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Implementation of artificial neural network technique

in the simulation of dam breach hydrograph

Vahid Nourani, Habib Hakimzadeh and Alireza Babaeyan Amini
ABSTRACT
In the present study, two artificial neural networks were developed to simulate outflow hydrograph

from earthen dam breach. The required data for the modelling were collected from literature,

laboratory experiments and a physically based model (i.e. BREACH). For the laboratory modelling, five

different materials were used for the construction of different dams of various sizes, and the process

of the breach was recorded by two video cameras to record the breach growth as well as the output

hydrograph. The genetic algorithm was also applied to divide the data into three statistically similar

sub-sets for training, validation and test purposes. The obtained results demonstrate that the results

of the artificial neural network (ANN) method are in good agreement with the observed values, and

this method produces better results than existing classical methods. Also, the experiments show

when cohesive strength is larger, the breach process becomes slower, and the peak outflow and the

final width and depth of breach become smaller. Moreover, when the friction angle is larger, the breach

process becomes slower, and the peak outflow and the final width and depth of breach become

smaller. However, the rate of breach formation is particularly dependent upon the soil properties.
doi: 10.2166/hydro.2011.114

om http://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf

022
Vahid Nourani (corresponding author)
St. Anthony Falls Lab. and NCED,
Dept. of Water Eng.,
Faculty of Civil Eng.,
Univ. of Tabriz,
Iran
and
St. Anthony Falls Lab. and NCED,
Dept. of Civil Eng.,
Univ. of Minnesota,
USA
E-mail: vnourani@yahoo.com;

nourani@tabrizu.ac.ir;
vnourani@umn.edu

Habib Hakimzadeh
Alireza Babaeyan Amini
Faculty of Civil Engineering,
Sahand University of Technology,
Tabriz,
Iran
Key words | artificial intelligence, artificial neural network, dam break, earthen dam breach,

genetic algorithm, outflow hydrograph
ABBREVIATIONS AND NOTATIONS
Hw
 height of water at the reservoir
Qp
 peak outflow
Vw
 reservoir water volume
g
 acceleration of gravity
ΔHc
 erosion rate
Po
 perimeter of the breach
L
 length of dam crest
Lb
 length of the breach channel
Por
 porosity of the breach material
Δt
 time step
Qs
 sediment-transport rate
Qi
 inflow to reservoir
Qb
 breach outflow
Qsp
 spillway flow
Qo
 crest overflow
Sa
 surface area at reservoir elevation
Fw
 force due to water pressure
Fsb
 shear force along the bottom of breach
Fss
 shear force along the side of breach
Fcb
 force due to cohesion along the bottom of breach
Fcs
 force due to cohesion along the side of breach
RMSE
 root mean squared error
E
 Nash–Sutcliffe efficiency coefficient (or determi-

nation coefficient)
Qi
 observed peak outflow
Q̂i
 simulated peak outflow

�Q
 mean value of observed peak outflow
yi
 normalized parameter
xmax
 maximum observed parameter
xmin
 minimum observed parameter
xi
 observed parameter
c
 cohesive strength
φ
 internal friction angle
D50
 median diameter of soil material
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unit weight of soil
zD
 downstream slopes of the dam
zu
 upstream slopes of the dam
Bb
t
 bottom width of the breach at time t
Hc
t
 height of the breach at time t
Bt
t
 top width of the breach at time t
Qt�1
 outflow discharge at time t� 1
w
 weight in the hidden layer in neural network
wj0
 bias for the jth hidden neuron
f
 activation function
ŷk
 computed output variables
NN
 number of the neurons in the input layers
MN
 number of the neurons in the hidden layers
INTRODUCTION

Dams have been of great importance in water resources

development and hydropower generation. Earth dams are

constructed with local materials and require relatively low

budgets, and are therefore more widespread than other

types. Dam failure, as a huge destructive disaster, can

cause much damage to the environment, facilities and prop-

erties in the downstream. It can also result in the loss of

human and/or animal life. Therefore, the analysis of the

dam failure phenomenon should be considered in the

design and construction of dams and, in this way, the esti-

mation of dam breach outflow hydrograph is the first and

most important task.

In technical literature, dam failure analysis is divided

into two main parts. First, analysis of the failure and

breach process and, second, flow routing and extraction of

the inundation maps due to dam break. The failure of a con-

crete dam usually occurs instantaneously; however, on the

other hand, earthen dams gradually fail due to the continu-

ous increase of an initial breach. In this case, the output

hydrograph is related to the erosion condition that takes

place inside the breach. Thus, the solution needs further

investigation to study safety management of the dams.

Different reasons may lead to failure of an earth dam such

as flow overtopping, piping discharge, land slide, war etc.;

but the first two are the most common and important

causes. Although some dam failures due to flow overtopping
.com/jh/article-pdf/14/2/478/386701/478.pdf
have been already monitored and/or analysed by hydraulic

engineers, there is still a need to have further insights into

the phenomenon and to develop more robust simulation

models. As in an earth dam failure process the piping

mode is changed to an overtopping mode after some time,

the particular concern in this study is focused on dam failure

due to flow overtopping.

Thus far, a number of models have been developed to

simulate the earth dam breach process. These can be cate-

gorized into two broad lumped (or black-box) and

distributed (or physically based) models, depending on the

complexities involved in the process, although there are

semi-distributed (semi-physically based) models that are

neither fully lumped nor fully distributed (Nourani &

Mano ). According to Wahl (, ), current analy-

sis methods are grouped into four categories: I. physically

based methods, II. predictor equations, III. comparative

analysis and IV. parametric models; the second and third

groups can be placed into the lumped models class, and

IV may be classified as a semi-distributed (or semi-physically

based) model. The lumped (or black-box) models establish

relationships between input and output variables regarding

the problem (e.g. dam breach) and without considering the

complex physical laws governing the natural process.

