
Implementation of Ant Colony
Optimization Algorithm For Mobile

Ad Hoc Network Applications:
OpenMP Experiences

Mohammad Towhidul Islam
Parimala Thulasiraman

Ruppa K. Thulasiram

Presented by James Freckleton

2

Presentation Outline
 Optimisation problem to solve:

Routing in mobile ad hoc networks

 Ant colony optimisation

 An ant-based solution:
The source update algorithm

 OpenMP implementation of the algorithm

3

Mobile Ad Hoc Networks
 These networks consist of a group of mobile

wireless nodes
 Nodes communicate in a distributed way
 Nodes dynamically form a network on the fly
 Each node operates as both host and router
 Nodes operate on low power batteries, which

limits range
 Out-of-range nodes are reached through

intermediate nodes (or hops)

4

Mobile Ad Hoc Networks

 Used when the geographical nature of the
system is unknown

 Also used in situations where communication
must be entirely distributed

 Applications include:
 Health
 Military
 One Laptop Per Child organisation
 VANet (Vehicular ad hoc networks)

5

Ant Colony Optimisation
 Used for “hard” problems that can be reduced

to finding optimal paths through graphs
 Stigmergy: Ants communicate by modifying

their local environment (laying pheromone)
 Positive feedback: The higher the pheromone

content on a path, the greater probability it is
a good solution

 Ants act like mobile nodes in MANets: they
both create paths dynamically

6

Ant Colony Optimisation

 This is an inherently parallelisable
metaheuristic, and so is appropriate to tackle
routing in MANets

 This approach has been used to “solve”
previously intractable instances of:
 Graph colouring problem
 Travelling salesman problem
 Quadratic assignment problem
 Vehicle routing problem

7

Previous Approaches To
Implementing MANets

 Multipoint relays
 These are selected nodes which forward

broadcast messages during the flooding process
 Hybrid routing
 Reactive: discovers paths only when required
 Pro-active: active paths rebuilt from scratch every

3 seconds
 Route request messages
 Contains source, destination, and lifespan data

8

Ant Colony Optimisation
Algorithm for MANets
 MANet is a graph, G = (V,E); the problem is to find

the best path between source node S and
destination node D

 Each edge e(vi, vj) has an amount of pheromone
φ(vi, vj) and the connection “time”, w(vi, vj)

 Each ant maintains a VisitedHop array, an elapsed
exploration time TotalTime, and a Stack containing
all nodes that may give a promising path to D

 Each node i has a routing table of size N * di, where
N is the number of nodes and di is the degree of i

 The algorithm is run on all possible S-D pairs

9

The Source Update Algorithm
Over A Single S-D Pair
TotalTime 0
Stack  (S, TotalTime)
VisitedHop[S]  1
Current  S

While (Current ≠ D)
NextHop (empty)
if (exists(unvisited adjacent node))

NextHop (unvisited adjacent node)
else

NextHop unvisited(max{φ(current,adjacent nodes)})
if (NextHop = (empty))

Pop Stack
(Current, TotalTime)  Stack

else
MoveTo(NextHop)

10

MoveTo(NextHop)
PreHop Current
Current  NextHop
TotalTime TotalTime + W(PreHop,Current)

/* Update pheromone concentration for path from S to the current node */
/* ε is a user-supplied parameter */
φ(PreHop,S)  φ(PreHop,S) + ε / (T(S,PreHop) + w(PreHop,Current))

/* Evaporate pheromone on other paths by a given quantity, E */
φ(va,S)  (1-E)φ(va,S), for every adjacent va

Stack  (Current, TotalTime)
VisitedHop[Current]  1

11

The Source Update Algorithm
Over A Single S-D Pair
/* Launch backward ant after forward path from S to D has been completed */
While (Current ≠ S)

PreHop Current
(Current,TotalTime)  Stack
T’ = T(S,D) – TotalTime

/* Update the pheromone quantity of the active link */
φ(Current,D)  φ(Current,D) + ε / T’

/* Update the routing table for the Current node (not shown here) */

Stack  (Current, TotalTime)
VisitedHop[Current] = 1

12

An Example Illustrating the
Source Update Algorithm
 Consider the following network:

 Assume the ant is moving from source S = 3 to destination D = 6,
and assume the ant has selected the next link as NextHop = 4

 As a result, the current node Current is set to 4
 At this point, node 4’s routing table is updated by the ant

13

An Example Illustrating the
Source Update Algorithm

 Next hop node isn’t chosen by looking at the
individual links from Current to its neighbour

 Instead, we look at the best path that will
reach a destination from a particular node

 Since all nodes have been visited by previous
ants, this ant looks at pheromone
concentration and picks NextHop = 5

 This is reflected in the updated routing tables

14

An Example Illustrating the
Source Update Algorithm

Before the source update:

After the source update:

15

OpenMP Implementation
 The above algorithm was designed to be

implemented on parallel processors
 OpenMP is a language supporting such

parallelisation (along with multithreading)
 Tests were run on an 8-node 7.5GB shared memory

architecture running Linux RedHat 7.1
 Each node contained an Intel Xeon processor,

clocked at 700 MHz
 All networks were generated by the NETGEN

random graph generator

16

Results
Figure 1: The
performance of the
algorithm is dependent
on the number of
nodes and ants

Figure 2: The
performance of the
algorithm when taking
into account various
scheduling methods

17

Evaluation

 The analysis and simulations of the protocol
on shared memory architectures were strong

 However, no realistic simulations among
MANets were undertaken, and so bandwidth
constraints may affect results

 The paper itself presents a thorough
overview; it is rarely vague on details (such
as “best path”)

18

Summary
 Topology of Mobile ad hoc networks is chaotic
 Ant Colony Optimisation is an inherently

parallelisable search technique
 It has similar properties to MANets
 A new ACO-based algorithm finds optimal routes
 OpenMP was used to implement this algorithm
 This implementation compares favourably with

others such as MPI

