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Abstract: Heat pipe systems have attracted increasing attention recently for application in various
heat transfer-involving systems and processes. One of the obstacles in implementing heat pipes
in many applications is their difficult-to-model operation due to the many parameters that affect
their performance. A promising alternative to classical modeling that emerges to perform accurate
modeling of heat pipe systems is artificial intelligence (AI)-based modeling. This research reviews
the applications of AI techniques for the modeling and control of heat pipe systems. This work
discusses the AI-based modeling of heat pipes focusing on the influence of chosen input parameters
and the utilized prediction models in heat pipe applications. The article also highlights various
important aspects related to the application of AI models for modeling heat pipe systems, such
as the optimal AI model structure, the models overfitting under small datasets conditions, and
the use of dimensionless numbers as inputs to the AI models. Also, the application of hybrid AI
algorithms (such as metaheuristic optimization algorithms with artificial neural networks) was
reviewed and discussed. Next, intelligent control methods for heat pipe systems are investigated and
discussed. Finally, future research directions are included for further improving this technology. It
was concluded that AI algorithms and models could predict the performance of heat pipe systems
accurately and improve their performance substantially.

Keywords: modeling; artificial intelligence; heat pipes; controlling; prediction; literature review

1. Introduction

Heat pipes are among the most efficient passive heat transfer technologies capable
of transporting large quantities of heat over long distances by latent heat (phase-change
process) [1,2]. Figure 1 shows a schematic diagram of a conventional heat pipe. A heat pipe
consists of a sealed container/evacuated tube and a wick structure. It is partially filled
with working fluid at liquid/vapor equilibrium and does not incorporate moving parts [3].
The heat pipe is basically divided into three sections: (1) an evaporator section where the
heat is absorbed from the source, and the working fluid evaporates; (2) a condenser section
where the heat is dissipated into the surrounding environment (sink) and the working fluid
returns to its liquid state; and (3) an adiabatic section [4].

The advantages of heat pipes include lightweight, minimal maintenance require-
ments, high reliability, extensive working life, low cost, and high performance [5,6]. Heat
pipes come in various shapes and sizes, each with different properties. Thus, they can
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be implemented in a wide range of applications [7–12]. For example, Ando et al. de-
veloped a flat-plate heat pipe with good heat transfer performance for spacecraft appli-
cations [13]. Krishna et al. explored the application of heat pipes with nano-enhanced
phase change material (PCM) for electronic cooling [14]. Putra et al. [15] investigated
developing a passive battery cooling system for electric vehicles using heat pipes. Ad-
ditionally, Zhang et al. designed a heat pipe radiator for nuclear application [16]. Dif-
ferent types of heat pipes are loop heat pipe (LHP) [17], pulsating/oscillating heat pipe
(PHP/OHP) [18], variable conductance heat pipe (VCHP) [19], thermosyphon [20], sorption
heat pipe (SHP) [21], annular heat pipe [22], and rotating heat pipe (RHP) [23].
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Predicting the thermal performance of a heat pipe is difficult, as it is influenced by
several parameters, which can be classified into three categories: (1) operational parameters
such as heat input and filling ratio; (2) property parameters such as surface tension and
thermal conductivity; (3) geometrical parameters such as lengths of evaporator and con-
denser sections, and shape of cross-section [24]. As several parameters affect the operation
and performance of heat pipe systems and their effects overlap, the modeling of heat pipes
is of very high complexity. A promising alternative to classical modeling that can overcome
these issues is artificial intelligence (AI)-based modeling. The development of artificial
intelligence (AI) technologies has been of great benefit to scientific research [25–27]. AI
algorithms mainly point to an artificial neural network (ANN), fuzzy logic (FL), genetic
algorithm (GA), particle swarm optimization (PSO), etc. Such algorithms have been widely
used to develop reliable and accurate prediction models for different systems in different
fields [28–31]. AI models can be used to model various operational aspects of heat pipe
systems while implicitly taking the internal complexities of the model into consideration.

Recently, Ahmadi et al. summarized the applications of machine learning methods
in modeling various types of heat pipes [32]. However, at the time of publication of that
work, the progress on utilizing machine learning models for modeling of heat pipe systems
was significantly limited compared to the current progress, as several works on this topic
have been published in the last years [33–40], and thus a recent review that covers the
current state-of-the-art is required. Furthermore, the previous work by Ahmadi et al. [32]
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did not discuss various aspects of the implementation of AI models for modeling of heat
pipe systems, including the optimal AI model structure, the models overfitting under small
datasets conditions, the use of dimensionless numbers as inputs to the AI models, and the
AI-based control of heat pipe systems. This work covers this research gap by providing a
recent review of the current progress while discussing several important aspects related
to the successful implementation of AI models in heat pipe systems to provide a practical
guideline for future research on this topic. Moreover, this work provides critical future
research directions for improving the current technologies. This work reviews AI methods
in modeling and controlling systems in heat pipe applications. Section 2 provides an
overview of different fundamental AI methods. Next, Section 3 investigates and discusses
the use of AI technology in predicting and controlling heat pipe systems. Finally, the
conclusions and future research directions are introduced in Section 4.

2. Background

Several AI techniques have previously been applied in the literature for the modeling
and optimization of heat pipe systems. These techniques include artificial neural networks,
fuzzy logic, adaptive neuro-fuzzy inference system (ANFIS), and metaheuristic optimiza-
tion algorithms. In this section, a brief background on the applied AI techniques is included.
Artificial neural networks (ANN) were the first AI algorithms used for modeling heat pipe
systems. An ANN is a computational model capable of simulating the brain’s behavior
and performing various computational tasks by predicting a number of outputs using
a number of inputs [41]. There are various types of neural networks based on different
training algorithms, such as the multilayer perceptron neural network (MLPNN), radial
basis function (RBF) neural network, convolutional neural network (CNN), etc. ANNs are
employed in forecasting, control, modeling, and pattern classification applications [42].