Some researchers have developed formulas based on

black-box models and historical dam breach data that have

enabled them to predict breach parameters, such as time

of breach formation, breach geometry and peak outflow

from breach. For instance, Johnson & Illes () were the

first to predict failure shapes for earth, gravity and arch con-

crete dams. Also, MacDonald & Monopolis (), Singh &

Snorrason (), FERC (), Von Thun & Gillette ()

and Froehlich () developed formulas to predict the time

of breach formation and breach geometry. Kirkpatrick

(), the US Bureau of Reclamation (), Costa (),

Froehlich () and Webby () have conducted studies

to determine the peak outflow as a function of dam height

and reservoir storage volume. The presented formulas in

the aforementioned studies have been developed based on

historical data from some failed dams. On the other hand,

a physically based model is based on numerical simulation,

which depends on breach formation. Such a model attempts

to represent the known physical process in a simplified

manner using linear/nonlinear mathematical formulations.
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While distributed or semi-distributed models have proved

their importance in understanding the relevant processes,

their implementation and calibration present various diffi-

culties. In the dam breach phenomenon, physical methods

employ the principles of hydraulics, sediment transport

and soil mechanics. Most of the physically based dam

breach models consider that the dam maintains constant

height through the breach and perform the dam breach

analysis mostly in two dimensions. Such models often utilize

the soil transportation capacity to calculate the erosion of

soil on the basis of a uniform steady-state condition of

flow. However, in the real world, a dam breach’s outflow

has a rapidly varied and non-uniform unsteady condition.

Therefore, estimating the erosion rate using the soil trans-

portation capacity is not appropriate (Wang & Bowles

). In the last 40 years, particularly since the 1980s, sev-

eral physically based models have been developed for the

simulation of breach growth in embankments, e.g. Fread

(), Singh & Quiroga (), Singh & Scarlatos (),

Visser (), Mohamed et al. (), Franca & Almeida

(), Wang & Bowles () and Zhu et al. ().

Semi-physical models, such as DAMBRK (Fread )

and FLDWAV (Fread ), take a more rigorous approach,

though not as rigorous as physical models. Such models

use historical monitored breach cases to predict the failure

time and final geometry of the breach. Afterwards, they

linearly interpolate the breach development over time

and calculate breach outflow using the principles of

hydraulics. The new Macchione’s model (), as a new

generation of DAMBRK and FLDWAV, uses the same

semi-physical approach. Currently, however, sensitivity

analysis indicates that the internal friction angle and

compaction index are the major factors affecting nonlinear

behaviour (Morris et al. ). In any case, the calibration

and validation of these models remains problematic

due to the lack of good empirical data. To improve

the understanding of the process of embankment breaching

and to collect data for the calibration and validation of

a new embankment breaching mathematical model,

laboratory tests should be conducted to verify mathematical

analysis (Franca & Almeida ; Zhu et al. ;

Chinnarasri et al. ).

Although the mentioned black-box and physical

models represent the state-of-the-art approaches in the
om http://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf
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prediction of earth dams breach formation, the capability

of the models to predict the outflow hydrographs is not

sufficient, and most models can only predict the peak out-

flow (Faeh ). Dam breach is a highly nonlinear, time-

varying and spatially distributed process and, in modelling

such a complex process, the black-box models may be an

alternative method when a suitable data set exists. In the

black-box approach, models are used to map directly the

inputs and outputs without detailed consideration of

the internal structure of the physical process. The artificial

neural network (ANN), as such a black-box approach, is

capable of identifying complex nonlinear relationships

between input and output data sets and is used widely

to model countless engineering problems (Nourani &

Kalantari ). ANNs can be used efficiently in situations

where explicit knowledge of complex internal processes is

not available. The application of ANNs in hydrology began

in the early 1990s, and a state-of-the-art review of ANN

applications in hydrology can be found in the ASCE Task

Committee Report (a). Some applications of ANNs

in water resources include precipitation–runoff modelling

(Rajurkar et al. ); stream flow forecasting (Moradkhani

et al. ); river stage forecasting (Liong et al. ); mod-

elling of rainfall-runoff relationships (Hettiarachchi et al.

); groundwater level forecasting (Nourani et al. );

prediction of wave height (Zamani et al. ) and predict-

ing watershed precipitation (Nourani et al. a). Some

attempts have also been made to predict the hydrograph

of watershed runoff using different input parameters. Mut-

tiah et al. () used information on the drainage basin,

elevation, average slope and average annual precipitation

to predict 2-year peak discharge from a watershed. Carriere

et al. () used an ANN with a recurrent back-propa-

gation algorithm to generate a runoff hydrograph using a

virtual runoff hydrograph system. They employed rainfall

intensity and duration, catchment slope and catchment

cover to estimate runoff hydrographs. Smith & Eli ()

used a back-propagation ANN to predict the peak dis-

charge and the time of peak resulting from a single

rainfall event. They used a synthetic watershed to generate

runoff from stochastically generated rainfall patterns. How-

ever, the selection of appropriate input parameters that

allow an ANN to successfully produce the desired output

is a complex task. Good understanding of the hydrologic
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system under consideration is an important prerequisite for

successful application of ANNs, and a physical understand-

ing of the process being studied leads to a better choice of

input variables.

Taking inspiration from the application of ANNs in

the simulation of watershed hydrographs, we present

two ANN-based models to simulate the earthen dam

breach process in this paper. The first model, similar to

other classical black-box models, only predicts the peak

outflow through the breach using some explicitly available

parameters (e.g. reservoir volume, height of dam, etc.).

The second model employs the distinct concept of the

ANN to simulate the instant outflow hydrograph from

the breach as a function of time. An ANN requires suffi-

cient data to be trained and verified. Three data sources

have been used in the current study: (1) historical dam

breaches, (2) laboratory experiments conducted in the

hydraulics laboratory of Sahand University of Technology,

Tabriz, Iran, and (3) a physically based numerical model

(i.e. BREACH).
Earth dam breach process

As mentioned above, the failure of an earth dam can be the

result of various causes, such as flow overtopping and piping

discharge. Dam failure due to flow overtopping has

occurred frequently in the past (Tingsanchali & Chinnarasri

). Also, the significant differences between overtopping

and piping only differ at the beginning of breaching before

a breach channel is finally developed (Visser ). There-

fore, a particular concern in this study is to focus on dam

failure due to flow overtopping.

