
Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

458

IMPLEMENTATION OF FLOATING POINT MAC USING

RESIDUE NUMBER SYSTEM

1
DHANABAL R,

 2
SARAT KUMAR SAHOO,

,3
BARATHI V,

4
NAAMATHEERTHAM R

SAMHITHA,
5
NEETHU ACHA CHERIAN,

6
PRETTY MARIAM JACOB

1
Assistant Professor (Senior Grade), School of Electronics Engineering,

2
 Associate Professor, School of Electrical Engineering,

3
Assistant Professor, GGR College of Engineering, Vellore

4,5,6
MTECH Students, VLSI Division, SENSE Department,

 VIT University ,Vellore- 632014, TN, INDIA

E-mail: 1rdhanabal@vit.ac.in , 2sksahoo@vit.ac.in ,3samhitha.nr@gmail.com,

4neethuachacherian@gmail.com, 5prettymjacob@yahoo.co.in

ABSTRACT

This paper presents the design and implementation of 16-bit floating point RNS Multiply and Accumulate
(MAC) unit. Residue Number System (RNS) gained popularity in the implementation of fast arithmetic
and fault-tolerant computing applications. Its attractive properties such as parallelism and carry free

computation have speed up the arithmetic computations. Floating Point can be represented as E
BM ×

where M is Mantissa, E is the Exponent and B is the Base. The MAC unit consists of three units -
Floating-point multiplier, Conversion unit and an Accumulator. The floating-point multiplier makes use of
Brickell’s Algorithm, the conversion unit makes use of a parallel conversion for the forward conversion
and the Chinese Remainder Theorem for reverse conversion and the accumulator includes an adder unit
which can make use of any of the conventional adders that depends on the moduli of the RNS being used.
The input takes form of half-precision format where there is 1-bit for sign, 5-bits for exponent and 10-bits
for mantissa. The design is coded in Verilog HDL and the synthesis is done using Cadence RTL Compiler.
Keywords: MAC, Residue Number System (RNS), Floating point, Moduli

1. INTRODUCTION

As a result of the rapid advance in communication
and multimedia systems, the signal processing
techniques are highly in demand. The main
components used in Digital signal processor (DSP)
are multiplier, adder and multiplier and accumulator
(MAC) unit. MAC is used extensively in many
applications like convolution and filtering. A basic
MAC architecture consists of a multiplier and
accumulator. The products generated by the
multiplier are added and stored in accumulator.
MAC is the main component in many of the digital
signal processing applications. Hence the
performance of MAC unit plays an important role in
the design of filters which are used in DSP
applications. The performance of MAC can be
increased by the optimized design of multiplier and
adder. Residue number system gained popularity
because of the parallel processing and carry free

arithmetic. A large bit number can be represented in
form of small bit residues and the residues can be
processed in parallel and thus the performance of the
multiplier or adder can be increased. That is because
there is no need of communicating carry information
between two residues [6]. A high speed MAC
capable for handling large range numbers with better
precision will be required for many of the DSP
application. There are two types of arithmetic
operations. They are fixed and floating point
operations. Fixed point number was inefficient for
big number arithmetic. So floating point arithmetic
was invented. Real numbers can be represented as a
floating point number with two parts, mantissa and
exponent. A floating point number is represented as

E
BM × where M is mantissa, B is base and E is

exponent. The floating point representation used
here is a half precision. In this design the input is in
16 bit floating point representation (half precision)

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

459

and the output is in 32 bit floating point
representation (single precision).

The entire paper is divided into five sections. In first
section introduction to MAC, floating point and
RNS is given. In second section Residue Number
System is discussed. Third section provides the
information about the floating point RNS MAC unit
along with the Binary to RNS Converter and RNS to
Binary Converter. Fourth and fifth section explains
about results and conclusions that are obtained
respectively.

I. Residue Number System

In recent times Residue Number System is
becoming popular because of its carry free addition
and multiplication capabilities. Since there is no
carry propagation between arithmetic blocks, high
speed processing can be obtained. RNS
representation encodes large numbers into small
residues so that computation can be performed more
efficiently. The arithmetic can be implemented in
parallel for these residues. This ensures that there is
no dependency between each modulo unit. So, the
complexity of the arithmetic units in each modulo
unit is reduced. Here we need some extra hardware
for converting binary to residue and residue to
binary.

The RNS is defined by set of co-primes called
Moduli. The Moduli set is denoted by

}...,,{
321 i

mmmm
, where i

m
 is the ith modulus.

