
Implementation of an inquisitive chatbot for database supported
knowledge bases

S RESHMI* and KANNAN BALAKRISHNAN

Department of Computer Applications, Cochin University of Science and Technology, Kochi 682 022, India

e-mail: reshmis@gmail.com; mullayilkannan@gmail.com

MS received 1 April 2015; accepted 25 April 2016

Abstract. Chatbot is a piece of software that responds to natural language input and attempts to hold a

conversation in a way that imitates a real person. Some chatbots are used for entertainment purposes, while

others for business and commercial purposes. Chatbots are getting a lot of attention from business community

right now as they can save costs in customer service centers and can handle multiple clients at a time. Successful

implementation of a chatbot calls for correct analysis of user’s query by the bot and the formation of the correct

response that should be given to the user. In many scenarios the information available from the user’s query is

inadequate to provide the answer. In such contexts, the chatbot needs to be inquisitive so that it will be more

interactive and can mimic a more natural human interaction. This paper reports the implementation of an

inquisitive chatbot, which finds the missing data in query and probes the questions to users to collect data that

are required to answer the query. Through this implementation, the level of interactivity between the user and

the chatbot is improved.

Keywords. Chatbot; intelligent conversional agents; knowledge base; AIML.

1. Introduction

One of the important goals of the researches in the field of

human–computer interaction is the design of natural and

intuitive interaction modalities. In particular, many efforts

have been devoted to the development of systems to

interact with the user in a natural language. Computer-

based chatbots are becoming popular as an interactive

communicative system between human and machines.

Chatbot is an artificial entity that is designed to simulate an

intelligent conversation with human partners through their

natural language and is considered to be one of the classical

interfaces for natural language interactions between man

and machines. A chatbot, in general, employs a simple text

interface for interaction, although some include complex

systems such as speech or gesture recognition and text-to-

speech features.

Chatbots are becoming increasingly important for sci-

entific, commercial, and entertainment systems. They have

a wide range of applications such as virtual assistance,

artificial tutoring, e-commerce, and social networking and

have the potential to revolutionize the way the human–

computer interactions takes place. Currently, chatbots are

used by thousands of web users to mediate access to data or

knowledge bases and also to carry out generic conversa-

tions [1].

Chatting bot can understand what you are saying, ana-

lyze it, and give you a suitable response. Some chatbots

strive to be indistinguishable from humans, while others try

and stand out from humans with super-human knowledge

or features. Most chatbots simply look for keywords,

phrases, and patterns that have been programmed into their

databases, but some use more advanced techniques. As of

yet, no chatbot has been able to completely fool humans

into believing it is one of them through its knowledge of

natural language.

2. Chatbot architecture

Chatbot analyzes the user input and gives a suitable re-

sponse using natural language processing (NLP) and arti-

ficial intelligence. Most of the chatbot systems use some

form of NLP by matching the user’s input against a

knowledge base of words and phrases and select a suit-

able response based on the input and the context of the

conversation. Pattern matching, finite-state-machines, and

frame-based models are the main methodologies of con-

versional agent design [2].

Chatterbots mainly consist of three parts: a knowledge

base that encapsulates the intelligence of the system, a chat

engine as an interface engine, and an interpreter program

[3]. Interpreter program comprises an analyzer and a
*For correspondence

1173

Sādhanā Vol. 41, No. 10, October 2016, pp. 1173–1178 � Indian Academy of Sciences

DOI 10.1007/s12046-016-0544-1

generator for communicating with the user interface. Ana-

lyzer reads the input dialog from the human partner and

analyzes the syntax and semantic of the sentence. The

analyzer acts as a preprocessor to the user input and uses

different normalization techniques such as pattern fitting,

substitution, and sentence splitting. The chat engine tries to

match the preprocessed output of the analyzer and identifies

the suitable answer using pattern-matching algorithms with

the help of the knowledge base. Knowledge base is the

reservoir of an intelligent agent system and it is composed

of keywords/phrases and responses associated with each

keyword/phrase. Common implementation of knowledge

base involves the use of dat files or text files, databases, and

XML files. Generator processes the response given by the

chatbot engine and generates an appropriate grammatically

correct sentence to display. Figure 1 illustrates the typical

components of a chatbot and the relation between these

components.

