

Open access • Journal Article • DOI:10.1016/J.ALGAL.2015.11.016

Implementation of flocculation and sand filtration in medium recirculation in a closed microalgae production system — Source link 🖸

Jorien Fret, Luc Roef, Ludo Diels, Serge Tavernier ...+2 more authors

Institutions: Ghent University

Published on: 01 Jan 2016 - Algal Research-Biomass Biofuels and Bioproducts (Elsevier)

Topics: Microfiltration, Filtration, Flocculation and Fouling

Related papers:

- · Harvest of Scenedesmus sp. with bioflocculant and reuse of culture medium for subsequent high-density cultures
- Influence of culture medium recycling on the performance of Arthrospira platensis cultures
- Water use and its recycling in microalgae cultivation for biofuel application.
- Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture
- Effect of harvesting methods on the reusability of water for cultivation of Chlorella vulgaris, its lipid productivity and biodiesel quality

This item is the archived peer-reviewed author-version of:

Implementation of flocculation and sand filtration in medium recirculation in a closed microalgae production system

Reference:

Fret J., Roef L., Diels Ludo, Tavernier Serge, Vyverman W., Michiels M..- Implementation of flocculation and sand filtration in medium recirculation in a closed microalgae production system Algal Research - ISSN 2211-9264 - 13(2016), p. 116-125 Full text (Publisher's DOI): http://dx.doi.org/doi:10.1016/J.ALGAL.2015.11.016 To cite this reference: http://hdl.handle.net/10067/1300330151162165141

uantwerpen.be

Institutional repository IRUA

- 1 Title: Implementation of flocculation and sand filtration in medium recirculation in a
- 2 closed microalgae production system
- 3 Authors: J. Fret^a, L. Roef^a, L. Diels^b, S. Tavernier^c, W. Vyverman^d, M. Michiels^a
- 4 Affiliation:
- ³ Proviron NV, G. Gilliotstraat 60, 2620 Hemiksem, Belgium, jorien.fret@proviron.com
- 6 ^b Department of Biology, Faculty of science, Antwerp University, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- 7 ^c Faculty of Applied Engineering Sciences, Antwerp University, Salesianenlaan 90, 2660 Hoboken, Belgium
- 8 ^d Department of Biology, Ghent University, Krijgslaan 281, S8, 9000 Ghent, Belgium
- 9 Abstract

10	Recycling growth medium is a necessity to reduce production cost and ecological foot
11	print of large scale microalgae production systems. To prevent contamination and/or
12	enrichment with particulate matter, medium recycling requires pre-treatment of the
13	centrifuge supernatant (centrate), prior to medium replenishment and re-use. In this
14	study, we investigated the applicability of high pH induced flocculation and/or sand
15	filtration to interface with an existing microfiltration setup in order to prepare recycled
16	growth medium for the mass cultivation of marine microalgae. Sand filtration partly
17	alleviated the burden on subsequent microfiltration, but proved to be particularly
18	useful to remove high pH induced flocs from the centrate. Combination of both
19	techniques resulted in a removal of 78 \pm 18% of particles, resulting in an improvement
20	of 'modified fouling indices' by 75 \pm 19%. Despite a partial to complete removal of
21	remaining nutrients such as phosphate, calcium and magnesium during treatment, a
22	cost saving of 72% compared to a scenario with fresh medium can be achieved.

23 Highlights

- 24 Characterisation of flocculation and sand filtration of centrifuge supernatant
- 25 Optimal combination of flocculation and sand filtration was established
- 26 Pre-treatments enable sustainable recirculation of spent microalgae growth medium
- 27 *Keywords:* Microalgae, flocculation, sand filtration, medium recycling