Each integer X can be represented as set of small
integers called residues. This residues are denoted

by
}...,,{

321 i
rrrr

, where ir is the ith residue. Integer
X is divided by each Moduli and corresponding
remainder obtained is taken as residue [3].
Mathematically representation is given by Equation
1.

 ii mXr mod=
 (1)

The MAC unit makes use the special Moduli set,

}12,2,12{ +−
nnn

 that is taken to be a low-cost
moduli set and improves the performance of the
unit. For binary to RNS conversion the Moduli set

we have chosen is
}12,2,12{ +−

nnn

, where n is
decided based on the number of bits of the input
binary number. By making use of these Moduli a
particular binary number can be converted into
corresponding residues. This set of Moduli makes
the forward conversion process fast and simple. In

general, forward converters based on these Moduli
set are the most efficient converters.

2.ARCHITECTURE OF FLOATING POINT

RNS MULTIPLIER AND ACCUMULATOR

UNIT

The modules that are required for implementing a
Floating Point RNS MAC are Binary to RNS
Converter, Modulo Adder, Modulo Multiplier, RNS
to Binary Converter and Accumulator. The block
diagram for the MAC unit is shown in Fig 1.
Floating point multiplication involves multiplication
of mantissa and addition of exponent. So, Floating
Point in residue domain includes a RNS modulo

multiplier for mantissa and RNS modulo adder for
exponent. The block diagram of Floating point RNS
multiplier is shown in Fig. 4.

Fig. 1. Block Diagram Of Floating Point RNS MAC Unit

Basically floating point inputs are given as Mantissa
and Exponent. The input to the MAC is in half-
precision (16-bit) notation as shown in Fig. 2 and the

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

460

output of MAC is in single precision (32-bit)
notation as shown in Fig. 3. The sign bit indicates
whether the number is positive (sign bit=0) or
negative (sign bit=1). Exponent is biased exponent
and the mantissa is in normalized form.

Sign (1-bit) Exponent (5-bit) Mantissa (10bit)

Fig. 2. 16-bit Floating Point Representation

Sign (1-bit) Exponent (8-bit) Mantissa (23-bit)

Fig. 3. 32-bit Floating Point Representation

The flow of operations for Floating point RNS MAC
unit is as follows:

1. The unbiased Exponent is converted to
biased by adding 15 (this value depends on number
of bits used to represent exponent). This biasing is
done to ensure that the Exponent is unsigned.

2. The Mantissa and biased Exponent is
converted to Residue Number System. In RNS,
based on the moduli, residues are obtained.

3. For multiplication, the Mantissa should be
multiplied and Exponent should be added. For this,
an RNS Mantissa modulo multiplier and RNS
Exponent modulo adder are used.

4. Using accumulator the products are added
and saved.

A. Floating Point RNS Multiplier

Floating point multiplication involves multiplication
of mantissa and addition of exponent. Floating Point
in residue domain includes a RNS multiplier for
mantissa and RNS modulo adder for exponent.
There are different methods for multiplication in
residue domain – look up tables, array of adders and
combination of look up tables and adders. For large
number of bits the delay and area of residue array
multiplier is preferred [2]. The block diagram of
Floating point RNS multiplier is shown in Fig. 4.
For residue multiplication Brickell’s algorithm is
used.

Fig. 4. Block Diagram of Floating Point Multiplier

The Brickell’s algorithm is as follows:

1. Initialize accumulator to 0. For 0=i to
1−N where N is no of bits of multiplier.

2. Double the contents of accumulator and
add partial products to it.

3. Partial products are obtained by AND
operation of Bi and A where A is multiplicand and
Bi is ith bit of multiplier.

4. Check the contents of accumulator (acc), if

acc > i
m

 , then acc = acc - i
m

acc > 2 i
m

 , then acc = acc - 2 i
m

 Where i
m

 is the modulus

The exponents are added in residue domain. The
addition in residue domain is done by RNS modulo
adder. The algorithm of RNS modulo adder is as

follows. Let iii
bac +=

mod i
m

 where i
a

 and i
b

are the residues and i
m

 is the modulus, then

i
c

 = i
a

 + i
b

 , if i
a

 + i
b

 < i
m

i
c

 = i
a

 + i
b

- i
m

 , if i
a

 + i
b

 >= i
m

In order to perform modulo M addition the
architecture in Fig. 6 is used [4], the adder structure
which we have used here is a Parallel Prefix adder
called Kogge-stone adder.

B. Binary to RNS Converter

The data available will be in the form of binary. In
order to process in RNS, the binary data has to be
converted into RNS. The process of converting
binary data into RNS is referred to as the forward
conversion. The forward converter must be area,
power and speed efficient. After the data is being
processed through modulo processing units of RNS,
they must be converted back to their conventional
representations. The process of converting back into
the conventional representations is referred to as
backward conversion.