Another type of AI algorithm that was applied in the modeling of heat pipe systems
is fuzzy logic, which uses fuzzy if–then statements to perform the model prediction and
decision-making. Fuzzy logic can be applied in different applications such as temperature
control, aircraft control, robotics, and many other control applications [43]. A hybrid AI
model that combines the principles of ANNs and fuzzy logic and was applied for modeling
of heat pipe systems is the adaptive neuro-fuzzy inference system (ANFIS). ANFIS can
model a large class of complex nonlinear systems to an anticipated grade of precision.
ANFIS has previously been applied in the literature for forecasting, modeling, and control
tasks [44]. Finally, metaheuristic optimization algorithms have been used in the literature
to model heat pipe systems, mostly via hybridization with other types of AI models. Such
algorithms include genetic algorithms (GA) [36], particle swarm optimization (PSO) [45],
and the grey wolf optimizer (GWO) [46]. In summary, Table 1 compares the AI algorithms
applied to model heat pipe systems.

Table 1. Summary and comparison between various AI algorithms.

AI Algorithm Advantages Drawbacks Sample Applications

Artificial Neural
Network (ANN)

Easy to implement. Excellent
capacity to predict several
parameters together. It can be
used to predict complex systems.

Training of the network is required.
Larger network sizes require more
data and longer training and
processing time.

Optimizing photovoltaic
systems [47], and
modeling hydrogen
production [25].

Fuzzy Logic

Flexible and allows
modifications. Output decisions
can be interpreted easily. Can
handle multiple different inputs
at the same time.

Mainly dependent on the expertise
of the designer. Inaccurate designs
result in wrong outputs. Requires
extensive testing with equipment.

Water resource prediction
[48], control of fuel cell
vehicles [29].
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Table 1. Cont.

AI Algorithm Advantages Drawbacks Sample Applications

Adaptive Neuro-Fuzzy
Inference System
(ANFIS)

Capable of modeling highly
nonlinear processes. Achieves
superior performance on tasks
with a small number of inputs.

High computational cost. The
trade-off between output accuracy
and interpretability. Generated
intermediate representations could
be hard to interpret.

Analysis of concrete
structures [49], medical
imaging analysis [50].

Metaheuristic
Optimization

Faster convergence speed
compared to the classical
optimization algorithm. Lower
computational cost. Broad
applicability. Easy to hybridize
with other algorithms.

Not guaranteed to perform
effectively on all tasks. Some
problems could result in significantly
longer processing times. It could be
trapped in a local maxima. Requires
careful parameter tuning.

Robot path planning [51],
temperature control [45].

3. Current Progress and Discussion

Several works in the literature have discussed the application of various AI techniques
for the modeling and optimization of heat pipe systems. AI techniques have been used
to predict heat pipe systems’ performance and operational parameters and optimize the
design and operational variables for maximizing the system’s performance and response.
In this section, the current progress on the application of AI techniques in heat pipe systems
is reviewed and discussed.

3.1. Optimal ANN Structure for Heat Pipe Modeling

The performance and accuracy of an artificial neural network are influenced by its
structure (number of hidden layers and neurons) and training algorithm. Artificial neural
network (ANN) modeling was conducted by Patel and Mehta [52] to predict the thermal
performance of a closed loop pulsating heat pipe (CLPHP). Eighteen different ANN mod-
els (radial basis, generalized regression, linear layer, cascade forward back propagation,
feed-forward backpropagation; feed-forward distributed time delay, layer recurrent and El-
man backpropagation) involving different activation functions (linear (PURELIN), logistic
sigmoid (LOGSIG), tangent sigmoid (TANSIG), and radial basis Gaussian function) were
tested. It was found that a generalized regression neural network with radial basis Gaussian
function had the lowest mean absolute relative deviation among all ANN models and
predicted the thermal performance of CLPHP in the error range of ±1.81% compared to the
experimental data. Furthermore, thermal performance prediction models for a pulsating
heat pipe (PHP) using an artificial neural network (ANN) were discussed by Patel and
Mehta [53]. A feed-forward backpropagation neural network was adopted. Eleven ANN
models with different numbers of neurons were constructed based on 1652 experimentally
obtained data. The most accurate model was that with 14 neurons (R = 0.9447).

Another study by Salehi et al. [54] designed an optimized neural network using a
genetic algorithm to predict the heat transfer characteristics of a silver/water nanofluid
two-phase closed thermosyphon that is thermally enhanced by a magnetic field. The
genetic algorithm was applied to optimize the number of neurons in the hidden layer,
the coefficient of the learning rate, and momentum. The optimal model was achieved
with two hidden layers with nine and six neurons structure. The results showed excellent
accuracy compared to the experimental results. A 96-neuron artificial neural network
(ANN) model was constructed by Chavda [39] to investigate the thermal performance
of a two-layer screen mesh-type cylindrical heat pipe using silver nanofluid. The built
ANN models were divided into three categories in which the heat pipe’s performance
was predicted based on: (1) one output parameter (thermal resistance); (2) two output
parameters (thermal resistance and thermal conductivity); and (3) three output parameters
(thermal resistance, thermal conductivity, and overall heat transfer coefficient). A single-
layer feed-forward backpropagation network with six hidden layer neurons predicted
the values with the lowest prediction error for one output parameter (normalized mean
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square error NMSE = 0.000041). For two output parameters, a cascade feed-forward
backpropagation network with 11 hidden layer neurons predicted the thermal performance
of the heat pipe with minimum errors (NMSE = 0.00000019), and a forward backpropagation
network with 12 hidden layer neurons predicted the values with least error of prediction
for three outputs (NMSE = 0.000001). Lee and Chang [55] presented the application of a
nonlinear autoregressive algorithm with an exogenous (NARX) neural network to study
the thermal dynamics of a pulsating heat pipe in both time and frequency domains. There
was good agreement between the predicted and experimentally measured results, which
demonstrates the effectiveness of the model/method in analyzing PHP dynamics.