3. Existing chatbots

The very first chatbot, named Eliza [4] by Joseph

Weizenbaum, simulated a Rogerian psychotherapist. It was

inspired by the ideas of Turing [5], who argued that it was

possible to build machines capable of acting like humans.

The idea was simple and consisted of a pattern-matching

algorithm and sentence reconstruction, without in-depth

knowledge or processing of natural language. The program

proved to be amazingly efficient in sustaining people’s

attention during the conversation and the success of the

original program had influenced the development of many

other bots.

Colby from the Stanford Al Lab developed Parry chat-

bot. Parry is the opposite of Eliza in the sense that it sim-

ulates a patient and has been intended as a study of the

nature of paranoia and is capable of expressing beliefs,

fears, and anxieties [6]. Another implementation called

Jabberwacky can learn new responses based on user inter-

actions, rather than being driven from a static database like

many other existing chatbots [7]. The general AI of Jab-

berwacky keeps track of everything people have said to it,

and finds the most appropriate thing to say using contextual

pattern-matching techniques [8].

Another chatbot worth mentioning is artificial linguistic

internet computer entity (ALICE) [9], that has its own

markup language called artificial intelligence markup lan-

guage (AIML), developed by Dr. Richard Wallace, and

earned the Loebner Prize in 2000 and 2001. ALICE applies

heuristic pattern-matching algorithm to input to obtain a

matching pattern in AIML, and this algorithm uses a depth-

first search technique with backtracking. The knowledge

base of this system is composed of AIML files, which is an

extension of the widely used XML format. The corre-

sponding template of the matched pattern in knowledge

base is used for the output generation.

Analyzingchatbot developmenton the basis ofNLP, one can

identify three generations of these systems [1]. The first-gen-

eration chatbots were based on simple techniques of pattern

matching such as ELIZA [4]. The second generation includes

techniques of Artificial Intelligence and the third generation

uses more sophisticated pattern-matching techniques based on

markup language. A vast number of third-generation chatbots

are based on AIML such as LUCY [10], CHARLIE [11], and

XiaoHui-hui [12]. Oneof the famous third-generation chatbots

is ALICE, which won various awards.

3.1 Artificial intelligence markup language

AIML is an XML dialect with its own specification

developed by Richard S Wallace during 1995–2000. This is

an XML-compliant dialect for encoding the behavior of

bots in a standardized form that can be exchanged between

different chatbot interpreters and implementations [13].

AIML is highly recursive, and typically a single input-re-

sponse pattern will have many alternative pattern matches

that resolve recursively to the same ultimate code.

AIML describes a class of data objects named as AIML

objects and partially describes the behavior of computer

programs that process them. AIML objects are made up of

units called topics and categories, which contain parsed or

unparsed data. AIML-based agents count on a dialog base

of categories formed of units identified by the hcategoryi
element.

Each category is composed of an input pattern, by the

hpatterni element, associated with one or more output

templates identified by the htemplatei element. The

optional hthati tag refers to chatbot’s previous reply and

through hsraii tag can direct different input patterns to the

same exit template. Figure 2 illustrates a basic unit or topic

in the AIML format.

Knowledge base

Chatbot engine

Analyser Generator

User interface

Figure 1. Chatbot architecture.

1174 S Reshmi and Kannan Balakrishnan

3.2 Issues and challenges

Generally, chatbots can respond to a set of predefined

queries, which are generally stored in a knowledge base.

The ability of the chatbots to respond to the variants of the

same query makes it more efficient and attractive, and this

ability, to a large extent, is determined by algorithms used

for pattern matching and the implementation of the

knowledge base. AIML, as discussed before, provides a

better platform for such query handling.

