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Abstract - The implementation of the Extended Prediction Self-

Adaptive Controller is presented in this paper. It employs 

LabVIEWTM graphical programming of industrial equipment 

and it is suitable for controlling fast processes. Three different 

systems are used for implementing the control algorithm. The 

research regarding the controller design using graphical 

programming demonstrates that a single advanced control 

application can run on Windows, real time operating systems and 

FPGA targets without requiring significant program 

modifications. The most appropriate device may be selected 

according to the required processing time of the control signal 

and of the application. A relevant case study is used to exemplify 

the procedure. 

Keywords—Field programmable gate arrays, Predictive control, 

Benchmark testing, Real-time systems. 

I. INTRODUCTION 

Predictive control has emerged as one of the most 

commonly researched control algorithms in various fields of 

industrial activity. Predictive control, in comparison to other 

modern control methods, has a series of features that make it 

appealing to both the researcher, as well as the industrial 

engineer, such as: intuitive principles, performance oriented 

design parameters, intrinsic ability for handling time delays 

and nonlinearities, as well as different constraints (ranging 

from actuator/sensor constraints to safety or quality 

constraints). Typically, predictive control has been used in the 

control of processes with large time constants and time delays, 

such as chemical plants [1]. However, an increasing number of 

model predictive control applications have been reported in 

the control of fast dynamical systems [2], [3]. Traditionally, 

the main limitation of MPC (Model Predictive Control) 

resulted from the long computational time needed for 

determining the optimal control action. This represents one of 

the major reasons for which MPC controllers are used 

extensively only in industrial computers that could manage the 

complexity of the optimization. Nonetheless, the use of DSPs 

and FPGAs in control application has nowadays led to the 

reduction of the time needed for solving the constrained 

optimization problem with a period of tens or hundreds of 

microseconds [4].  

The purpose of this paper is to present an efficient and 

robust control solution, based on a specific version of the MPC 

control algorithm, for fast dynamic systems, using FPGA 

devices and the LabVIEW
TM 

graphical programming 

environment. The choice for graphical programming in terms 

of implementing the proposed control solution is based on a 

more user-friendly configuration environment and a very short 

project development time, compared to hardware description 

languages such as VHDL [5]. A simple application for a DC 

motor was chosen for validation and testing purposes. The DC 

motor is part of the vacuum pumps used to maintain an 

efficient thermal isolation in the vacuum jacket of a train of 

three carbon isotopes separation columns. These need to be 

carefully controlled since a failure of the vacuum leads to the 

compromise of the entire separation process [6], [7]. 

Additionally, the DC motor supports a wide range of 

command rates and execution time variations, without being 

damaged or broken. The paper presents three different 

implementations of the proposed control solution, a PC based 

control system, one running on a real-time target and one 

based on an FPGA. Comparisons between these three different 

implementations show the efficiency of the proposed solution. 

The paper is structured into seven parts. The advantages 

offered by FPGA technology in control applications are 

highlighted in the second section, while the third one describes 

the major concepts related to the proposed MPC method, the 

EPSAC (Extended Prediction Self Adaptive Controller) 

control algorithm. Section IV describes the design of the 

EPSAC controller, as well as the methodology used for the 

FPGA implementation. Information regarding the details of 

the hardware and of the software setup is detailed in section 

five, with the testing, validation and performance evaluation of 

the proposed solution being synthesized in the sixth section. 

The final section contains the concluding remarks. 

II. FPGA-BASED PROCESS CONTROL APPLICATIONS 

Industrial control systems applications can benefit from the 

advantages brought by FPGA technology as compared to 

traditional microcontroller and Digital Signal Processor-based 

solutions (DSP). Some of these advantages consist in their 

ability to provide increased levels of performance in terms of 

throughputs and bandwidth, while maintaining reduced cost 
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and dimensions of the developed equipment, and making the 