In summary, optimizing the structure of the used AI model is highly important, as it
directly affects the model’s prediction accuracy and processing time. The current works
mainly relied on trial-and-error for finding the optimal structure of the AI model with best
prediction capability.

3.2. Overfitting of Trained Prediction Models without Validation Sets

Some heat pipe modeling studies have constructed successful prediction models
without including a dataset for validation (only training and testing), and few studies
have excluded the testing dataset (only training and validation), meaning there are no
specific criteria for establishing accurate prediction models. Implementing an AI-based
heat pipe model that was only evaluated on specific scenarios without validating its
generalizability for other scenarios could be of highly negative effect as the model could
perform very poorly and thus worsen the system’s performance. For example, Kahani
and Vatankhah [37] investigated the effect of Al2O3 as a working fluid on the thermal
performance of wickless heat pipe (WHP) by developing an optimized artificial neural
network (multilayer perceptron MLP) using 52 experimentally obtained datasets (75%
for training and 25% for testing). The effect of different parameters on heat pipe solar
collector (HPSC) was analyzed by Sivaraman and Mohan [56] using an artificial neural
network (ANN). The study implemented a multilayer feed-forward ANN architecture
consisting of two layers with six inputs and one output. A 168 data were used for training
the network, and 66 data for testing without validation. The simulated and experimental
results were found to be very close, with a mean square error of 0.9234. However, such
small dataset with no validation set could result in an overfitted model, in which the model
only memorizes the received data and does not generalize well for general cases.

Meanwhile, Khandekar et al. [57] adopted a fully connected feed-forward multilayer
ANN configuration using a backpropagation momentum learning algorithm to model
pulsating heat pipe thermal performance. Two models were analyzed, the first model
was trained with 52 datasets (out of 72 datasets) within the typical operation range, i.e.,
data of fill ratios between 20–85%. The second model was trained with the whole dataset
(72 sets). Both models showed satisfying results, but the model trained with the typical
PHP operation range dataset provided better results than the model trained with the whole
dataset. This demonstrates that the output of an ANN model might get negatively affected
by those training datasets which represent different phenomenological regimes of the
system, as the ANN model is a typical black box, unaware of the physical phenomena
guiding the system dynamics.

In summary, training AI models with a small dataset results in the model only perform-
ing well on the training set and achieving lower performance on the testing set. Moreover,
using a validation set helps in verifying the robustness and accuracy of the models in cases
different from the training case.

3.3. Prediction Models’ Input and Output Parameters

Artificial intelligence technologies (mostly artificial neural networks) have proven
reliable and efficient for predicting the thermal performance of different heat pipes. The
input parameters of artificial neural networks are mainly the parameters that have a
significant influence on the heat pipe operation, such as heat flux/input, filling ratio,
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number of turns and lengths of evaporator and condenser; while the thermal resistance is
considered as one of the most common output parameters of the network usually used to
measure the performance and efficiency of the heat pipe system.

Jia-qiang et al. [58] used a function chain neural network to predict the heat trans-
fer performance of a looped copper–water oscillating heat pipe based on grey relational
analysis (GRA). GRA was used to determine the main influencing factors based on experi-
mentally obtained data. It was found that the charging ratio, inclination angle, and heat
input are the main influencing factors (relational grade more than 0.5). Thus, two function
chain neural networks with three inputs (charging ratio, inclination angle, and heat input)
and four inputs (charging ratio, inclination angle, heat input, and number of turns) were
built. The relative error and fitting degree of both neural networks were almost the same
(4% error for the three-input model and 5% error for four-input model) when tested several
times in different conditions. Still, the four-input neural network was more complicated
than the three-input neural network. Thus, the results suggest that only input variables of a
relational grade of more than 0.5 should be considered when constructing a function chain
neural network to save computing time and guarantee an acceptable fitting precision.

To predict the thermal resistance of pulsating heat pipes filled with ethanol,
Ahmadi et al. [59] proposed four models, including multilayer perceptron (MLP), radial
bias function combined with genetic algorithm (GA-RBF), least square support vector
machine (LSSVM), and a conjugated hybrid of particle swarm optimization and adaptive
neuro-fuzzy inference system (CHPSO ANFIS). The filling ratio, the thermal conductivity
of the tube, inclination angle, lengths of adiabatic, condenser and evaporator sections, heat
input, and inner and outer diameters were used as input parameters. A genetic algorithm
(GA) was applied to the RBF model to obtain the optimum number of parameters. PSO was
applied to the ANFIS model to train the FIS and optimize the tuning process. The results
showed that the GA-RBF model was the most accurate in predicting the PHP’s thermal
resistance with a determination coefficient (R2) of 0.9892, as shown in Figure 2. The same
input parameters were used by Ahmadi et al. [35] to estimate the thermal resistance and
thermal conductivity of pulsating heat pipe (PHP) with water as a working fluid using the
group method of data handling (GMDH) neural network. The maximum relative error was
approximately 35.8%, reaching less than 5% for a thermal resistance higher than 10 K/W.
In addition, it was notable that the average relative deviation decreases and reaches zero
for effective thermal conductivity higher than 10,000 W/K.m. The results demonstrated
that the GMDH method is an effective tool for predicting the thermal performance/heat
transfer characteristics of PHPs and can be applied to PHPs filled with various operating
fluids such as ethanol, acetone, etc.