At present, the agents can answer only the queries, and

cannot probe the user meaningfully for further information

collection. This is a very important aspect of a chatbot

implementation, mainly for two reasons: one, it could make

the conversations more natural and user-friendly; the sec-

ond reason is attributed to the fact that the user’s query may

not always contain sufficient information to give an answer.

In other words, the question is ambiguous and the bot needs

more information to properly give an answer to the query.

4. Proposed system

Sometimes the information available from the original

query of the user is inadequate to provide the answer, and in

such contexts the intelligent system should be able to

identify that some relevant information is missing and

should be able to probe the user further to collect the

missing information so that the original query can be

answered. This paper discusses the implementation of such

an intelligent inquisitive chatbot, developed by modifying

the ALICE engine, where the knowledge base is supported

by a database.

Probably the user’s query may contain one or more

missing data; in such a situation, the bot needs to come

back with one or more question for collecting the missing

information. The number of missing information and

inquisitive query are directly proportional.

Dn / Qn; ð1Þ
where Dn is the number of missing information that is

required to answer the user’s query accurately and Qn is the

number of questions need to be asked by the chatbot to the

user.

Depending on the number of insufficient information for

responding to the user’s query, the level of complexity for

probing the missing information increases. First-level

inquisitive query mechanism will return only one inquisi-

tive question to the user. For the second level, the number

of missing information is two, and thus, the chatbot is

required to pose two questions to the user.

As an illustration of the level of inquisitiveness, consider

the case of a college information center. Typically, in a

college, the receptionist handles the queries raised by the

user and provides the relevant information related to col-

lege. Instead of the receptionist, we can use the chatbot

application in this real-time scenario for providing infor-

mation to the users. Such an interactive chat agent is

expected to assist the parents or students for providing

information regarding admission, academic transportation,

and hostel accommodation.

Consider a query asked by the student.

User: Who is the principal?

Bot: Dr. Srinivas ayer

Here the system can look up in the knowledge base.

There is no ambiguity in the question and thus can directly

fetch an answer.

However, consider the following query:

User: Who is the HOD?

When the system looks up for an answer, then it can find

many HODs and some level of ambiguity exists. Here the

missing information is the name of the department. Since

the user has not specified the department name, the chatbot

needs to be inquisitive and should ask the user for the

information. Here the minimum number of inquisitive

question required is one, and thus this is a case of first-level

inquisitive query mechanism for finding the missing data.

Let us consider another query.

User: Who is our course coordinator?

The above query misses two pieces of relevant infor-

mation required for providing an appropriate answer:

department and course name. Hence, we can consider this

as a second-level query mechanism. Likewise, the chatbot

<aiml version="1.0.1">

<topic name=”The topic name”

<category>

<pattern>User Input</pattern>

<that>Last response</that>

<template>Chatbot answer</template>

</category>

<category>

<pattern>User input * </pattern>

<template><srai>User Input</srai></template>

</category>

….

</topic>

</aiml>

Figure 2. Basic AIML format.

Implementation of an inquisitive chatbot 1175

should identify the missing information and collect it from

the user through a set of inquisitive queries. In complex

scenarios, may be more than two proactive queries need to

be asked by the agent to reach the appropriate answers.

5. Methodology

In the existing chatbots, the chat engine identifies the

suitable answer to the users’ query using pattern-matching

algorithms with the help of the knowledge base. ALICE

engine is using AIML as a knowledge base that stores a set

of predefined queries and its variants. When an information

changes, the AIML also is required to change and this will

be very difficult. In order to make these hard-coded answers

dynamic, we may seek the help of a hybrid knowledge base

model, involving AIML and a database.

In this model, when the user asks a query, the answer can

come from either of the two possible knowledge bases:

AIML or database. More permanent answers are stored in

the AIML, while the frequently changing answers are

stored in the database. Since the variant data are stored in

the database, frequent changes of AIML are avoided. This

model can become more attractive when we think of the

possibility of integrating the chatbot with the existing

databases of CRM or ERP systems, which are already used

for office management, and which will always have the

updated information.

In order to achieve this, the proposed system is imple-

menting an additional knowledge base engine (KB engine)

to the current system and interfaces this with a database for

fetching factual data for responding to certain queries.