achievement of high energy efficiency and reliability possible 

[8], [9], [10]. Since the control algorithms are getting more 

and more complex, the inherent parallelism within FPGAs and 

their ever-increasing resource density makes them very 

attractive for industrial applications [11]. Being fully 

programmable, the logic blocks and the interconnections that 

make up an FPGA chip can implement solutions entirely 

tailored for specific control algorithms. Often including 

powerful hard processors, or allowing the implementation of 

IP soft cores for efficient 32-bit RISC processors, these 

customizable Systems-on-chip (SoCs) can implement control 

loops running at frequencies higher than one MHz [12]. The 

inclusion of logic, such as CPUs, RAM, and buses, within a 

single chip and, consequently, the simplification of the printed 

circuit board (PCB), lead to cheaper solutions even if FPGAs 

are more expensive than their main counterparts, 

microcontrollers and DSPs. A systematic comparison between 

the two predominant devices used in digital controllers, 

namely FPGAs and DSPs, can be found in [13]. Another 

important feature of Field Programmable Gate Arrays is the 

possibility of in-the-field configuration, which eases the 

controller modification process in case this is desired. 

Furthermore, they can be dynamically reconfigured, providing 

the controller with the possibility of adapting to the needs of 

the plant and to the changes in the environment [8]. 

Some of the applications in the field of electrical systems 

built around reconfigurable chips include reliable low-

complexity reusable digital controllers [14], adaptive digital PI 

controllers [15], communication processors and interfaces, 

signal processors [16] and many others. Model predictive 

control was applied to power converters [17] and induction 

machines [18], papers [19] and [20] showing that solutions 

implemented in FPGAs offer good control performances. 

III. EPSAC CONTROL PRINCIPLES 

The EPSAC methodology is based on the typical approach 

of Model Based Predictive Controllers that use an on-line 

process model to compute the predicted process output with 

the purpose of optimizing the future control actions. The 

optimal control action generated by the EPSAC controller is 

based upon the minimization of a cost function, represented as 

the error signal between the specified reference trajectory and 

a future predicted process output, as well as the control effort 

required to eliminate the error [21]: 
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where N2 and N1  are the maximum and the minimum 

prediction horizons, Nu is the control horizon,   is a weight 

parameter. The choice for the maximum and minimum 

prediction horizons usually plays an important role in the 

minimization of the cost index (1). The signals involved in the 

cost function given in (1) are the measured process output, 

denoted y(t), the process input u(t) and the reference trajectory 

r(t). The control signal in (1) is given by [21]: 

)/1()/()/( tktutktutktu −+−+=+Δ , with (2) 

0)/( ≡+Δ tktu , for uNk ≥ . (3) 

The EPSAC control methodology uses previous 

measurements of the process output and input signals, as well 

as some future values of the input signal to predict the process 

output. Thus, the generic model given in (4) can be used for 

predicting the process output: 

)/()/()/( tktntktxtkty +++=+ , (4) 

where x(t) represents the process model output, while n(t) is 

the process disturbance. In computing the process output as 

indicated in (4), the process model output x(t + k|t) needs to be 

predicted according to an existing model of the process. For 

the prediction of the disturbance signal n(t + k|t) filtering 

techniques are usually employed. 

Assuming the process model for a single-input-single-

output system is given by: 
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the output model x may be predicted k samples ahead using 

previous values of the process model and of the control input 

u, considering that polynomials B(q
-1

) and A(q
-1

) in (5) are 

fully known. 

The manipulated variables are computed then as the sum of 

a basic future control scenario, called ubase(t + k|t), k  0 and of 

an optimizing future control action u(t +k|t), 0  k  Nu 1. 

The optimizing future control actions are computed as the 

optimal solution of [24]:  

Y)(RGG)(GU
T1T −= −∗

. (6) 

As a result of the optimization, only the first element in U
*
, 

denoted u(t|t), is used to update the control signal as indicated 

below: 

)/()/()( ttttutu ubase δ+= . (7) 

At the next sampling instant, the new measured output 

signal value y(t + 1) is used to update again the control signal 

u(t + 1). 

IV. EPSAC DC MOTOR CONTROLLER 

The EPSAC predictive algorithm has been successfully 

used for controlling a wide range of electrical systems [17]. 