The earth dam breach process due to overtopping is

divided into three stages (Wang & Bowles ):

1. Erosion stage 1 (Figure 1(a) and (b)) lasts from the start of

erosion until the top of the dam is completely eroded. At

this stage, outflows over the crest and through a breach

can be approximated using the broad-crested weir

equation.

2. Erosion stage 2 (Figure 1(b) and (c)) lasts from when the

top of the dam is completely eroded until the entire dam

is eroded. This stage involves two phenomena: gradual

soil erosion due to water flow and the slope stability of
://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf
the bottom and sides of the breach. Researchers have

considered many different equations to calculate the ero-

sion rate and soil transportation capacity, but most

equations have been developed and calibrated for

stream and river flow fields so that their use in the

breach flow field may produce some errors in the results.

3. Erosion stage 3 (Figure 1(d)) lasts from when the dam is

eroded until the end of the dam breach process. Stage 3 is

similar to stage 2, but in stage 3 there is no instability at

the non-erodible bottom of the breach. Due to the com-

plexity of the different stages of dam breach, physically

based modelling of the process is sometimes not straight-

forward in terms of programming and theorizing the

overall breach process when sufficient field data are not

available.
On the other hand, some researchers have conducted

studies to develop experimental formulas using historical

breach data to determine breach characteristics, especially

the peak outflow, as a function of dam height and reservoir

storage volume.

Costa () presented a method on the basis of a

regression analysis. It can be applied to both embankment

and concrete dams because the 31 breach cases used to

develop the model were selected from both embankment

and concrete dam breaches. Costa’s model estimates the

peak outflow (Qp, m
3/s) from the breach as:

Qp ¼ 0:763(VwHw)
0:42 ð1Þ

where Hw is the height of water directly at the reservoir

before breach, measured from the bottom of the final

breach (m), and Vw is the reservoir water volume at the

time of failure (m3).

The Froehlich () equation was derived by fitting a

multiple linear regression on 22 dams in which discharge

data were available:

Qp ¼ 0:607V0:295
w H1:24

w ð2Þ

The equation shows good agreement with the measured

peak flows over the entire range.



Figure 1 | Earth dam breach process.
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In discussing Froehlich’s study, Webby () applied

dimensional analysis to Froehlich’s data set to develop an

equation to estimate peak outflow. The equation in dimen-

sional form is expressed as follows:

Qp ¼ 0:0443g0:5V0:367
w H1:40

w ð3Þ

where g is the acceleration of gravity (m/s2).

The most important issue regarding empirical model-

ling is calibration. Calibration is often performed using a

specific set of data from laboratory and/or field tests or,

rarely, from historical failed dams with incomplete charac-

teristics. There is no guarantee that the actual breach can

be predicted by the models, which have not been calibrated

with reliable data. The most appropriate model is cali-

brated with an historical failed dam, but available data

for failed dams are rare and incomplete. To overcome

the problem, this study used three categories of data

sources for calibration and modelling, including
om http://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf
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experimental (laboratory) data, data from a physically

based model and historical breach data. To gather exper-

imental data, a number of tests were conducted in the

hydraulics laboratory of Sahand University of Technology,

Iran. Available historical breach data were derived from lit-

erature, and the rest of the data were obtained from the

BREACH model (Fread ).

BREACH is a physically based model that has been

developed applying hydraulics, sediment-transport formulas

and soil mechanics. Input parameters are geometric and soil

properties of a dam and reservoir properties (storage

volume, spillway characteristics and the time-dependent

reservoir inflow rate). The model predicts breach character-

istics (size, shape, time of formation) and outflow

hydrographs. The sequence of computation in the model is

iterative, as the flow into the breach is dependent on the

bottom elevation of the breach and its width; the breach

properties are dependent on the sediment-transport capacity

of the breach flow, and the transport capacity is dependent



Figure 2 | A three-layered feed-forward neural network with BP training algorithm.
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on the breach size and flow. The computational algorithm of

the model is briefly described below.

At each time step of the breach process, the erosion rate

(ΔHc) is computed as follows (Fread ):

1. ΔH is estimated.

2. Reservoir elevation is computed.

3. Qi, Qsp and Qo are computed with calculated reservoir

elevation.

4. ΔH is computed by Equation (4) using previously com-

puted breach flow.

ΔH ¼ 0:0826 × Δt
Sa

(Qi �Qb �Qsp �Qo) ð4Þ

where Qi, Qb, Qsp, Qo and Sa are the inflow to the reser-

voir, breach outflow, spillway flow, crest overflow and

surface area at the reservoir elevation, respectively.

5. Qb is computed from broad-crested weir relationship.

6. Regarding the stability of soil slopes, dimensions of

breach are computed.

7. Qs is computed using Meyer-Peter & Muller sediment-

transport relation.

8. ΔHc is computed by Equation (5).

ΔHc ¼ 3;600 × Δt ×Qs

Po × Lb × (1� Por)
ð5Þ

in which Po, Lb, Por, Δt and Qs are the perimeter of the

breach, length of the breach channel, porosity of the

breach material, increment time step and sediment-

transport rate, respectively.

9. Computed ΔH is compared with estimated value. If tol-

erance in percent is small, the computed ΔH is accepted.

10. Breach sides and breach bottom are checked for col-

lapse as:

Fw > Fsb þ Fss þ Fcb þ Fcs ð6Þ

where Fw, Fsb, Fss, Fcb and Fcs are the force due to water

pressure, shear force along the bottom of the breach,

shear force along the side of breach, force due to cohe-

sion along the bottom of the breach and force due to

cohesion along the side of the breach, respectively.

11. Outflow discharge is computed.
://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf
It is also assumed that the breach bottom is not eroded

downward until the volume of collapsed material along the

breach is removed at the rate of the sediment-transport

capacity of the breach channel. The outflow hydrograph is

simulated and plotted time step by time step. The

BREACH model has been developed based on some well-

known sediment-transport formulas (e.g. Meyer-Peter &

Muller), soil mechanics principles and hydraulics relations

(e.g. broad-crested weir). Also, it has been already tested

on some real-world dam breach cases such as the breach

of two man-made dams (Teton and Lawn Lake) and one

naturally formed landslide breach in Peru (Fread ).

