing related tuning was
most critical. The block rehash threshold provided significant
improvement up to about 3 (rehashes in block), after which the per-
formance slowly degraded. Node caching provided an additional
factor of about 4 in performance on the Meiko. The surprising
result was that block distribution apparently worked best when
there was very little locality in the blocks with relation to the tree
traversal. This is shown in Table 4 where the run-times for varia-
tions in hash locality are detailed. In this case, a pseudo-random

function forced parent nodes into the same block as their children
with a given probability. The increase in messages stem from this
requiring updates to the block tables. However, the large increase
in run time is due to several processors going idle due to the poor
distribution of nodes.

4.3. ISCAS Benchmarks
The ISCAS85 benchmarks that could fit within a 2M node-

space on 16 processors without garbage collecting and other com-
pression techniques generated results as shown in Table 5. These
statistics were generated by choosing a predefined ordering of input
variables

5. Conclusions
Given the results of our experiments, it would appear that this

package will scale to a large number of processors. In running
BDD applications of larger sizes, this research is applicable to any
system comprised of workstations that are networked together. In
future work, we would like to test this parallel BDD package on
different network interconnects. In particular, we would like to test
it on a conventional NOW.

Table 3: 6 x 6 Puzzle, 6 pieces

Processors
Time

(seconds)
Total
Nodes

 Nodes/
Processor

if-then-else
Calls

non-parallel 4.25 40,316 40,316 162,024
1 23.30 40,316 40,316 87,696
2 37.22 41,354 20,677 130,582
4 22.75 41,862 10,465 110,516
8 12.79 41,077 5,134 101,994
16 10.21 41,078 2,567 96,389
32 9.99 41,817 1,306 94,925

Table 4: Node Locality 6 x 6 Puzzle

Hash Total ite Time (sec) Messages Local nodes

Random 112,764 13.1 43,561 0.4%
1/16 121,482 12.8 44,686 2.4%
1/8 121,497 12.7 44,293 4.2%
1/4 104,718 183.4 89,200 62.2%
1/2 104,824 190.6 91,963 70.3%

Table 5: ISCAS 85 Benchmarks

Benchmark
Number of

Nodes
If-then-else
calls (32P)

16 Proc.
Time (sec.)

32 Proc.
Time (sec.)

c432 30,008 129,532 6.6 4.4
c499 52,608 164,439 7.6 5.0
c880 106,474 303,214 14.7 10.4
c1355 228,230 536,419 21.9 17.0
c1908 92,343 232,259 9.0 6.1
c5315 22,955 53,997 3.5 2.9

This paper has presented a means of developing an efficient
parallel BDD package on a distributed memory multi-processor
system. Several techniques have been introduced which allow par-
allelization of depth-first search algorithms on a BDD. A two-level
hash provides a means by which to store a distributed BDD’s
unique table. Together, the computed table and the uncomputed
table coordinate parallel threads of computation. The forwarding
scheme complements the uncomputed table by keeping track of
these threads. A node cache helps reduce communication overhead.
Finally, not only have the resources of multiple processors been uti-
lized by storing a distributed BDD, but they can also simulta-
neously execute multiple threads of computation on a distributed
BDD.

The experimental data in the puzzle application is not a stan-
dard circuit benchmarks, but it does demonstrate the effective per-
formance of a parallel BDD package with a distributed unique
table. Our experiments clearly show the advantages in using multi-
ple distributed processors to solve larger problems, where single
machine resources become exhausted.

6. References
[1] Y. Parasuram, E. Stabler and Shiu-Kai Chin. “Parallel Imple-

mentation of BDD Algorithms Using a Distributed Shared
Memory.” In Proceedings of the Twenty-Seventh Hawaii
International Conference on System Sciences Vol I: Architec-
ture, pp 16-25, January 1994.

[2] S. Kimura, T. Igaki, H. Haneda. “Parallel Binary Decision
Diagram Manipulation.” InIEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sci-
ences, Vol. E75-A, No. 10, pp 1255-62, October 1992.

[3] K. S. Brace, R. L. Rudell, and R. E. Bryant. “Efficient Imple-
mentation of a BDD Package.” InProceedings of 27th ACM/
IEEE Design Automation Conference, pp. 40-45, June 1990.

[4] R. E. Bryant. “Graph-Based Algorithms for Boolean Function
Manipulation.” IEEE Transactions on Computers, Vol. C-35,
No. 8, pp. 677-691, August 1986.

[5] S. Minato, N. Ishiura and S. Yajima. “Shared Binary Decision
Diagram with Attributed Edges for Efficient Boolean Func-
tion Manipulation.” In Proceedings of 27th ACM/IEEE
Design Automation Conference, pp. 52-57, June 1990.

[6] R. Rudell. “Dynamic Variable Ordering for Ordered Binary
Decision Diagrams.” InProceedings of the IEEE Interna-
tional Conference on Computer-Aided Design, pp. 42-47,
Santa Clara, CA, November 1993.

[7] H. Ochi, K. Yasuoka, S. Yajima. “Breadth-First Manipulation
of Very Large Binary-Decision Diagrams.” InProceedings of
the IEEE/ACM International Conference on Computer-Aided
Design, pp. 48-55, 1993.

[8] D. Culler et al. “Parallel Programming in Split-C.” InPro-
ceedings SUPERCOMPUTING ‘93, pp 262-73, November
1993.

[9] S. Gai, M. Rebaudengo, M. S. Reorda. “A Data Parallel Algo-
rithm for Boolean Function Manipulation.” InProceedings.
Frontiers ‘95. The Fifth Symposium on the Frontiers of Mas-
sively Parallel Computation, pp 28-34, February 1995.

[10] H Ochi, S. Yajima, N. Ishiura. “A Vector Algorithm for
Manipulating Boolean Functions Based on Shared Binary
Decision Diagrams.”Supercomputer, Vol. 8, No. 6, November
1991.

[11] P. Ashar and M. Cheong, “Efficient Breadth-First manipula-
tion of Binary Decision Diagrams”,Proceedings IEEE Inter-
national Conference Computer-Aided Design, pp. 622-627,
1994.

[12] S.-I. Minato, “Zero-Suppressed BDDs for Set Manipulation in
Combinatorial Problems”,Proc. 30th ACM/IEEE Design
Automation Conference, pp. 272-277, 1993.

[13] S. Kimura, “Residue BDD and Its Application to the Verifica-
tion of Arithmetic Circuits”,Proc. 32th ACM/IEEE Design
Automation Conference, pp. 542-545, 1995.