Since the query is first searched in the AIML, we need to

have a mechanism in the AIML to instruct the chat engine,

to direct the query to the KB engine for searching the

database. The proposed modified AIML constructs provides

the means for KB engine processing. Knowledge base

engine can find a proper answer from the database using a

modified AIML response fetched by the chat engine. This

construct can also be used to find missing information,

which can be obtained from the user after issuing inquisi-

tive queries by the chatbot. Figure 3 shows the architecture

with the main elements involved in the proposed system.

5.1 Knowledge base engine (KB engine)

Knowledge base engine is designed to integrate the data-

base functionality to the AIML and to analyze the missing

information on a first level that is required to answer a

query and evaluate the responses. The KB engine works on

a two-phase evaluation methodology, which involves

identifying the missed data field, inquiring the user, and

processing the retrieved answer for the formation of right

answers expected by the user. First-phase evaluation iden-

tifies the missed data and generates the inquisitive query to

the user. The second phase processes the user-provided

answer for the inquisitive question.

5.2 Primary phase – missing field identification

The users’ query is intercepted by the KB engine and is

passed on to the chat engine for processing. The chat

engine, as usual, processes the users’ query by parsing it

and comparing it against the AIML templates. If the AIML

contains the answer directly, it is passed directly to the user,

through the KB engine. If the answer should be fetched

from the database, the modified AIML template is used,

whose format is as shown in figure 4.

The template starts with a token ‘‘KB,’’ which indicates

that it should be processed by the KB engine. Each com-

mand can be mapped with the action that should be exe-

cuted by the KB engine. F (command) indicates Function to

act by KB engine. The template also stores the main and

subdata required for processing the action.

This command from this template is provided to the KB

engine for evaluation, which will lead to the execution of

the appropriate command action.

For finding the missed field, the Main and Subdata sec-

tion can be made use of. The generalized command

response contains the following format:

KB engine command: Function to act by KB engine:

Table name which contain the field : (Field required to

answering the query).

The identified field can have any value from the set of

field value stored in the system. V is the set of stored field

values represented by

User

interface

KB

engine
Chat

engine

Modified

AIML

DB

Knowledge base

Figure 3. Proposed system architecture.

KB command: F (Command): Main Data: SubDataKB command: F (Command): Main Data: SubData

Figure 4. KB engine command structure.

1176 S Reshmi and Kannan Balakrishnan

V ¼ fv1; v2; . . .; vng: ð2Þ
KB engine compares the user input with the set of available

field values.

ffig [fv1; v2; . . .; vng ¼ /; ð3Þ
where fi is the user input and {v1, v2,…,vn} is the set of

available values for the identified field in the system. {fi}

should be subset of {v1, v2,…,vn}. Intersection of set of fi
and set of V is a null set, then the KB engine generates the

query with missed data and retort to user interface and set a

flag to get the input directly to the KB engine.

5.3 Secondary phase – provides data

from inquired field

This time the value returned from the user is directly pro-

cessed by the KB engine instead of chat engine. The KB

engine again compares the user input with the set of field

values. If any matching field value is found, then con-

catenate user input with the KB engine command and turn

off the flag for getting input value directly to the KB

engine. Now the engine gets the missing field value through

the inquisitive question to the user, by applying this value it

finds the answer to the user’s question. For finding the

answer, the KB engine again sends the field value and the

user’s question to the chat engine. This processing requires

the saving of the last response from the user; otherwise, this

leads to an invalid answer.

6. Results and discussions

Modified ALICE engine implemented first-level inquisitive

ability to the chatbot, which resulted in a more interactivity

with the user. After this implementation, we observe the

improved interactivity between the user and the agent in the

following conversation. The KB engine found the depart-

ment as the missing data and asked the user to specify the

department.

User: Who is your principal?

Bot: Dr. Srinivas ayer

User: Who is HOD?