ANN model

As with natural neural networks, an ANN contains some

simple elements (e.g. neurons) that are connected together

and operating in parallel. A neural network is trained to per-

form a particular function using a set of data and by

adjusting the values of the connections (weights) between

neurons such that a particular input leads to a specific

target output. As shown in Figure 2, a three-layer feed-for-

ward ANN, which is usually sufficient for real-world

problems (Hornik et al. ), was used in this study. In

Figure 2(i), (j) and (k) denote input layer, hidden layer and

output layer neurons, respectively, and w is the applied

weight by the neuron. The term ‘feed forward’ means that

a neuron connection only exists from a neuron in the

input layer to other neurons in the hidden layer or from a

neuron in the hidden layer to neurons in the output

layer and the neurons within a layer are not interconnected

to each other. The explicit expression for an output
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value of a three-layered feed-forward neural network is given

by Nourani et al. ):

ŷk ¼ f0
XMN

j¼1

wkj � fh
XNN

i¼1

wji � xi þwj0 þwk0

 !2
4

3
5 ð7Þ

where wji is a weight in the hidden layer connecting the

ith neuron in the input layer and the jth neuron in the

hidden layer, wj0 is the bias for the jth hidden neuron, fh
is the activation function of the hidden neuron, wkj is a

weight in the output layer connecting the jth neuron in

the hidden layer and the kth neuron in the output layer,

wk0 is the bias for the kth output neuron, f0 is the activation

function for the output neuron, xi is the ith input variable

for the input layer and ŷk, y are computed and observed

output variables, respectively. NN and MN are the number

of the neurons in the input and hidden layers, respectively.

The weights are different in the hidden and output layers,

and their values can be changed during the process of the

network training.

It is very difficult to know which training algorithm will

be the most reliable for a given problem. It depends on many

factors, including the complexity of the problem, the number

of data in the training set, the number of weights and biases

in the network, the error goal and whether the network is

being used for pattern recognition or function approxi-

mation (Nourani et al. b).

There are two important issues concerning the implemen-

tation of ANNs. The first issue involves a specification of the

network size (the number of layers in the network and the

number of neurons in each layer). This task involves deciding

the number of neurons required in the hidden layer. Gener-

ally, the more complex the mapping is, the larger the

number of hidden neurons required becomes. However, an

excessive amount of hidden neurons can help a network

memorize the training set that will result in poor performance

on hidden data. The second issue involves finding the optimal

values for the connection weights. Starting with a small

number of neurons and gradually increasing the network

size until the desired accuracy is achieved addresses the first

problem. However, this approach heavily depends on the

ability to find the optimal weights. The back-propagation, as

a learning algorithm for multi-layered neural networks, is
om http://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf
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widely used at different fields of engineering in order to

modify the weights of network via the propagation of an

error gradient backward from the output to the input. The pre-

sented ANN models in this research use the Levenberg–

Marquardt back-propagation algorithm to train a

feed-forward artificial neural network (ASCE b). To

assess the performance of the proposedmodels, two different

criteria were used: the root mean square error (RMSE) and

Nash–Sutcliffe efficiency coefficient (E) (or determination

coefficient). The best fit between observed and calculated

values will give RMSE and E values close to 0 and 1,

respectively. These measures are defined as follows (Nourani

et al. ):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
(Qi � Q̂i)

2

r
ð8Þ

E ¼ 1�
Pn

i¼1 (Qi � Q̂i)
2Pn

i¼1 (Qi � �Q)2
ð9Þ

where Qi is the observed peak outflow; Q̂i is the simulated

peak outflow; n is the number of observed data; and �Q is

the mean of the observed peak outflow. The Nash–Sutcliffe

efficiency (E) ranges from�∞ to 1. An efficiency of 1 (E¼ 1)

corresponds to a perfect match of the modelled discharge to

the observed data. An efficiency of 0 (E¼ 0) indicates that

the model predictions are as accurate as the mean of the

observed data, whereas an efficiency less than zero (E< 0)

occurs when the observed mean is a better predictor than

the model or, in other words, when the residual variance

is larger than the data variance. Nash–Sutcliffe efficiency

has been reported in scientific literature for model simu-

lations of discharge and water quality constituents such as

sediment, nitrogen and phosphorus loadings (Moriasi et al.

). To achieve an efficiency of 1 (E¼ 1), networks can

be trained to perform classification with the function train.

This function applies each vector of a set of input vectors

and calculates the network weight and bias increments

due to each of the inputs. Each pass through the input vec-

tors is called an epoch. The number of training epochs is

optimized to obtain precise and accurate outputs. The

most commonly used transfer function for neurons in the

hidden layer(s) and output layer of an ANN is the sigmoid
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function, which has a bounded output range between zero

and one (Rajurkar et al. ). The actual observed outputs

of the network, which are outside of the bounded range of

the neuron transfer function, must be normalized or

rescaled such that they fall within the bounded output

range. A logistic sigmoid is used here as the transfer func-

tion, and the observed discharges are normalized using the

following equation:

yi ¼ xi � xmin

xmax � xmin
ð10Þ

where yi is the normalized parameter, xmax is the maximum

observed parameter, xmin is the minimum observed par-

ameter and xi is the observed parameter. This

transformation bounds the discharges in the range [0,1].
Experimental setup

An ANN model, similar to other black-box models, requires

a complete data set to be calibrated. Calibration is often
Figure 3 | Experimental setup.

://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf
performed by using a specific set of data such as those

from laboratory and, in some cases, field tests; however, in

this research, three categories of data sources were used to

produce a reliable model: experimental data, data from a

physically based model and historical breach data.

To provide experimental data, some tests were con-

ducted in a rectangular flume with a length of 12 m, a

depth 0.8 m and a width 1.0 m (Figure 3(a)). The flume

included a morning glory spillway upstream to provide con-

trol over the upstream reservoir water levels prior to breach

initiation through an embankment. Water outflow through

the developing breach channel was dropped into a stilling

basin before flowing over a triangular sharp-crested weir

into a second measuring-weir basin. A 90W V-notched weir

was provided between two basins (Figure 3(b)).