28 1. Introduction

29	In order to tap into the enormous potential of microalgae as resource for bulk biofuel,
30	feed/food and chemical applications, substantial reduction in production cost is
31	needed [1]. Recycling culture broth is key to further decrease these costs [2], especially
32	in cases where final applications call for the use of more expensive feed or food grade
33	ingredients. At present, centrifugation is the most commonly used method for
34	harvesting microalgae. Due to the limited separation efficiency inherent to the
35	technique, a fraction of particles present in culture broth, including intact and broken
36	algae cells, bacteria, and other debris are retained in the centrifuge supernatant
37	(centrate). While in principal, this centrate could be reused as growth medium after
38	nutrient replenishment [3–5], applying non-treated centrate as culture medium will
39	contaminate and/or eventually enrich the production system with unwanted algae,
40	protozoan grazers, cell debris and bacteria under normal field operating conditions.
41	Therefore a recycling scheme for culture medium calls for post-treatment of the
42	centrate prior to medium replenishment and re-use. At present, no practical post-
43	treatment process is available that can feed into a microfiltration unit such as the one
44	that is currently operated by us to provide sterile media to Proviron's ProviAPT™
45	production system. De Baerdemaeker et al. [6] reported that during microfiltration of
46	centrate heavy fouling occurs which results in a severe loss of permeability. Dissolved
47	algogenic organic matter (AOM) including polysaccharides, proteins and humic acid-
48	like organics [7], are reported to cause substantial membrane fouling during
49	microfiltration (MF) [8], ultrafiltration (UF) [9,10] and nanofiltration (NF) [11]. Pre-
50	treatments prior to membrane filtration which decrease the concentration of both

suspended solids and dissolved AOM of the centrate are therefore needed to reducethe load on the membrane and thus prolong its lifespan.

53	Coagulation pre-treatment using metal salts, such as aluminium and iron is commonly
54	applied to control fouling in MF or UF systems [12,13] by removing both particulate
55	and dissolved materials [14]. For our purpose, high pH induced flocculation is an
56	attractive alternative because it is low-cost and is low in energy consumption.
57	Furthermore, it is non-toxic [15], a prerequisite for further use of the cleared medium.
58	The technique was found effective for harvesting microalgae [16,17]. Both NaOH and
59	hydrated lime, $Ca(OH)_2$, are suitable to increase pH in a controlled manner [18].
60	Presence of AOM, however, interferes with the process [19], resulting in the need of a
61	higher pH to induce flocculation [20]. In this study the applicability of high pH induced
62	flocculation of centrate was investigated.
63	Sand filtration is frequently used as a cheap, easy and robust technique to remove
64	suspended solids from water. The method has a broad application in the water
65	treatment field, where it has proved its efficacy [21]. A few studies indicated the
66	applicability of sand filtration to separate algae from the liquid broth [22,23]. However,
67	the use of sand filtration as a pre-treatment technique to polish centrate has not been
68	investigated previously. In this study the efficiency of sand filtration to eliminate
69	suspended solids from the centrate prior to membrane filtration was researched.
70	Rapid sand filtration is usually preceded by coagulation, flocculation and/or
71	sedimentation to increase its removal efficiency. Therefore, implementation of both
72	techniques at optimum settings in a linked setup was also studied in order to assess

- vhich (combination of) approaches can be used in a large scale installation to reduce
- 74 fouling and increase MF performance (shorter filtration times, longer filter lifespan).

75 2. Materials and methods

- 76 2.1. Algae cultivation centrate collection
- The centrate used in this study was obtained from a *Nannochloropsis* sp. culture
- cultivated semi-continuously in a 12 m³ module of an outdoor production system of
- 79 the ProviAPT[™] photobioreactor [24,25] (Fig 1).

- 81 Fig 1: View of a ProviAPT[™] microalgae production plant of 48 m³ culture volume
- 82 The growth medium consisted of artificial seawater supplemented with nutrients in
- concentration ratios derived from the *f* formulation [26]. The seawater was prepared
- using a refined sea salt mixture (Zoutman Industries, Belgium) to obtain a salinity of 26
- g L⁻¹. After addition of nutrients, the medium was filtered (0.2 μ m, KrosFlo[®],
- 86 Spectrum[®], USA) prior to pumping to the reactors. Algae were harvested daily and
- 87 dewatered using an automated desludging disc centrifuge (SSD 18-06-007, GEA
- 88 Westfalia, Germany), yielding an algae paste and a supernatant, the centrate. The

