Implementation of Ant Colony
Optimization Algorithm For Mobile
Ad Hoc Network Applications:
OpenMP Experiences

Mohammad Towhidul Islam
Parimala Thulasiraman
Ruppa K. Thulasiram

Presented by James Freckleton

Presentation Outline

e Optimisation problem to solve:
Routing in mobile ad hoc networks

e Ant colony optimisation

e An ant-based solution:
The source update algorithm

e OpenMP implementation of the algorithm

Mobile Ad Hoc Networks

e These networks consist of a group of mobile
wireless nodes

Nodes communicate In a distributed way
Nodes dynamically form a network on the fly
Each node operates as both host and router

Nodes operate on low power batteries, which
limits range

e Out-of-range nodes are reached through
Intermediate nodes (or hops)

Mobile Ad Hoc Networks

e Used when the geographical nature of the
system Is unknown

e Also used In situations where communication
must be entirely distributed

e Applications include:
Health
Military
One Laptop Per Child organisation
VANet (Vehicular ad hoc networks)

Ant Colony Optimisation

e Used for “hard” problems that can be reduced
to finding optimal paths through graphs

e Stigmergy: Ants communicate by modifying
their local environment (laying pheromone)

e Positive feedback: The higher the pheromone

content on a path, the greater probabillity it Is
a good solution

e Ants act like mobile nodes in MANets: they
both create paths dynamically

Ant Colony Optimisation

e This Is an inherently parallelisable
metaheuristic, and so Is appropriate to tackle
routing in MANets

e This approach has been used to “solve”
previously intractable instances of:
Graph colouring problem
Travelling salesman problem
Quadratic assignment problem
Venhicle routing problem

Previous Approaches To T
Implementing MANets

e Multipoint relays

These are selected nodes which forward
broadcast messages during the flooding process

e Hybrid routing
Reactive: discovers paths only when required

Pro-active: active paths rebuilt from scratch every
3 seconds

e Route request messages
Contains source, destination, and lifespan data

Ant Colony Optimisation 13
Algorithm for MANets

MANet is a graph, G = (V,E); the problem is to find
the best path between source node S and
destination node D

Each edge e(v;, v;) has an amount of pheromone
¢(v;, v;) and the connection time”, w(v;, v;)

Each ant maintains a VisitedHop array, an elapsed
exploration time TotalTime, and a Stack containing
all nodes that may give a promising path to D

Each node | has a routing table of size N * d,, where
N Is the number of nodes and d, is the degree of |

The algorithm is run on all possible S-D pairs

The Source Update Algorithm
Over A Single S-D Pair

TotalTime €< 0O

Stack < (S, TotalTime)
VisitedHop[S] € 1
Current € S

While (Current # D)
NextHop < (empty)
if (exists(unvisited adjacent node))
NextHop < (unvisited adjacent node)
else
NextHop < unvisited(max{g(current,adjacent nodes)})
if (NextHop = (empty))
Pop Stack
(Current, TotalTime) € Stack
else
MoveTo(NextHop)

MoveTo(NextHop)

PreHop < Current
Current < NextHop
TotalTime < TotalTime + W(PreHop,Current)

[* Update pheromone concentration for path from S to the current node */
[* € is a user-supplied parameter */
¢(PreHop,S) < ¢(PreHop,S) + ¢/ (T(S,PreHop) + w(PreHop,Current))

[* Evaporate pheromone on other paths by a given quantity, E */
Q(v,,S) € (1-E)p(v,,S), for every adjacent v,

Stack < (Current, TotalTime)
VisitedHop[Current] < 1

10

The Source Update Algorithm
Over A Single S-D Pair

[* Launch backward ant after forward path from S to D has been completed */
While (Current # S)

PreHop < Current

(Current, TotalTime) < Stack

T =T(S,D) — TotalTime

[* Update the pheromone quantity of the active link */
¢(Current,D) € ¢(Current,D) + €/ T

[* Update the routing table for the Current node (not shown here) */

Stack < (Current, TotalTime)
VisitedHop[Current] = 1

11

An Example lllustrating the eec:

Source Update Algorithm :

e Consider the following network:

2

e Assume the ant is moving from source S = 3 to destination D = 6,
and assume the ant has selected the next link as NextHop = 4

e As aresult, the current node Current is setto 4
e At this point, node 4’s routing table is updated by the ant

12

An Example lllustrating the oot
Source Update Algorithm

e Next hop node isn’t chosen by looking at the
Individual links from Current to its neighbour

e Instead, we look at the best path that will
reach a destination from a particular node

e Since all nodes have been visited by previous
ants, this ant looks at pheromone
concentration and picks NextHop =5

e This Is reflected in the updated routing tables

13

000
. 000
An Example lllustrating the T
Source Update Algorithm
Before the source update:
MNetwork 0 1 2 3 & 7 Total
Node
2 1 1 | 97.6 111.7 | 5 38.7 5100 0 1 1] 2 0 1 249 23
3 42 | 7 1 1LY 4 | 32.8 4 |0 | 0O 0 ¥ 0 1 0 1 87.5 | 18
5 0 0 0 0 0 0 1 |00) 140 | 10| 67 | 10 | 64 | 10 271 34
After the source update:
MNetwork 1] 1 2 3 [T Total
Node
2 1 1| 97.6 111.7 1 5 27.1 S|l 010 0 1 {7 2 0 1 237.4 | 23
3 42 | 7 1 11.7 4 | 57.8 51010 0 0] 1 0 1 112.5 | 19
5 0 0 0 0 0 0 1|0 |0 | 140 | 10 | 67 | 11 64 | 10 271 34

14

OpenMP Implementation

e The above algorithm was designed to be
Implemented on parallel processors

e OpenMP is a language supporting such
parallelisation (along with multithreading)

e Tests were run on an 8-node 7.5GB shared memory
architecture running Linux RedHat 7.1

e Each node contained an Intel Xeon processor,
clocked at 700 MHz

e All networks were generated by the NETGEN
random graph generator

15

Results

40000
7]
2)
§ 30000 \\ —a— 100 Nodes
2 20000 3= 200 Nodes
E 10000 \'\b —— 300 Nodes
E 0 —a— 400 Nodes
=
2 3 4 5 —t— 500 Nodes
Number of ANTS
Chunk Size
= 400/ # of ANTS
2 20000 -
- 18000 \ \
2 16000 \ N —m— Static
g 12000 N —x— Dynamic
= 12000 \\ .
\ —— Guided
‘= 10000
2 8000 *&:’:_‘
= 6000 . .
2 4 8 16
Number of ANTS

Figure 1: The
performance of the
algorithm is dependent
on the number of
nodes and ants

Figure 2: The
performance of the
algorithm when taking
into account various
scheduling methods

16

Evaluation

e The analysis and simulations of the protocol
on shared memory architectures were strong

e However, no realistic simulations among
MANets were undertaken, and so bandwidth
constraints may affect results

e The paper itself presents a thorough
overview; it Is rarely vague on details (such
as “best path”)

17

Summary

e Topology of Mobile ad hoc networks is chaotic

e Ant Colony Optimisation is an inherently
parallelisable search technique

e It has similar properties to MANets
e A new ACO-based algorithm finds optimal routes
e OpenMP was used to implement this algorithm

e This implementation compares favourably with
others such as MPI

18