In a study conducted by Wen [40], two types of artificial neural networks, multilayer
perceptron (MLP) and group method of data handling (GMDH), were employed to model
the thermal resistance of vertical-oriented oscillating heat pipes filled with acetone. Heat
load, filling ratio, lengths of different sections of the heat pipe, inner and outer diameters,
and several turns were the models’ inputs. The results demonstrated that both models
accurately predict the OHPs thermal performance. However, the complex architecture
of the MLP model (MSE = 0.0045, R2 = 0.9893) and its ability to employ functions with
higher ability in training the network are the reasons behind its higher accuracy than the
GMDH model (MSE = 0.0144, R2 = 0.9651). Similarly, Wang et al. [60] presented a fully
connected feed-forward neural network model to predict the thermal resistance of closed
vertical meandering pulsating heat pipe (PHP) with water as a working fluid. The input
parameters were the same as those of Wen [40] except for the outer diameter. The model
results indicated a satisfactory prediction of the PHP thermal performance (MSE = 0.0025,
correlation coefficient R = 0.9962).

Nanofluids are being used in heat transfer applications due to their high thermal
transfer properties and high thermal conductivity compared to base fluids. Nanofluid
concentration and thermal conductivity are essential parameters that should be considered
when analyzing nanofluid-filled heat pipe systems.
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Shanbedi et al. [61] designed an MLPNN model to predict the temperature perfor-
mance of a two-phase closed thermosyphon using two synthesized nanofluids, including
carbon nanotube (CNT)/water and CNT-Ag/water. According to the experimental re-
sults, the appropriate range of weight fraction to obtain a suitable (∆T) was 0.91–1.1% wt,
0.2–0.3% wt, and 0.95–1% wt for CNT/water and CNT-Ag/water, respectively. These re-
sults indicate that the weight fraction of nanoparticles is a crucial parameter for predicting
the thermal efficiency of a two-phase closed-loop thermosyphon. The MLPNN model
attained a correlation coefficient (R) above 0.99 and a small RMSE value of 0.3338 with
only minor prediction errors reported. Three artificial intelligent approaches: multilayer
feed-forward neural network (MLFFNN), adaptive neuro-fuzzy inference system (ANFIS),
and group method of data handling (GMDH) type neural network was employed by
Malekan et al. [38] to investigate the thermal resistance of a closed loop oscillating heat
pipe (OHP) filled with γFe2O3/water and Fe3O4/water nanofluids. The input parameters
were heat input, the thermal conductivity of working fluids, and the ratio of inner diam-
eter to the length of OHP. Several MLFFNN, ANFIS, and GMDH models were built and
tested. The MLFFNN model with one hidden layer with five neurons and the Levenberg–
Marquardt training algorithm was the most accurate with an RMSE value of 0.0508, while
the GMDH models showed the highest error value of 0.0569. Moreover, the prediction
of thermal performance (thermal resistance) of a two-phase closed thermosyphon was
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conducted by Shanbedi et al. [62] using an adaptive neuro-fuzzy inference system (AN-
FIS). Two water-based nanofluids were used: pristine carbon nanotube (CNT) and CNT
with ethylenediamine (CNT–EDA). The considered input parameters were nanofluid type,
nanofluid concentration, input power, length, and temperature difference. The R2 of the
model was equal to 0.9999, indicating a very high accuracy and reliability.

Maddah et al. [63] predicted the efficiency of Cu/O water nanofluid in a heat pipe
exchanger using a three-layered forward neural network and the Levenberg–Marquardt
training algorithm. Filling ratio, nanofluid concentration, and input power were selected
as the input parameters, and the output parameter was the heat exchanger efficiency. The
predicted results matched the experimental results with a high accuracy indicated by a
testing the R-value of 0.9978.

In summary, various input and output parameters have been used in the literature for
the modeling of heat pipe systems. Some parameters were general and applied in modeling
all types of heat pipes, while other parameters were related to specific types of heat pipes.
Thus, carefully choosing the input and output parameters is crucial for achieving excellent
overall modeling.

3.4. Dimensionless Numbers as Input Parameters

The prediction of the thermal performance (thermal resistance) of some types of heat
pipes (PHP, for example) are sometimes tricky, as many parameters affect the operation
(performance), such as heat input, inner diameter, filling ratio, etc. Therefore, heat transfer
correlations (dimensionless numbers) have been used to develop reliable heat transfer
prediction methods.

A novel method for predicting the thermal performance of a closed pulsating heat pipe
with different working fluids and a variety of operational conditions usng a fully connected
feed-forward neural network was proposed by Wang et al. [24]. The input parameters were
the Kutateladze number (Ku), Bond number (Bo), Morton number (Mo), Prandtl number
(Pr), Jacob number (Ja), number of turns (N), and the ratio of the evaporation section length
to the diameter (Le/d), while the output parameter of the ANN model was the thermal
resistance. The system’s property parameters were evaluated at the coolant temperature
as it was known in the initial stages. A backpropagation learning algorithm was used in
building the ANN due to its adaptability. The results indicated that the developed model is
reliable and can predict thermal performance accurately (MSE = 0.0138, R = 0.9824). The
working fluid highly influenced the variation of the predicted values. In a similar approach,
Liang et al. [64] conducted a thermal performance investigation of miniature revolving
heat pipes (MRVHPs) using a backpropagation neural network and genetic algorithm
(GA-BPNN). However, Bo, Ja, Pr, Fr, and filling ratio were the considered input parameters,
and Ku was the output parameter. It was concluded that the maximum error for estimating
the best filling ratio under several operational conditions is 11.4% for a heating load of 200
W and rotation speed of 500 rpm, while others were within the 10% range. The trained
model achieved a high R value of 0.9260 indicating the model’s accuracy in modeling the
heat pipe system.