89	density of the harvests which provided the used media, ranged from 1.2 to 3.1 g L^{-1} .
90	These centrates were, in turn, characterized by dry weight and optical density. In
91	addition, macronutrient concentrations of the centrates were determined.
92	Magnesium, calcium and trace elements were only measured of selected centrates
93	(2.5 Analysis).
94	2.2. General setup of flocculation experiments
95	High pH induced flocculation was investigated using conventional jar test experiments
96	[27]. Centrate was divided in 200 mL portions in 1 L beakers and mixed using a
97	magnetic stirrer. The pH was adjusted to five different levels ranging from 9.5 up to
98	11.5 with a 0.5 interval by addition of 1 M NaOH or $Ca(OH)_2$. The amount of alkali
99	needed to obtain the desired pH was recorded. Samples were stirred at 300 rpm for 10
100	minutes following pH adjustment. Next, solutions were allowed to settle for 60
101	minutes after which a 1 mL sample was collected from the centre of the clarified zone.
102	The flocculation efficiency η_a was determined based on the decrease in optical density
103	of the cleared centrate as suggested by Vandamme et al. [27]:
104	$\eta_a = \frac{OD_i - OD_f}{OD_i}$
405	

where OD_i is the optical density of the solution after sedimentation without pH
adjustment (control), and OD_f is the optical density of the suspension after flocculation
and settlement. Next, a 15 mL sample was taken from the cleared upper part of the
solutions to investigate nitrate and phosphate removal. Remaining quantities were
then stirred again and equivalent samples were taken from the blended mixtures. Both
types of samples were neutralised with 2 M HCl and the amounts of acid required to

(1)

reach their initial pH values were recorded. To assess improvement of filterability, the
modified fouling index (MFI) was determined of selected samples from the upper part
of flocculated solutions and of blended mixtures. At the end of the flocculation
experiment, the morphology of settled flocs was documented using a BX51 Olympus
microscope with differential interference contrast (DIC) fitted with an E410 Olympus
camera.

117 Furthermore, calcium and magnesium removal from representative samples was calculated. The removal of trace elements due to flocculation was also investigated to 118 119 determine the need for replenishment prior to reusing the medium. To this end, 120 samples were taken from the top layer of NaOH flocculated centrate and, after neutralisation, elemental composition was determined. A chemical equilibrium model 121 122 (Visual MINTEQ 3.0 [28]) was used to predict the theoretical manifestation and 123 speciation of precipitates in standard medium with pH increase. 124 2.3. General setup of sand filtration experiments The sand filter was constructed of a polyvinyl chloride column of 1 m with inner 125 126 diameter of 45.2 mm. At the top and the bottom of the column a 3-way ball valve was installed to allow performing a backflush rinsing. After the top and prior to the bottom 127

128 valve, a gauge was fixed to observe pressure increase (Fig 2).

130 Fig 2: Experimental setup of the sand filtration unit.

Sand with two different grain sizes was used to fill the column. 'Coarse' sand had a 131 132 diameter between 250 and 500 µm, while 'fine' sand had a median particle size (Dv50) 133 of 170 µm. Sabiri et al. [22] suggested a bed height of 40 cm to obtain a stable removal 134 efficiency. In this study, the bed was packed with 35 cm of coarse sand and 5 cm of fine sand on top to improve separation efficiency. Preliminary experiments indicated 135 that a higher sand bed of fine sand resulted in rapid blockage of the filter, decreasing 136 137 the flow drastically. Before filtration, the bed was completely fluidized by backwashing with water to 138 139 remove air bubbles from the system and to allow sand particles to redistribute according to velocity. Next, particles settled by sedimentation with the finer particles 140 141 located in the upper section of the bed while larger ones were found at the bottom. 142 Remaining water was evacuated through the bottom valve, resulting in a slight

- 143 compaction of the sand bed. During filtration, the water flowed in a downward
- direction through the fixed bed using a demand spray pump (RLF122202, Flojet). The

145 inlet flow was regulated using an adjustable power supply and voltage was maintained 146 constant during filtration. The increase in height of the water column above the sand 147 bed was tracked throughout. At the outlet 50 mL samples were taken every five 148 minutes for further analysis. Between the five minute intervals, the exhaust flow rate was determined. Afterwards, optical density of the permeate samples was measured 149 150 and filtration efficiency calculated, similar to the flocculation efficiency. Next, as 151 recycling of permeate after sand filtration is the final goal, nitrate and phosphate 152 concentrations were measured to evaluate their retention. Calcium and magnesium were also measured before and after sand filtration. Furthermore, MFI's of selected 153 154 samples were compared to the control to assess improvement of filterability. After 155 each filtration run, the sand bed was backflushed with tap water until the overflow 156 was clear.