The breach process was recorded by two video cameras

(Figure 3(c)): one to monitor the breach growth and the

other to record the depth of water on the weir. Forty exper-

iments were conducted in the flume. Five different materials

were used for dam construction in the experiments. The key

properties of the materials are summarized in Table 1 in

which c, φ, D50 and γ are the cohesive strength, internal



Figure 5 | Outflow hydrograph of two tests and BREACH model.

Table 1 | Material properties

Type of material c (KN/m2) φ D50 (mm) γ (KN/m3)

1 0 45W 2 19.00

2 0 30W 0.25 16.25

3 33 30W 0.1 18.00

4 15 30W 0.15 17.60

5 5 30W 0.175 17.40

486 V. Nourani et al. | Dam breach modelling via ANNs Journal of Hydroinformatics | 14.2 | 2012

Downloaded fr
by guest
on 20 August 2
friction angle, median diameter of the soil material and unit

weight of the soil, respectively.

The earth dams constructed for the present study were

30 and 40 cm in height, zD¼ 2.5 and zu¼ 2.5, 3.5 in which

zD and zu, respectively, are the downstream and upstream

slopes of the dam as given by ratio 1 (Vertical): z (Horizon-

tal). Sixteen dams were constructed with two different types

of sand, and 24 dams were constructed with different mix-

tures of fine sand and clay. To control the compaction of

the dam, the material was water-sprayed and compacted in

layers 5 cm thick, and a hand-operated compaction roller

was used to compact every loose layer. During the test, the

pilot channel initially eroded through a small breach in

the dam downstream of the crest to the toe of the dam

and continued until the breach reached the bottom flume.

To draw the outflow hydrograph, the discharges were

measured as a function of time according to the monitored

depth of the water over the weir.

To validate the tests, the obtained results were compared

with the results of other laboratory tests (Wishart ) and

the data from four historical earthen dam failures. The geo-

metry of the dam constructed by Wishart () is shown in

Figure 4(a). Wishart () recognized the symmetry of the

phenomenon and constructed only half of the dam.
Figure 4 | Dams geometry: (a) Wishart (2007) test, (b) t1.

om http://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf
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However, in the current study, the entire dam was con-

structed and breached (test No.¼ t1; Figure 4(b)).

Each breach process was initiated by cutting a rec-

tangular pilot channel at the dam crest. As indicated in

Figure 4(a), the data provided by Wishart () were

measured for a half-breach section in which the initial

pilot channel was adjacent to the side of the flume. In

the overtopping mode of dam failure, when water over-

flows from the crest, erosion begins at the toe of the

downstream slope and creates a rivulet that migrates

towards the embankment crest. When the rivulet reaches

the crest, the dam breach has begun, and water passing

through the breach leads to the enlargement of the

breach until dam failure is completed. To simulate the over-

topping mode on the laboratory scale, an initial notch

should be created because it is preferred that the breach

be initiated and take place in the middle of crest (arbitrary

position). This initial notch was very small and did

not have any significant effect on the breach outflow

hydrograph. Figure 5 shows the result reported by
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Wishart (), the observed data in the current study and

the result obtained by the BREACH model.

As shown in Figure 5, the measured peak outflows are

22.3 and 22 l/s in Wishart () and the current study

(t1), respectively, but the calculated peak outflow by

BREACH is 28 l/s. The breach area determined in Wishart’s

test (Figure 6(a)) has also been compared with the t1 test in

Figure 6(b), which shows approximately the same breach in

terms of shape and size. Regarding Figure 5, the time to the

peak outflow in Wishart’s test, the current test and the

BREACH model are 45, 44 and 47 s, respectively.

For further validation, some experiments were also con-

ducted by simulating selected historical dam breach cases:

Apishapa, Mammoth, Otto Run and Teton dam (Wahl
Figure 6 | Breach area (a) in Wishart (2007) model, (b) in t1 test.

Table 2 | Characteristics of the dams

Name Type Height (m)

Apishapa Homogeneous 31.14

Mammoth Homogeneous 21.3

Otto Run Homogeneous 5.8

Teton Zoned earth dam 92.96

://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf
). The characteristics of the dams are presented in

Table 2.

Because in the overtopping failure we deal with free sur-

face flow, the Froudian scaling law was applied such that

λF¼ 1 to scale and set up the models in the laboratory,

where λF is the scale ratio of Froude number [F¼V/

(gL)0.5], V is flow velocity, g is gravitational acceleration

and L is the governing length. Therefore λF¼ 1, λg¼ 1

implies the following scaling ratios for the velocity, time

and flow rate, respectively: λV ¼ λ0:5L , λt ¼ λL=λV ¼ λ0:5L and

λQ ¼ λVλA ¼ λ2:5L . The scaling results of the dams are

shown in Table 3. Two models were assumed to scale the

dams. Model 1 used a 2-m length, considering the symmetry

property used to scale the Apishapa and Mammoth dams;

model 2 was used to scale the Otto Run and Teton dams

with a 1-m length.

The measured peak outflow discharges obtained by

the physical models are shown in Table 4. The test results

are in good agreement with the corresponding

historical breaches and, considering the presented results,
Length (m) Storage (m3) Qp (m3/s)

208 2.25 × 107 6,850

140 1.36 × 107 2,520

20 n/a 60

304.8 3.56 × 108 65,120

Table 3 | Froude scaling ratios

Parameter Ratio Apishapa Mammoth Otto Run Teton

Length λL 104 70 20 304.8

Time λt ¼ λ0:5L 10.2 8.4 4.4 17.5

Flow λQ ¼ λ2:5L 110,332 41,200 1,760 1.63 × 106

Table 4 | Physical models and historical dams peak outflows

Dam Model
Qp (lit/s)
(measured)

Qp (m3/s)
(scaled)

Qp (m3/s)
(observed)

Error
(%)

Apishapa Model 1 56 6,180 6,850 9

Mammoth Model 1 56 2,310 2,520 6

Otto Run Model 2 36 63 60 5

Teton Model 2 36 58,400 65,120 8
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it can be concluded that the experimental setup and

measured data are reliable and can be used for the ANN

modelling.
RESULTS AND DISCUSSION

In this research, two ANN models were developed to esti-

mate the outflow discharge from an earth dam breach. The

first ANN model, similar to some formerly presented

black-box models (e.g. Equations (1)–(3)), used the physical

parameters of the dam’s geometry (height of water before

breach Hw, reservoir storage volume Vw, length of crest L)

and its material characteristics (cohesive coefficient c,

internal friction angle φ and average grain of the soil D50)

as inputs to estimate the peak value of the outflow hydro-

graph. In the second model, in addition to the first

models’ inputs, some temporal variables, such as

Bb
t , H

c
t , B

t
t and Qt�1 (which are the bottom width of the

breach, height of the breach, top width of the breach at

time t and the outflow discharge at time t� 1, respectively),

were also imposed on the input layer to estimate the outflow

discharge as a function of time (i.e. Qt).