Qian et al. [65] proposed a novel heat transfer prediction model for oscillating heat
pipes based on an extreme gradient boosting algorithm (XGBoost), which requires a smaller
dataset for prediction compared to ANNs and can evaluate the contribution of each pa-
rameter in influencing the output and final decision. The ratio of inner diameter to evapo-
rator section length (Di/Le), Ku, and Ja were the most important parameters influencing
the output.

In summary, the use of dimensionless numbers as inputs and outputs of AI models is
a very promising method for modeling the highly complex behavior of heat pipe systems
as they combine several parameters of the heat pipe system at once.
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3.5. AI-Based Prediction Models for Heat Pipe Applications

AI technologies are not limited to only simulating the performance of individual heat
pipe systems but have also been implemented to model heat pipe applications such as
solar energy (e.g., solar collectors) and electronic cooling applications. By implementing AI
models, the difficulty of the modeling process becomes significantly lower compared to
other classical and computational methods, such as computational fluid dynamics (CFD),
as AI methods could directly model the entire system with all its internal processes directly
from the collected experimental data. This data-driven approach could be faster and
computationally less expensive than full models of the developed systems.

For instance, the precision of various data-based and energy balance-based methods for
modeling the performance of heat pipe solar collectors (HPSC) for a whole year under the climatic
conditions of Western Australia was investigated and compared by Shafieian et al. [34].
The models included an artificial neural network (multilayer perceptron—MLP), thermal
resistance network (TRN), artificial neuro-fuzzy inference system (ANFIS), and fuzzy
methods. The input parameters were inlet temperature of HPSC, ambient temperature,
and solar radiation, whereas outlet temperature (the main contributing parameter in the
thermal efficiency of solar collectors) was the output parameter. Regarding R2, the best
prediction method for the HPSC’s performance was the ANN (R2 = 0.98079, 0.98974, 0.98903,
0.99209 for spring, summer, autumn, and winter, respectively) followed by ANFIS and
TRN. Due to large errors, the fuzzy method was not recommended for modeling HPSCs.
Sivaraman and Mohan [56] studied the effects of different parameters on heat pipe solar
collectors (HPSCs) using multilayer feed-forward ANN. It was found that a decrease in
the total length/inner diameter of the heat pipe (L/di) ratio results in an improvement in
HPSC performance. This is justifiable since the transport capability of heat pipe increases
with increasing the internal diameter, which mainly determines heat transport. The ANN
analysis of HPSC showed that the collector (L/di ratio = 52.63, Lc/Le = ratio 0.3333, water
inlet temperature = 34 ◦C) is better than other cases for water flow rate of 0.0033 kg/s.
The results demonstrated that the proposed model can successfully predict the effects of
different parameters on the HPSC performance, as indicated by a high R2 value of 0.9234.
Two different types ANN for predicting the thermal performance of hybrid solar collectors
(heated gas + solar radiation as heat sources) were compared by Facão et al. [66]. Different
configurations of multiple layer perceptron (MLP) and radial basis functions (RBF) were
considered. MLP, despite being simpler, showed slightly better performance than that
of the RBF. Tolon et al. [67] evaluated thermodynamic analysis of evacuated tube heat
pipe (ETHP) solar energy systems integrated into sustainable buildings with an artificial
neural network (ANN). The ANN was applied to analyze the effects of radiation (I), mass
(m), and ambient temperature (Tair) (input parameters) on the exergy of the system. A
backpropagation neural network (BPNN) with hidden layer (two hidden layers) feedback
was the chosen form of ANN. The results indicated that the effect of mass on the exergy
was approximately double that of mass and radiation and the trained model achieved
excellent prediction capability indicated by a small average error value of 0.0006 at the end
of the training process.

Furthermore, Taheri et al. [33] presented a new design of a liquid-cooled heat sink
for the thermal management of the printed circuit board (PCB), as an electronic device, by
altering the heat sink heat pipe application. Two methods of ANN (radial basis function
(RBF) and multilayer perceptron (MLP)) were used to predict PCB steady-state temperature
(based on the experimentally obtained results) under different operating conditions that
are not studied in the experiments. The results indicated both ANN methods demonstrate
practically accurate estimates of the heatsink module, but RBFANN has more precise
prediction results (R2 = 0.7223 for MLPNN and R2 = 0.9966 for RBFNN).

In summary, various AI models were used for the modeling of heat pipe systems
employed in various applications. AI models can model the heat pipe systems separately
or modeling the entire system incorporating heat pipes. Modeling the operation of the
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entire system could be of benefit in cases where the internal interactions and processes in
the system are very complex and is better to incorporate them implicitly in the AI model.