The application example considered in this paper is a DC 

motor, as an integrated part of complex vacuum pumps used 

for maintaining an efficient thermal isolation in the vacuum 

jacket of a train of three carbon isotopes separation columns 

[6], [7]. The careful control of these DC motors indirectly 

ensures a safe operation of the isotope separation columns, 

since a failure of the vacuum pumps ultimately leads to the 

compromise of the entire isotope separation columns. Apart 

from this aspect, the DC motor provides a highly flexible stand 

for testing, as well as for achieving rapid performance 
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comparisons.  

The block diagram of the system is presented in Fig. 1, 

including the main components, namely the controller, the 

driver, the signal processing module, the DC motor and the 

load, consisting of a generator and a controlled resistive load. 

 

Fig. 1. System block diagram 

An embedded CompactRIO
TM system, easily programmable 

using the LabVIEW
TM

, has been used for implementing the 

EPSAC control algorithm. It includes two chips: the real time 

controller running at 400 MHz and a chassis with a Virtex-II 

FPGA, as well as an input-output module, as indicated also in 

Fig. 1.  

4.1. Modeling of the DC motor for tuning the EPSAC 

controller 

The EPSAC control strategy implemented in the FPGA has 

been designed for the speed reference tracking of the DC 

motor. A mathematical model, described by the two 

polynomials A(q
1

) and B(q
1

) in (5),  is firstly needed in order 

to properly tune the EPSAC controller. To determine the 

polynomials A(q
1

) and B(q
1

), experimental identification 

techniques were employed.  

 
Fig. 2. Experimental data for process identification – speed rises and 

decreases 

Such experimental data used for identification purposes are 

presented in Fig. 2, along with the identified process model, 

considering both an increase as well as a decrease in the speed 

of the DC motor. The output that needs to be controlled is the 

DC motor’s rotation speed, while the control signal is the DC 

voltage supplied to the rotor. An initial input voltage of 70% 

has been first supplied to the DC motor, for the experimental 

identification tests in Fig. 2. Subsequently, a step input of 

+10% was applied to the rotor, whereas for the speed 

decreasing test, a -10% step change in the supplied voltage has 

been considered. 

Based on the shape of the step response, a first order 

transfer function was selected to model the process, with the 

associated gain and time constant determined through 

graphical identification techniques. The polynomials A(q
-1

) 

and B(q
-1

) are computed based on the determined transfer 

function using the zero-order hold discretization method, with 

a sampling time Ts = 0.015 sec: 

11 94.01)( −− −= qqA  , 11 54.1)( −− = qqB . (8) 

In the EPSAC methodology, for delay free processes such 

as the DC motor in the case study, the minimum prediction 

horizon is N1 = 1 sample. The maximum prediction horizon is 

chosen in order for the predicted signal to capture around 60% 

of the process dynamics [21]. Thus, for the case study 

considered in this paper N2 = 10 samples. The cost function in 

(1) is further simplified to minimize solely the error signal, by 

taking  = 0 and Nu = 1.  

The controller designed with the parameters as chosen 

above, has been firstly tested in the MATLAB
®
 simulation 

environment. Then, the EPSAC controller has been 

implemented in the FPGA module using the guidelines given 

in Sections IV and V. 

4.2. FPGA implementation of EPSAC 

An optimal implementation method of various control 

algorithms on FPGA targets, realized according to specific 

analysis and simulation environments, should be carried out 

bearing in mind the steps that follow below: 

1) The code used to simulate the control algorithm in the 

LabVIEW
TM

 environment on the PC or on the real-time 

target should be rewritten; 

2) Control vectors generated during simulations should be 

used in the testing of the program; 

3) Floating-point data should be converted to fixed-point 

format (FXP) or integer format (INT); 

4) Implementations using the control vectors and the data 

available in the second step should be comparatively 

tested and analyzed; 

5) Steps 3 and 4 above should be performed iteratively 

until the steady state errors are acceptable; in the case of 

this paper it is assumed that a small error is acceptable. 

Since MATLAB
®
 sequences of code using MathScript are 

not supported on the FPGA target, this procedure has been 

avoided. 

V.HARDWARE AND SOFTWARE IMPLEMENTATION 

Real-life control system implementation poses problems 

concerning both the hardware and software setups. First, the 

development of the hardware must take into account 

parameters such as the compatibility between the components 

used, signal conditioning, and placing and routing. Second, the 

most important aspect that the software must take into account 

is the architecture of the equipment chosen for running the 

application. However, the use of graphical programming, 

namely LabVIEW
TM

 code, in the case of the example 

application presented in this paper, eases and shortens the 

software development process [22]. 