The forward conversion can be for an arbitrary
Moduli set or special Moduli set [3] [8], the special
Moduli set used in this paper include

}12,2,12{ +−
nnn

 where n is decided based on the
number of bits of the input binary number. Since the
exponent is of 5-bits, the Moduli set required for the

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

461

exponent is {3, 4, 5} which enables to represent 0 to
25-1 in the RNS form. Similarly, as the mantissa is
of 10bits, the Moduli set considered is {255, 256,
257} which gives the RNS representation for
numbers from 0 to 210-1. These special Moduli set
are considered for the RNS operation because they
make the system fast and simple along with being
efficient [3] [8]. In order to obtain the residue of an
input binary number with respect to a certain
Moduli, the distributive property of the addition in
RNS is taken into consideration i.e.,

mmmm YXYX |||||||| +=+

(2)

Consider a binary number X given by X = xn-1xn-

2....x1x0 which can be given as

∑
−

=

=

1

0

2
n

j
j

j
xX

The modulus of the binary number using equation
(1) gives,

∑ ∑
−

=

−

=

==

1

0

1

0

||2|||2|||
n

j

n

j
mmj

j
mj

j
xxX

Where xj can be either 0 or 1.

This paper includes a parallel method of forward
conversion of the input binary block. Binary to RNS
converter architecture is given in Fig.5. The input
binary number is divided into 3 blocks each of ‘n’
bits. Thus, if a given binary number X is divided

into blocks, 321
,, BBB

, then we have,

∑
−

=

=

1

0

2

n

j
j

jB
BX

Hence, we can have,

m
X ||

=
∑
−

=

=

1

0

|2|
n

j
mj

jB
B ∑

−

=

1

0

||2||
n

j
mmj

jB
B

Fig. 5.Binary to RNS Converter for moduli set

}12,2,12{ +−
nnn

 Due to the usage of a special moduli set,

}12,2,12{ +−
nnn

, the number to be converted to
RNS is divided into three blocks each of ‘n’ bits.

The three blocks 321
,, BBB

 are represented as given
below.

∑
−

=

−

=

13

2

2

1
2

n

nj
j

nj
xB

∑
−

=

−

=

12

2
2

n

nj
j

nj
xB

∑
−

=

=

1

0

3
2

n

j
j

j
xB

Thus, the input binary number, X can be given in
terms of the blocks as,

32

2

1
22 BBBX
nn

++=

Then the residues can be obtained as follows,

=
1
r 12321

||
−

++ nBBB

=
2
r

3
B

=
3
r 12321

||
+

+− nBBB

The overall architecture of Binary to RNS converter
architecture is given in Fig. 5. In this for calculating

residue 1
r

, blocks 2
B

and 3
B

 are first added using

modulo 12 −
n

adder and then the result is added with

the block 1
B

using same modulo 12 −
n

adder, where

as for calculating residue 3
r

, block 3
B

 is added with

the 2’s compliment of block 2
B

 using modulo 12 +
n

adder and then the result is added with the block 1
B

using same modulo 12 +
n

adder. The residue 2
r

, is

just same as block 3
B

of the input binary number X
[8].

C. Modulo-M Adder

The modulo-m adder forms the basic arithmetic unit
for any RNS operation or RNS conversion. The
basic modulo-m adder architecture is given in Fig. 6.

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

462

According to it, the modulo-m addition is done as
follows

m
YX || +

= 



≥+−+

<++

mYXmYX

mYXYX

:

:

Fig. 6. Modulo-M adder architecture [4]

The adder structure can be any conventional adder
that can be used like a ripple carry adder (RCA), a
carry look ahead adder or any parallel prefix tree.
Here we make use of a Kogge-stone adder as shown
in Fig. 7.and Fig. 8. Since we are providing mantissa
and exponent binary inputs separately, they should
be converted separately using the moduli mentioned
for them respectively. When a 5-bit binary exponent
is converted into RNS using moduli set {3, 4, 5}
then the residues each of 3-bit is obtained. So we are
considering a 3-bit Kogge-Stone adder in Fig.7.
Similarly when a 10-bit binary exponent is
converted into RNS then the residues each of 9-bit is
obtained. So for this we are considering 9-bit
Kogge-Stone adder in Fig. 8.

Fig. 7. 3-bit Kogge-stone adder

Fig. 8. 9-bit Kogge-stone adder

D. RNS to Binary Converter

RNS to binary conversion is the bottle neck in using
RNS. RNS to Binary conversion is based on two
algorithms. They are mixed radix conversion (MRC)
and Chinese remainder theorem (CRT) [4]. MRC is
sequential whereas CRT is parallel. The design of
modulo M adder in the final stage of CRT is design

bottleneck of it. In this paper CRT algorithm is used
for conversion of RNS to binary.

The mathematical equations for CRT are as follows.