3.6. Hybrid AI Methods for Working Condition Optimization

Optimization algorithms can be implemented into a heat pipe’s performance pre-
diction models to optimize the operating conditions to achieve the optimal working rate
(highest efficiency). Optimization of finned heat pipe operation conditions/parameters was
conducted by Naresh [36] using a combined artificial neural network (ANN) and genetic
algorithm (GA). The objective of the optimization was to obtain the optimum conditions
of a number of fins and fill ratio for a given heat input at which the minimum thermal
resistance can be achieved. The network was trained using the Levenberg–Marquardt
algorithm. The optimum average fill ratio and the number of fins were found to be 52%
and seven, respectively. Jalilian et al. [68] investigated the behavior of a pulsating heat
pipe flat-plate solar collector (PHPFPSC) using the artificial neural network method and
optimized the solar collector’s parameters using a genetic algorithm. Multilayer percep-
tron (MLP), specifically, two-layer perceptron (with one hidden layer) and three-layer
perceptron (with two hidden layers) neural networks, were used to investigate the system
because of the nonlinearity of PHPs and solar collectors. The results demonstrated that the
evaporator length, inclination angle, and filling ratio were the most influencing factors on
the system’s efficiency. The optimal values of the parameters were an evaporator length of
108.3 cm, a filling ratio of 56.9%, and an inclination angle of 25.01◦, and the optimal thermal
efficiency, based on the optimal parameters, was 61.4%, which was 4.0% higher than that in
the nonoptimal case. Moreover, the results indicated that a decrease in the temperature
of the input water of the water tank leads to an increase in the system’s thermal efficiency
(efficiency increases by about 1% for a decrease of 1 ◦C). The average error was less than
7.5%, which indicates that neural networks are capable of predicting the performance
of PHPFPSC systems with high accuracy. Using a similar approach, the simulation and
optimization of a pulsating heat pipe (PHP) was conducted by Jokar et al. [69] using a novel
approach that consists of an artificial multilayer perceptron (MLP) neural network and
genetic algorithm (GA). The optimum operation point obtained by the GA was heat flux
(q”) = 39.93 W, filling ratio (FR) = 38.25%, inclination angle (IA) = 55.6◦, and the obtained
results by the GA were validated by comparison to experimental results.

In summary, hybrid models combining optimization algorithms with AI-based models
have shown excellent performance in modeling and optimizing various types of heat pipe
systems. The incorporation of optimization algorithms in the modeling process helps in
improving the overall model’s accuracy and can be employed for optimizing the operational
parameters of the heat pipe system.

3.7. Intelligent Control Methods for Heat Pipes

Control algorithms are usually applied to AI models/systems to establish intelligent
control systems for heat pipe systems. As shown in Table 2, all of the intelligent control
systems that were applied in the literature are based on fuzzy logic models.

Table 2. Intelligent control methods for heat pipes.

Control Method Target Parameter Ref.

PID Temperature [45]

Nonlinear adaptive fuzzy controller Energy (heat) wastage in the heat pipe
radiator [70]

Fuzzy incremental control LHP temperatures, condensing pressure,
and mass flow rate [71]

Dual intelligent model (fuzzy
fusing rules)

Temperature control and heat flux tracking
effects [72]
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Dong et al. [71] proposed a fuzzy incremental control algorithm for controlling loop
heat pipe space cooling system (LHP-SCS) consisting of an LHP with ammonia as working
fluid and a variable emittance radiator with MEMS louver. This intelligent control technique
takes advantage of minor overshoots, no steady error, and strong operating properties.
The proposed FIC strategy was compared with the traditional PID approach. The former
demonstrated an improvement in the heat flux tracking effect and temperature control
than the latter, as indicated with lower overshoot values by more than 15% for considered
control parameters combined with shorter settling times by more than 30%. Furthermore,
it showed potential for more stable thermal and hydraulic conditions for safe operation
of the LHP structures and working fluid. Dual-driven intelligent combination control
(TQ-ICC) of a heat pipe space cooling system (HP-SCS) was developed by Yunze at al. [72]
to improve the temperature control and heat flux tracking effects. The combination control
strategy improves the final control action by employing temperature regulation and heat
flux tracking errors to the proposed dual-driven system and adaptively adjusting their
contributions using a fuzzy fusing rule. The results suggested that the proposed model can
considerably enhance the thermal control effects and promote safe operation of heat pipe
space cooling system as well, which was indicated by a more than 75% smaller settling time
and more than 89% smaller overshoot compared to a base PID controller. Zhang et al. [70]
designed and simulated a nonlinear adaptive fuzzy controller to control the heat pipe
radiator with a new-type function of contraction–expansion factor. The controller was
designed to resolve the energy (heat) wastage in the heat pipe radiator due to its complex
nonlinear nature. The model was found to be feasible and adaptive.

A particle swarm optimization (PSO) algorithm was also used by Xi et al. [45] to tune
the proportional–integral–derivative (PID) control parameters to optimize the parameters
of heat pipe temperature control during a vacuum thermal test. The temperature control
model was constructed based on the heat response data of the heat pipe. The time integral
of the absolute value of the control error was used as the objective function. Compared
to the attenuation curve method, the PSO method achieved better results in reducing
overshoot by more than 63%, shortening the time to reach steady-state, and improving
performance by reducing the maximum overshoot by more than 15%.

In summary, the control of heat pipe systems using AI algorithms was discussed
previously in the literature for controlling various parameters such as temperature and
heat release. However, ANN has not previously been used for the intelligent control of
heat pipe systems. Thus, the implementation of ANN in this task is limited, and future
research on this gap is highly recommended.

3.8. Summary

Several studies in the literature have discussed the application of various AI techniques
for the modeling and optimization of heat pipe systems. Table 3 summarizes the progress
made on modeling heat pipes’ performance using AI techniques. It can be observed from
the table that several AI techniques, including MLPNN, GMDH, and ANFIS, were used for
modeling different parameters of heat pipe systems, including the thermal resistance, the
water outlet temperature, the heat transfer rate, and the thermal efficiency. It is observable
from the table that the AI model that was used the most is the MLPNN due to its ease
of application and excellent ability to model highly nonlinear relationships between the
parameters. Several types of heat pipe systems were discussed for optimization using AI in
the literature, including PHP, OHP, thermosyphons, and heat pipe heat exchangers.
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Table 3. Different AI models for predicting heat pipe thermal performance (*: MSE value, **: RMSE
value, x: Accuracy measure not available).