5.1. Hardware 

The hardware component of the system includes two PCBs 

for interfacing the DC motor. The first one processes the 
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signal acquired from the speed transducer. This action implies 

the amplification of the signal from the encoder, represented 

by the speed transducer, and the filtering and formatting of the 

signal for obtaining rectangular pulses. The input and output 

signals are presented in Fig. 3.  

    

    
Fig. 3. Speed transducer signal (original, filtered, upper-left, and amplified, 

upper-right, trigger Schmitt output, lower-left, PWM command, lower-right) 

This first board also includes the power driver for the motor 

command. A second circuit board was developed for the load 

of the DC motor. This is a digitally controlled resistive load 

represented by a motor acting as a generator. It has 

characteristics which are similar to the ones of the first motor 

and it is connected to a resistive load. Finally, a stand for 

verification, which includes the Programmable Automation 

Controller (PAC), a power supply, the DC motor and the 

PCBs, was built. This can be seen in Fig. 4. 

 
Fig. 4. The experimental stand 

5.2. Software 

The EPSAC algorithm was implemented in FPGA through 

the use of three while loops, each one of them performing a 

different action: 

1. Measurement of motor speed; 

2. Generation of the PWM  for changing the speed of 

the motor; 

3. Main loop, running the control algorithm. 

The application also has a component running on the real-

time target of the automation controller, which opens a 

connection to the FPGA program. Here, method nodes are 

used for setting the values of the parameters and a continuous 

loop is used for reading the measured values in order to 

display them in real time. The entire control algorithm is 

implemented in the FPGA and only a small amount of data, 

consisting in parameters and measured values, is transferred 

between the two components of the PAC. Fig. 5 presents the 

main loop of the application, the one that implements the 

EPSAC algorithm, and the front panel of the system. 

 
Fig. 5. LabVIEWTM application 

VI.EXPERIMENTAL TESTING AND VALIDATION 

In general, the FPGA design testing and validation are 

performed using simulator-specific environments. However, 

the research presented in this paper implies the development of 

several benchmark programs that run on various target devices 

in order to achieve a comparative evaluation of the 

computation performance achieved in each case.    

The functions provided by LabVIEW
TM 

are able to access 

the real-time timers of the tested systems, with resolutions of 

milliseconds (PC), microseconds (real-time target) or tens of 

nanoseconds (FPGA – 25 ns), depending on the target, for the 

measurement of execution time and of the jitter. This later 

characteristic consists in the variation of the loop execution 

time. The benchmarks imply the development of frameworks 

encasing the application in order to determine the execution 

times and the jitter in each case. Finally, histograms for the 

data obtained during testing were realized.  

In the first phase, the target devices selected for running the 

controller were: a personal computer, a real-time controller 

and an FPGA. The computational performance obtained after 

running this test are presented in Table I. It shows the 

maximum reachable values on each platform, pointing out that 

the FPGA-based EPSAC controller can be used in the case of 

fast dynamic processes.  

TABLE I.  COMPUTATIONAL PERFORMANCE  

 Execution Time Jitter 

PC, i5 M480, Windows 7  28 μsec 0.2 ... 3.2 msec 

Real-Time Target PowerPC with 

RTOS  

2.8 msec 1.8 msec 

FPGA Virtex-II 5 μsec  25 nsec 

 

For being able to run the first benchmark program on a 

general purpose computer, the EPSAC algorithm code was 

compiled on a PC and run locally. The testing of the 

performances in the second case required the transfer of the 

benchmark to a real-time controller. The third set of tests was 
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performed on an FPGA, employing different implementation 

options provided by the graphical programming environment. 