Bot: Please specify the department

User: Computer application

Bot: Dr. Virkam Agarwal

Consider another conversation, which does not miss the

department details in the user query. Here the KB engine is

intelligent to identify that the department data are not

missed in the user’s query and directly provides the answer

to the query.

User: Who is computer application HOD?

Bot: Dr. Virkam Agarwal

The user interface of a simple interaction session

between a user and the first-level inquisitive chatbot is

shown in figure 5.

7. Conclusions

Intelligent conversion agents are becoming popular for

scientific, commercial, and entertainment systems. They

have a wide range of applications, such as virtual assis-

tance, artificial tutoring, e-commerce, and social network-

ing, and revolutionize the way human–computer

interactions take place, while identify the missing data and

be inquisitive to the user to collect data that are required to

answer the query.

Acknowledgements

The authors gratefully acknowledge the Department of

Computer Applications, Cochin University of Science and

Technology, for extending all the facilities for carrying out

this work.

References

[1] Neves A M M, Barros F A and Hodges C 2006 iAIML: A

mechanism to treat intentionality in AIML chatterbots. In:

2006 18th IEEE International Conference on Tools with

Figure 5. User interface of inquisitive bot.

Implementation of an inquisitive chatbot 1177

Artificial Intelligence (ICTAI’06), 225–231. IEEE. doi:10.

1109/ICTAI.2006.64

[2] Augello Agnese, Giovanni Pilato, Giorgio Vassallo and

Salvatore Gaglio 2009 A semantic layer on semi-structured

data sources for intuitive chatbots. In: 2009 International

Conference on Complex, Intelligent and Software Intensive

Systems, 760–65. IEEE. doi:10.1109/CISIS.2009.165

[3] Hettige B and Asoka S Karunananda 2006 First Sinhala

Chatbot in action. In: Proceedings of the 3rd Annual Sessions

of Sri Lanka Association for Artificial Intelligence (SLAAI),

4–10

[4] Weizenbaum J 1966 Eliza—A computer program for the

study of natural language communication between man and

machine. Commun. ACM 9(1): 36–45

[5] Turing A M 1950 Computing machinery and intelligence.

Mind, New Ser. 59(236): 433–460

[6] Güzeldere Güven and Stefano Franchi 1995 Dialogues with

colorful personalities of early AI. In: Constructions of the

Mind. Artificial Intelligence and the Humanities. Special

Issue of the Stanford Humanities Review. 4: 161–170. http://

web.stanford.edu/group/SHR/4-2/text/dialogues.html

[7] Carpenter Rollo and Jonathan Freeman 2005 Computing

machinery and the individual: The personal Turing test, vol.

1. http://www.jabberwacky.com/s/PTT100605.pdf

[8] Carpenter Rollo 2004 Jabberwacky chatbot. http://chat.jab

berwacky.com/j2about

[9] Wallace R S 2001 ALICE. http://www.alicebot.org/about.

html

[10] Fei Yi and Stephen Petrina 2013 Using learning analytics to

understand the design of an intelligent language tutor –

Chatbot lucy. Int. J. Adv. Comput. Sci. Appl. 4(11): 124–131.

doi:10.14569/IJACSA.2013.041117

[11] Mikic Fernando A, Juan C Burguillo, Martin Llamas, Daniel

A Rodriguez and Eduardo Rodriguez 2009 CHARLIE: An

AIML-based chatterbot which works as an interface among

INES and humans. In: 2009 EAEEIE Annual Conference,

1–6. IEEE. doi:10.1109/EAEEIE.2009.5335493

[12] Gang Wei Yun, Sun Bo, Sun Ming Chen, Zhao Cui Yi and

Ma Pei Zi 2014 Chinese intelligent chat robot based on the

AIML language. In: 2014 Sixth International Conference on

Intelligent Human–Machine Systems and Cybernetics. 1:

367–370. IEEE. doi:10.1109/IHMSC.2014.96

[13] Wallace R S and Noel Bush 2005 AIML: Artificial intelli-

gence markup language. http://www.alicebot.org/TR/2005/

WD-aiml/

1178 S Reshmi and Kannan Balakrishnan