AI Method Type of Heat
Pipe Input Parameters Output

Parameters Dataset Split Accuracy Ref.

Training/Testing/
Validation

MSE (*)
RMSE (**)

R

MLPNN Tube heat pipe
and flat heat pipe

solar collectors

Solar radiation, ambient
temperature, inlet gas

temperature, inlet water
temperature, evaporator
length, condenser length,
gas mass flow rate, and

water mass flow rate.

Collector
efficiency and
heat output

70%/15%/15%
0.0050 * 0.9460

[66]

MLPNN 0.0002 * 0.9995

GA-MLPNN PHP
Filling ratio, inclined angle,
and input heat flux to the

evaporator

Thermal
resistance 70%/30%/x x x [69]

MLPNN PHP

Heat flux, number of turns,
filling ratio, length ratio of
evaporation section, and

inner diameter

Thermal
resistance 70%/15%/15% 0.0025 * 0.9962 [60]

MLPNN PHP Heat input and fill ratio Overall thermal
resistance 64%/18%/18% x x [57]

MLPNN Heat pipe solar
collector

Total length/ inner
diameter of heat pipe

(L/di), condenser
length/evaporator length

(Lc/Le), water inlet
temperature, collector tilt
angle, and solar intensity

Water outlet
temperature 72%/28%/x 0.9234 * x [56]

MLPNN CLPHP Heat input and filling ratio Thermal
resistance 70%/15%/15% [52]

MLPNN

PHP

Filling ratio, thermal
conductivity of tube,

inclination angle, lengths of
adiabatic, condenser and
evaporator sections, heat

input, and inner and
outer diameters

Thermal
resistance 80%/20%/x

0.1121 ** 0.9838

[59]GA-RBFNN 0.065 ** 0.9946

CHPSO ANFIS 0.1455 ** 0.9726

MLPNN Heat pipe heat
exchanger

Filling ratio, nanofluid
concentration, and

input power

Heat exchanger
efficiency x/x/x x 0.99388 [63]

MLPNN PHP

Kutateladze number (Ku),
Bond number (Bo), Morton

number (Mo), Prandtl
number (Pr), Jacob number
(Ja), number of turns (N),

and the ratio of the
evaporation section length

to the diameter (Le/d)

Thermal
resistance 70%/15%/15% 0.0138 * 0.9824 [24]

MLPNN Evacuated tube
heat pipe

The radiation (I), mass (m),
and ambient temperature

(Tair)
Exergy 55%/30%/15% x x [67]

RBFNN Heat sink
heat pipe

Nanofluid mass fraction,
the coolant flow rate, and
the heat flux of the PCB

PCB steady-state
temperature

80%/20%/x 0.6357 ** 0.9983
[33]

MLPNN 70%/15%/15% 0.7223 ** 0.9978

MLPNN PHP

Inner diameter (Di), outer
diameter (Do), evaporator

length (Le), condenser
length (Lc), number of

turns (N), working fluids
(WFs), orientation (θ),

filling ratio (FR), and heat
input (Q)

Thermal
resistance 70%/15%/15% x 0.9434 [53]

NARX neural
network PHP

Wall temperature measured
by thermocouple T7

at evaporator

Temperature T1
at condenser x/x/x [55]
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Table 3. Cont.

AI Method Type of Heat
Pipe Input Parameters Output

Parameters Dataset Split Accuracy Ref.

MLPNN
Heat pipe solar

collectors

Inlet temperature of the
HPSC, ambient

temperature, and
solar radiation

Outlet
temperature

80%/x/20% 0.00525 ** 0.9960
[34]ANFIS x/x/x 0.00461 ** 0.9706

fuzzy method x/x/x x x

GMDH PHP

Inner and outer diameters,
tube thermal conductivity,

turns, length of each
section, heat input, filling

ratio, and (sine of)
inclination angle

Thermal
resistance

x/x/x

0.9779

[35]
Thermal

conductivity 0.9906

Function chain
NN (3 inputs)

OHP

Charging ratio, inclination
angle, and heat input Heat transfer rate x/x/x x x

[58]
Function chain
NN (4 inputs)

Charging ratio, inclination
angle, heat input, and

number of turns
Heat transfer rate x/x/x x x

GA-ANN Two-phase closed
thermosyphon

Heat input, number of fins,
and filling ratio

Thermal
resistance 80%/x/20% x 0.9950 [36]

MLPNN Wickless heat pipe
(WHP)

Input power, volume
concentration of nanofluid,
filling ratio and mass rate

in condenser section

Thermal efficiency 75%/25%/x

0.00994 *
(for

testing
dataset)

0.9911 [37]

MLPNN

OHP

Heat input, thermal
conductivity of working
fluids, and ratio of inner
diameter to the length

of OHP

Thermal
resistance 70%/30%/x

0.0025 * 0.9966

[38]ANFIS 0.0031 * 0.9953

GMDH 0.0032 * 0.9862

GA-MLPNN
(2-layer)