Given a set of moduli
}...,,{

321 i
mmmm

and the

residues are
}...,,{

321 i
rrrr

, then binary number X is
given as

∑
=

−

=

n

i

Miii
MMrX

1

1 ||

Suppose we have three moduli set
},,{

321
mmm

then,

,
**

1

321

1
m

mmm
M = ,

**

2

321

2
m

mmm
M =

3

321

3

**

m

mmm
M =

Now
1−

i
M

can be obtained from following equations

,1|*|
1

1

1
=

−

MM ,1|*|
2

1

2
=

−

MM ,1|*|
3

1

3
=

−

MM

Where 321
** mmmM =

 So CRT requires three main processes.

1) Calculating i
M

 and inverses	|��

��|�� .

2) Multiplying i
M

 and inverses with residues
and accumulating it.

3) Modulo
M

 adder as the final stage.

II. Results

The design is developed using Verilog HDL,
simulated using Altera ModelSim and synthesized
using Cadence RTL Compiler. The simulation
results of 16 bit floating point RNS fig 1 MAC unit
are shown in Fig. 9. The MAC performs signed

Fig. 9. Simulation Results for 16-bit Floating Point
RNS MAC Unit operations. The simulation result
shows the output for both positive and negative
floating point numbers. The synthesis results are
tabulated in Table I. The speed of floating point
MAC in [9] was found to be 500MHz. While
comparing [9] with the proposed MAC unit, the time
for MAC is 1.6ns and thus the speed is 800.11MHz.
So an increase of 25% is obtained. This is being
shown in Fig 10.

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

463

Table I. Synthesis Results for 16-bit Floating Point

RNS MAC Unit

Power (mW) Timing (ns) Area (µm
2
)

6.87 1.6 83873.44

Fig 10. Speed Comparison of Proposed with [9]

6. CONCLUSION

The 16 bit MAC unit is designed in Verilog HDL
and implemented in Altera ModelSim and
synthesized in Cadence TSMC 45nm technology.
By using Residue Number System parallel and carry
free arithmetic’s can be obtained. The large number
is represented in the form of residues. So addition
and multiplication is performed parallely on all the
residues. Thus arithmetic is performed in a faster
rate. Thus 16-bit Floating Point RNS MAC unit is
found to be of efficient.

REFRENCES:

[1] Behrooz Parhami, “Computer arithmetic-
Algorithms and hardware designs”, Oxford
University Press, 2000.

[2] C.-L. Chiang and L. Johnson, “Residue
arithmetic and VLSI,” IEEE International
Conference on Computer Design: VLSI in
computers, 1983.

[3] Ghosh, S. Singha, and A. Sinha, “Floating point
RNS: a new concept for designing the MAC
unit of digital signal processor,” SIGARCH
Comput. Archit. News, vol. 40, no. 2, pp. 39–
43, May 2012.

[4] M. Dugdale, “VLSI implementation of residue
adders based on binary adders,” Circuits and
Systems II: Analog and Digital Signal
Processing, IEEE Transactions on, vol. 39, no.
5, pp. 325–329, 1992.

[5] Taylor.F, “Residue arithmetic a tutorial with
examples,” Computer, vol. 17, no. 5, pp. 50–
62, 1984.

[6] Kinoshita, H. Kosako, and Y. Kojima,
“Floating-point arithmetic algorithms in the
symmetric residue number system,”
Computers, IEEE Transactions on, vol. C-23,
no. 1, pp. 9–20, 1974.

[7] R. Amos Omondi, Benjamin , “Residue Number
Systems: Theory and Implementation,”
Imperial College Press, 2007.

[8] Strenski, D., Cappello, J.D.; "A practical
measure of FPGA floating point acceleration
for High Performance
Computing," Application-Specific Systems,
Architectures and Processors (ASAP), 2013
IEEE 24th International Conference on , vol.,
no., pp.160,167, 5-7 June 2013

[9] Dhanabal R,,Bharathi V,Saira Salim, Bincy
Thomas, Hyma Soman, Dr Sarat Kumar Sahoo
“DESIGN OF 16-BIT LOW POWER ALU -
DBGPU “ ,International Journal of
Engineering and Technology (IJET) 2013.

[10] R Dhanabal,V Bharathi, Anand N, George
Joseph, Suwin Sam Oommen, Dr Sarat Kumar
Sahoo ,"Comparison of Existing Multipliers
and Proposal of a New Design for Optimized
Performance " ,International Journal of
Engineering and Technology (IJET) 2013.

[11] R Dhanabal, Ushashree, “Implementation of a
High Speed Single Precision Floating Point
Unit using Verilog" ,International Journal of
Computer Applications (0975 – 8887),2013.

0

0.5

1

1.5

2

Proposed

MAC

MAC in [9]

Timing (ns)