The properties of the material used in the experiments,

which also apply to real-world dams (prototypes), are pre-

sented in Table 1. Overall, to obtain the output

hydrographs under different conditions, 40 dams were con-

structed, breached and monitored in the laboratory. The

results of four tests are presented in Figure 7 for dams

with height of 30 cm, downstream and upstream slopes of

2.5 and different soil properties.
Figure 7 | Outflow hydrographs of tests.

om http://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf
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Furthermore, the BREACH model was also used to

determine the outflow hydrograph and breach shape of

some hypothetical dams to produce the required data for

the ANN training as the second category of the data

source. The input parameters are given in Table 5.

As examples, Figure 8(a) and (b) illustrate dam breach

hydrographs obtained via the BREACH model for dams

with heights of 60 and 30 m, respectively, and different

soil properties (i.e. φ¼ 30W and c¼ 0, 15, 33 kN/m2). It is

clear that by increasing the cohesion of the material, the

time of the breach is also delayed and, consequently, the

peak of the outflow notably decreases. In the laboratory

tests, it was observed that the shape of breach remained

approximately rectangular until tp (time to Qp); at tp, how-

ever, the collapse of the sides leads to a trapezoidal shape.

The rate of breach enlargement in the dams with cohesive

material is lower than that in non-cohesive dams and, conse-

quently, in the rising limbs of the outflow hydrographs, the

discharge values (including Qp) are small compared with

the non-cohesive breach cases; therefore, the time to Qp

increases.

Although there is a discrepancy between the peak value

of the outflow from a laboratory breach and the value esti-

mated by the BREACH (Figure 5) due to the assumed

simplifications in the physically based model, it is possible

to simulate the model several times for different conditions

by the BREACH. Therefore, the simulated hydrographs

may help the ANN model to estimate the rising and reces-

sion limbs of the breach hydrograph.

Numerous dam failures have occurred in the past, but

only a few have been monitored. A database containing

data from 108 embankment failures around the world col-

lected by Wahl () shows the details of embankment

types and estimations of the concerned data. Some outflow

hydrographs from historical breaches were used in this study
Table 5 | Input parameters of hypothetical dams

Length (m) 300

Height (m) 30 40 50 60

Material
property

φ¼ 0W

φ¼ 30W

φ¼ 45W

c¼ 0 KN/m2 c¼ 15 KN/m2 c¼ 33 KN/m2

Slope zD¼ zu¼ 2.5



Figure 8 | Outflow hydrographs of hypothetical dams.
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as the third category of data sources, two of which are

shown in Figure 9.

Table 6 presents the statistical analysis of the data gath-

ered from three sources, which are divided into three sub-

sets of training, verification and test by the genetic algorithm

(GA) technique, which includes the minimum, maximum,

mean and standard deviation (Sd) of the data. The data

were employed to develop two multilayer feed-forward

ANN models, each with only one hidden layer.

In fact, a feed-forward network with only one hidden

layer has been found capable of approximating any mea-

surable function to any desired degree of accuracy

(Hornik et al. ). This kind of ANN model

accompanied by a back-propagation training algorithm is

heavily used in hydraulic and hydrologic modelling

(ASCE b). Important issues in ANN modelling are

architecture (i.e. number of neurons in input and hidden

layers) and training epoch number, the appropriate
Figure 9 | Historical dam breach hydrographs: (a) Teton dam, (b) Lawn dam.

://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf
selection of which can progress the model efficiency at

both calibration (training) and verification steps. It also

prevents the ANN model from being over-trained. To pro-

tect the ANN from overtraining, data were divided into

three training, verifying and test sets. The network was

trained by training data and in each training epoch the

network was also verified by the validation data. The

training process was continued until a critical epoch

number where, in spite of a decrease in RMSE of the net-

work by the training data, the RMSE of the network with

the verification data was going to be increased. At this

point, the training was stopped and the network was

checked with the test data set. A network with the highest

values of E (or lowest RMSE) in all three steps was

selected as the best network. There are two new methods

for the optimal division of data. The first method employs

a GA to divide the data so as to minimize the statistical

difference (measured by the mean and standard deviation)



Table 6 | Data statistics

Hd (m) Bt
t (m) Hc

t (m) Bb
t (m) D50 (mm) c (KN/m2) φ Q (cm)

Training set Max 95 120 58.65 28.65 2 33 45 70,000

Min 0.3 0.03 0.02 0.03 0.1 0 0 0.006

Mean 45.48 58.45 13.53 14.62 1.4 25 7.99 10,651

Sd 10.86 29.14 9.25 9.50 0.71 17 2.82 8,468

Validation set Max 95 119.8 58.55 28.55 2 33 45 69,800

Min 0.3 0.03 0.02 0.03 0.1 0 0 0.0065

Mean 45.55 58.60 13.26 14.84 1.4 25 7.90 10,897

Sd 10.80 29.60 9.13 9.39 0.70 17 2.79 8,590

Testing set Max 95 119.6 58.45 28.45 2 33 45 69,550

Min 0.3 0.03 0.02 0.03 0.1 0 0 0.0067

Mean 45.24 58.35 13.19 14.57 1.4 25 7.99 10,588

Sd 10.56 29.07 8.79 9.55 0.71 17 2.82 8,145
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between training, testing and validation data sets