PHP

Solar radiation, inlet
temperature of the water

tank, the evaporator length,
filling ratio, and
inclination angle

Gained heat 70%/30%/x

x x

[68]
GA-MLPNN

(3-layer) x x

MLPNN

Two-layer screen
mesh-type

cylindrical heat
pipe

Heat load, size of silver
nanoparticles,

concentration of silver
nanoparticles in water,

inclination angle, average
evaporator temperature,
and average condenser

temperature

Thermal
resistance,
thermal

conductivity, and
overall heat

transfer coefficient

70%/15%/15%

x

[39]

Cascade
MLPNN x

RBFNN x

Generalized
regression x

GA-MLPNN
Miniature

revolving heat
pipe (MRVHP)

Bo, Ja, Pr, Fr, and filling
ratio

Ku (Kutateladze
number) 70%/30%/x x 0.9623 [64]

XGBoost OHP

Ku (Kutateladze number),
Ja (Jacob number), Prliq
(Prandtl number), Mo

(Morton number), heat flux,
target evaporator

temperature, and geometric
parameters (Di/Le

and Do/Di)

Effective heat
transfer coefficient 93%/7%/x x x [65]

MLPNN Nanofluid-filled
heat pipe

Heating power and
nanofluid concentration

Thermal
resistance x/x/x x x [73]

MLPNN
OHP

Heat load, filling ratio,
lengths of different sections,
inner and outer diameters,

and number of turns

Thermal
resistance

70%/15%/15% 0.0045 * 0.9946
[40]

GMDH 70%/30%/x 0.0144 * 0.9824
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Table 3. Cont.

AI Method Type of Heat
Pipe Input Parameters Output

Parameters Dataset Split Accuracy Ref.

GA-MLPNN
Two-phase closed

thermosyphon

Magnetic field strength,
volume fraction of

nanofluid in water, and
inlet power

Thermal efficiency

80%/20%/x

0.0000315 * 0.9800
[54]Thermal

resistance
0.001 * 0.999

MLPNN
Two-phase closed

thermosyphon

Heat input, concentration
of nanofluid, and type of

nanofluid

Temperature
difference
between

evaporator and
condenser

75%/25%/x

0.333757843
** 0.9999

[61]
Temperature

difference
between the input

and the output
water streams of

condenser
section (∆T)

0.001891019
** 0.9997

ANFIS Two-phase closed
thermosyphon

Type of nanofluid,
concentration of nanofluid,
input power, length, and
temperature difference

Thermal
resistance 70%/15%/15% 4.175 ×

10−12 * 0.9999 [62]

4. Conclusions and Future Research Directions

This work reviewed and discussed the recent developments of AI technologies in heat
pipe applications. Most of the studies reviewed in this work primarily focus on predicting
the thermal performance of heat pipe systems. Hybrid AI algorithms and intelligent control
systems for heat pipes were also covered. The following highlights can be concluded from
this review:

1. Most of the work on AI in heat pipes involves pulsating/oscillating heat pipes. This
is mainly due to the difficulty of experimentally analyzing the effects of different pa-
rameters on the performance of a heat pipe, since its performance depends on several
parameters. Furthermore, the numerical modeling of PHPs using computational fluid
dynamics (CFD) is relatively complex due to the chaotic nature of PHPs, which shows
the potential of AI-based modeling methods.

2. ANN is the most widely used AI technology in predicting the performance of heat
pipes and has proven its ability to be one of the most effective techniques for predicting
performance accurately. As a result, it can be used for the efficient design of heat pipes.

3. Multilayer perceptron neural networks (MLPNNs) achieved the highest accuracy in
predicting the performance of heat pipe systems compared to other similar models.

4. The AI model structure (number of hidden layers and neurons) is an important factor
that influences the model’s prediction accuracy.

5. The most common influencing input parameters are heat flux, filling ratio, and length
of each heat pipe section (evaporator and condenser sections). In the case of nanofluid-
filled heat pipes, nanofluid properties (such as concentration and thermal conductivity
of nanofluid) are the most common input parameters that should be considered, as
they most significantly influence the operation.

6. Optimization algorithms and a combination of optimization algorithms and AI models
can identify the optimum operating conditions of heat pipe systems.

7. Fuzzy (and hybrid fuzzy) controllers are the most widely used controllers for heat
pipes and heat pipe systems.

Despite the wide application of AI models for modeling various heat pipe systems,
some important research gaps still need to be addressed to improve this technology and
move it closer to practical application. These research gaps include:

1. Hybrid models combining metaheuristic optimization algorithms with AI-based
models have shown excellent performance in modeling heat pipe systems. However,
the current progress on hybridizing AI models with optimization algorithms is very
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limited, and further research on this topic is highly recommended. Optimization
algorithms that were not hybridized previously with AI models for heat pipe modeling
include grey wolf optimizer [74], ant colony optimization (ACO) [75], and the whale
optimization algorithm (WOA) [76].

2. Several recent AI models have performed superior tasks that were not previously
applied for modeling heat pipe systems. These models include the recurrent neural
networks (RNN) [77,78] and transformer networks [79,80] that showed excellent
performance in sequential data prediction and modeling tasks, as well as generative
adversarial networks (GAN) [81,82] that showed excellent performance in various
AI tasks in general and modeling tasks in specific. Further works discussing the
applications of these state-of-the-art models for modeling various aspects of heat pipe
systems are highly recommended and are expected to improve the currently achieved
limits of the AI-based modeling of heat pipes.

3. The progress made on the AI-based control of heat pipe systems is very limited,
and various types of intelligent control algorithms and target parameters have not
previously been discussed in the literature. Most importantly, ANN showed excellent
performance in different system control tasks and has not previously been used to
control heat pipe systems’ operation. Thus, developing ANN-based methods for the
operational control of heat pipe systems is highly recommended and expected to
achieve higher performance compared to the currently applied techniques.
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