One of the most important problems encountered in the 

implementation of the algorithm consists in the data 

representation, each target allowing only specific settings for 

this parameter. The personal computer and the real-time target 

allow floating-point, double type data representation (DBL), 

while the FPGA supports only fixed-point. This is why a 

compromise between data accuracy and FPGA resource usage 

has to be made. Thus, the difficulty here lies in the choosing of 

the proper format for fixed-point data, consisting in the integer 

word length and in the entire word length, and in the 

computations having arrays as operands. For achieving high 

execution speeds on the FPGA target, specially designed 

mathematical operations, which allow the specification and 

configuration of data representations, were used for both 

inputs and outputs. Table I shows that the algorithm 

implemented in the FPGA target runs more than 5 times faster 

than the one deployed on the PC, achieving the same control 

performance.   

Being a hardware implementation, the amount of occupied 

resources varies depending on a wide range of factors, such as 

data representation and applied optimizations, directly 

influencing the power consumption. It should be noted that the 

area occupied by the controller is specific to the LabVIEW
TM

 

implementation and can differ from one using HDLs.  The 

device and the software version used for generating the 

configuration also affect the used resource count. However, if 

the dynamics of the process permits it, the clock frequency can 

be decreased for reducing the energy consumption. The 

example application presented in this paper benefits from this, 

the extension of the execution time leaving the control 

unchanged. Another major advantage of the proposed 

approach is represented by the short application development 

time, offered by the use of graphical programming.  

A vector containing a sequence of control input values, as 

well as a second vector containing the corresponding output 

signal values were used for evaluating the accuracy of the 

proposed solution. Fig. 6 shows the closed loop experimental 

results in comparison to the simulation results.  

 

Fig. 6. Comparison between simulation and experimental data - Output 

amplitude (rot/min) 

Both the experimental and simulated results show a closed 

loop system without any overshoot, whereas in terms of the 

settling time, the DC motor tracks the prescribed reference 

speed within 0.4 seconds, under simulation conditions, and 0.5 

seconds in the experimental case. 

As previously mentioned, the proposed implementation, 

running firstly on the PC, secondly on the real-time target and 

finally on the FPGA chip, has been tested and validated using 

the data vectors generated through simulation. In terms of the 

FPGA implementation, the validation procedure using the 

simulated data vectors is extremely important, due to the 

additional changes in the behaviour of the controller, caused 

by the translation from DBL to FXP representation, that 

occurred. Additionally, the simulation of FPGA program was 

also an important action, mainly due to the fact that the 

program compilation time lasts for approximately 10 minutes. 

To verify the proposed control solution, three different DC 

motors from the same power class have been tested. The 

results showed that the proposed control algorithm running on 

the FPGA target is robust to changes in motor parameters.  

An important parameter characterizing the implementation 

is the jitter. As it can be seen in Fig. 7, this deviation from true 

periodicity varies depending on the target. Thus, in the case of 

the PC, the value is greatly influenced by the tasks that run in 

parallel with the control application at specific points in time. 

In this case, the execution time shows variations in the order 

of milliseconds. The execution time, or the sampling time, for 

the control loop running on the FPGA and on the real-time 

controller is constant, with a value of 15msec. However, this 

later target generates a variation of ±200 μsec. 

 

Fig. 7. Execution time and jitter for all targets (usec) 

As a conclusion, it is natural that the performance is higher 

when the execution time is shorter, but, in the same time, jitter 

is also important, a value as low as possible being desired. 

Although short sampling times are provided, a jitter value with 

the same magnitude as the execution time, as can be seen in 

the case of the PC implementation, negatively affects the 

entire system, especially for “time critical processes”. 

VII.CONCLUSIONS 

The feasibility of using graphical programming in the 

design and implementation of control algorithms has been 

demonstrated for the case of the EPSAC control strategy. 

Features related to speed, hardware resources, real-time 

performance and programming aspects have been analyzed 

and compared using different implementations. The following 
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aspects have also been demonstrated: the portability of the 

graphical programs on as many industrial standard devices, 

program scalability providing the possibility of running on 

resource limited and relatively cheap devices or on high 

performance systems. The results obtained show that the 

FPGA implementation stands as a good compromise in terms 

of computational speed, hardware resource usage, power 

consumption and real-time performance. Due to these 

advantages, complex predictive control algorithms may be 

used in controlling fast dynamic processes. Moreover, the 

results obtained justify the use of graphical programming 

techniques, which provide fast synthesis of control algorithms, 

as well as a shortening of the time to market of dedicated 

solutions. 
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