(Goldberg ; Nourani ). The second data division

method employs a self-organizing map (SOM) to cluster

similar data records together (Bowden et al. ). In

this study, a GA was applied to the problem of dividing

the data into three statistically similar sub-sets. Sixty per-

cent of the available data were used for training, 20%

for validation and the remaining 20% for testing. At

first, the data values were assigned to the sub-sets ran-

domly and transformed to some GA chromosomes

(strings) containing different genes and the fitness func-

tion was computed. In order to determine the fitness of

each solution, an objective function was required. In

this application, a suitable objective function to minimize

was the sum of the absolute difference in the mean values

between each pair of the three sub-sets. Penalty con-

straints were also added to the fitness to ensure that the

maximum and minimum values of each input and

output variables were included in the training set, rather

than in the testing or validation set. To find the optimum

solution, the gradually evolving concept of GA was used

through different generations until a stopping criterion

(an appropriate fitness) was reached. For this purpose at

each generation, mutation and crossover operations

were employed to guarantee the diversity and pressure

of the answer’s domain, respectively. The selection of

the elite answers at each generation was also done by

ranking and Roulette Wheel technique. For details
om http://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf
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regarding the GA approach the reader may refer to

Nourani ().

The input and target data were normalized in the range

of 0 to þ1; finally, the log-sigmoid transfer function (Hornik

et al. ), in the form of Equation (11), was applied:

log sig(xi) ¼ 1
1þ e�xi

ð11Þ

Such a nonlinear function can map the weighted

inputs of the ANN to the output of the model in order to

capture Qp.

The details and results of the proposed ANN models are

presented in the following sections.
ANN-Qp model

The ANN-Qp model was developed to estimate the peak out-

flow discharge from a dam breach and also to investigate the

sensitivity of the model (and process) to each input par-

ameter. Hw, Vw, L, c, φ, D50 were used as input data, and

Qp was considered as the output. Eight combinations of

the input variables were tested, and the models’ architec-

tures (number of neurons in input and hidden layers) and

results are shown in Table 7. The result is reasonable,

because the values of E and RMSE obtained in training,

validation and test steps are close to 1 and 0, respectively,



Table 7 | Input variables in different structures for ANN-Qp model

Structure no. Architecturea Input data Epoch no. E (Train) E (Val.) E (Test) RMSE (Train) RMSE (Val.) RMSE (Test)

1 (6,11,1) Hw, Vw, L, c, φ, D50 100 0.9839 0.9484 0.9258 0.0014 0.0188 0.0275

2 (5,10,1) Hw, Vw, c, φ, D50 150 0.9632 0.9332 0.9069 0.0101 0.0193 0.0293

3 (3,7,1) Hw, Vw, L 120 0.9124 0.8934 0.8764 0.0270 0.0495 0.0538

4 (2,5,1) Hw, Vw 70 0.9081 0.8856 0.8701 0.0311 0.0498 0.0588

5 (1,3,1) Hw 100 0.5962 0.5656 0.4026 0.0939 0.1145 0.1659

6 (1,3,1) Vw 120 0.5009 0.4074 0.3601 0.1264 0.1178 0.1604

7 (3,6,1) c, φ, D50 90 0.4871 0.4125 0.3578 0.1301 0.1181 0.1655

8 (1,4,1) L 80 0.4651 0.4277 0.3022 0.1312 0.1180 0.1763

aNumber of neurons in (input layer, hidden layer, output layer).
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which indicate that the overtraining problem has not taken

place in the ANNs.

Figure 10 compares these eight structures in terms of

the E and RMSE (for normalized data), which were calcu-

lated for the training, validation and testing data sets. The

optimum numbers of hidden neurons and training epochs

were determined through a trial–error process. Although

the first structure gave the largest E and smallest RMSE,

its architecture is complex and contains more parameters.

Figure 10 indicates that the model leads to less accuracy

for structures 5 to 8. Comparing the values of E and

RMSE for structures 3 and 4 shows that Hw, Vw are

the most dominant parameters in the dam breach

analysis. This finding is in agreement with the formerly

presented empirical models (e.g. Equations (1)–(3)),
Figure 10 | (a) E and (b) RMSE of the models.

://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf
which use only Hw, Vw as the input parameters in

the form of some exponential functions. Furthermore,

a comparison of structures 5 and 6 reconfirms the

appearance of a higher power of Hw in Equations (2)

and (3).

On the other hand, in the cases that material properties

of dam are not available prior to prediction (even for first

estimation) these structures are useful.

The scatter plots of the computed versus observed

values of Qp (normalized) for structure 4 have been plotted

in Figure 11(a) and (b) for training and test data sets,

respectively.

To achieve an overall comparison for the developed

ANN model and empirical relationships (Equations (1)–

(3)), the obtained results were summarized, as shown in



Figure 11 | Scatter plot for Qp: (a) train, (b) test.
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Table 8, for the Wahl database. The results indicate the

superiority of the ANN model to the empirical models,

which consider only an exponential relationship among

the input and output parameters.

The appropriate model among the presented models

may be selected in terms of both expected accuracy and

data availability. Structures 1 and 2 lead to better results

but also they need more field data. On the other hand, in

the cases that material properties of the dam are not avail-

able prior to prediction (even for first estimation)

structures 3 and/or 4 can be a reliable choice.
ANN-Qt model

The ANN-Qt model was developed to estimate the breach

outflow hydrograph and, in this way, two different structures

were examined.

At each time step (t), the outflow discharge (Qt) through

a breach can be expressed as a nonlinear function of the
Table 8 | Verification results for three empirical models and ANN

Model Costa Froehlich Webby ANN (structure 4)

E 0.5415 0.7812 0.8466 0.9081

RMSE 0.1269 0.0758 0.0421 0.0278

om http://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf
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breach’s size at that time step:

Qt ¼ f1(Bb
t , H

t
c, B

t
t) in which 0 ≤ Qt ≤ Qp ð12Þ

or

Qt ¼ f2(Qp, Bb
t , H

t
c, B

t
t) ð13Þ

such that f2 interpolates the discharge values between 0

and Qp, temporally.

In the previous section, it was verified that Qp can be

estimated by Hw, Vw, L, c, φ, D50 via a nonlinear ANN

model (i.e. ANN-Qp). On the other hand, although during

most time steps Qt is not affected by the initial size of the

breach (i.e. initial conditions as Bb
0, H

t
0, B

t
0), it is possible

that during some first time steps, Qt is affected by the initial

conditions of the breach. It has already been proved that the

initial size of the breach may be represented by the physical

properties of the dam (Fread ). Thus, Equation (12) can

be rewritten as follows:

Qt ¼ f(Hw, Vw, L, c, ϕ, D50, Bb
t , H

t
c, B

t
t) ð14Þ

However, in real-world applications, it is usually diffi-

cult to monitor breach growth and the size of a breach,



Figure 12 | Calculated and observed hydrographs for Teton dam breach.
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time step by time step. Therefore, assuming the breach

phenomenon is a Markovian process (i.e. auto-regressive

process of order 1, AR(1)) as:

Qt ¼ g1(Qp, Qt�1) ð15Þ

or

Qt ¼ g(Hw, Vw, L, c, ϕ, D50, Qt�1) ð16Þ

the second structure of the ANN-Qt model is presented.

In this model, the network uses the output of the previous

time step simulation as the model’s input at the current

time step. It has been shown that for the simulation of a

dam breach, Hw and Vw can be reliable representatives of

the physical properties of the dam (Table 7). Therefore,

two simplified alternatives for structures 1 and 2 were also

considered in modelling structures 3 and 4, which employ

four fewer parameters than structures 1 and 2 in the input

layer. The results of the modelling are shown in Table 9

for the proposed ANN-Qt structures.

Although the results show that structures 1 and 3 per-

formed better than structures 2 and 4, respectively, it is

clear that structures 2 and 4 are more applicable to real-

world problems. For example, the breach hydrographs of

the Teton dam computed by the presented ANN-Qt (struc-

ture 1) and BREACH models were drawn versus the

observed hydrograph, which shows that the presented

ANN-Qt, which is derived from different kinds of data

sources, can be considered an adequate tool to simulate

the breach process (see Figure 12).

According to the current research, Figure 13 briefly

shows a step-by-step algorithm for application of ANN tech-

nique to predict the dam breach output discharge. At the

preparation phase, as mentioned in this paper, different
Table 9 | Input variables in different structures for ANN-Qt model

Structure no. Architecturea Input data Epoch no.

1 (9,13,1) Hw, Vw, L, c, φ, D50, Bt
b, H

t
c, B

t
t 130

2 (7,10,1) Hw, Vw, L, c, φ, D50, Qt�1 120

3 (5,9,1) Hw, Vw, Bt
b, H

t
c, B

t
t 110

4 (3,7,1) Hw, Vw, Qt�1 90

aNumber of neurons in (input layer, hidden layer, output layer).

://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf
data from several sources are employed to train and test differ-

ent ANNs with different abilities; thereafter and according to

the presented steps at simulation phase, the prepared ANNs

as ready packages can be used for any other study dam that

is in the design and/or operation phase.
CONCLUSIONS

Prediction of the outflow hydrograph resulting from a

gradually failed earth dam is the basic step for estimation

of the downstream flood levels and extraction of the inun-

dation maps. For this purpose, there are different methods

to determine outflow hydrographs which have their own

advantages and shortages. The dam breach problem is a

complex phenomenon, and it is difficult to model through

a fully physically based model. Currently, to model

complex phenomena, artificial intelligence methods such

as ANNs are widely used. All methods require data for

training. Therefore, to have an adequate model, three

data categories were used to cover a wide range of

dam failures. In category 1, to gather experimental

data which are more similar to real cases but on a small
E (Train) E (Val.) E (Test) RMSE (Train) RMSE (Val.) RMSE (Test)

0.9526 0.9145 0.8941 0.0154 0.0280 0.0344

0.9307 0.9003 0.8765 0.0211 0.0321 0.0412

0.9218 0.8966 0.8601 0.0357 0.0577 0.0711

0.9058 0.8845 0.8453 0.0489 0.0685 0.0901



Figure 13 | Step-by-step algorithm for application of ANN to predict dam breach outflow.
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scale, homogeneous small dams were constructed in a

flume using a range of uniform non-cohesive and cohesive

materials and were breached by overtopping flows. In cat-

egory 2, a physically based numerical model (BREACH)

was used to produce large-scale results, but the model

included some simplifying assumptions. Alternative

approaches to numerical modelling of dam breaching

also have significant associated uncertainties for two

reasons. First, they do not simulate erosion mechanisms

that are relevant to the dam breach and, second, they typi-

cally rely on sediment-transport relations that are not

applicable to the regime of flow conditions occurring in

dam breaching. Category 3 includes historical breach

data, which are scarce, and predictions of breach flows

and breach parameters based on statistical analyses of his-

torical data tend to handle significant associated

uncertainties. This finding is due to the rare, highly vari-

able and often subjective nature of the available
om http://iwaponline.com/jh/article-pdf/14/2/478/386701/478.pdf
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historical data; these data represent, at best, only a limited

range of earth dams.

The results show that the ANN method is more flex-

ible than other black-box or physical based models.

Also, ANN is a flexible model for sensitivity analysis.

Sensitivity analysis shows that Hw and Vw are more

important physical parameters than L, c, φ and D50 in

dealing with the breach process. In this research, an

ANN model was also developed to derive outflow hydro-

graphs, considering the size of the breach and

instantaneous Qt�1 as inputs. It should be emphasized

that for many existing embankments (both dikes and

earth dams) c and D50 are not exactly known. Therefore

as a preliminary phase of the study and/or when material

properties of the dam are not available, a prediction can

be done by using just Hw and Vw. To predict Qp with

much higher accuracy, we will need internal material

properties of the dam.
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Due to the complexity of the process on one hand and

the lack of sufficient data on the other, we cannot claim

that the presented ANN model is a perfect approach to

simulate the breach phenomenon. However, according to

the flexibility of the proposed method, we suggest that the

current database be extended by more field and experimen-

tal data to improve the efficiency of the ANNs. For instance,

some non-homogenous zoned dams can be scaled and brea-

ched in the laboratory to investigate the effect of material

heterogeneity on the breach process.

The database formed in this research can be used by

other researchers to develop and verify other new models

and methods in future studies.
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