157 2.4. Centrate clearing by means of combined flocculation – sand filtration

158 To improve the separation efficiency of the sand filtration, flocculation of the centrate was implemented as a pre-treatment. Both NaOH and $Ca(OH)_2$ were used to alter the 159 160 pH of 15 L centrate portions to 10.5 and 11.5 prior to sand filtration. After pH 161 adjustment, centrates were mixed on a magnetic stirrer (1200 rpm) for 10 minutes to allow aggregates to form. During filtration over the sand bed, the inlet solution was 162 163 continuously stirred gently to provide a homogenous mixture (Fig 2). Filtration, 164 sampling and analysis were performed similar to the sand filtration experiments. After filtration of flocculated centrate, the bed was backflushed with neutral or acidified 165 water (pH 2.2). 166

2.5. Analysis of centrate composition

168	Centrate was characterised by the amount of suspended solids, which were
169	determined gravimetrically. Aliquots of 20 mL centrate were filtered through pre-
170	weighed, pre-dried A/C glass-fiber filters (pore size 1 μ m, Pall, USA). Subsequently,
171	filters were rinsed with an equal amount of 0.5 M ammonium formate to remove
172	interfering salts. Next, the filters were dried overnight at 110 °C until constant weight
173	to calculate the dry weight.
174	Flocculation and sand filtration efficiency was assessed based on optical density
175	measured as the absorbance at 550 nm in a UV-VIS spectrophotometer (Cary 50 Conc,
176	Agilent Technologies).
177	Nutrient concentrations were determined following the procedures described in the
178	Standard Methods [29] after filtration of the samples (0.2 μ m). The analysis of nitrate
179	is based on the absorbance at 220 and 275 nm in an acid environment ([29], method
180	No. 4500 B Nitrate). The ascorbic acid method was applied to determine the amount of
181	reactive phosphates ([29], method No. 4500-P E). Meanwhile, determination of salt
182	cations (Mg and Ca) was conducted with an atomic absorption spectrophotometer
183	(AAS), while quantification of trace element concentrations was conducted with a
184	high-resolution inductively-coupled plasma mass-spectrophotometer (HR-ICP-MS).
185	2.5.1. Modified fouling index (MFI) assessment
186	The modified fouling index (MFI) was used as a tool to assess the fouling potential of

187 the centrate. The MFI is determined by a constant-pressure dead-end filtration process

188	and was originally defined as an index of the fouling potential of reversed osmosis feed
189	water by Schippers and Verdouw [30]. The time required to filter a fixed volume of 500
190	mL through a standard 0.45 μm microfiltration membrane with a diameter of 47 mm
191	(PES Supor [®] -450, Pall, USA) under constant pressure (200 kPa) dead-end filtration
192	mode is registered. The samples were diluted 200 times in reversed osmosis water of
193	which the pH was adjusted corresponding to the pH of the sample. The cumulative
194	permeate volume and filtration time is recorded. Next, the obtained data were fit in
195	commonly used models to analyse the membrane filtration process [31], described by
196	equation (2)-(5).

197
$$\frac{\mathbf{d}(\mathbf{V})}{\mathbf{dt}} = \mathbf{J}_0 - \mathbf{k}_b \cdot \mathbf{V}$$
(2)

198
$$\frac{t}{v} = \frac{1}{J_0} + \frac{k_s}{2}t$$
 (3)

199
$$\frac{dt}{d(V)} = \frac{1}{J_0} + \mathbf{k}_i \mathbf{t}$$
(4)

$$200 \qquad \frac{\mathrm{t}}{\mathrm{v}} = \frac{1}{\mathrm{J}_0} + \frac{\mathrm{k}_{\mathrm{c}}}{2} \cdot \mathrm{V} \tag{5}$$

1(11)

In these equations, t is filtration time, V is the cumulative permeate volume, J₀ is the
initial flux, while kb, ks, ki and kc (i.e., the above mentioned MFI) are the coefficients of
complete blocking, standard blocking, intermediate blocking, and cake filtration
models respectively. Modified fouling indices were derived from the model which
showed the best fit and used to compare the filterability of the samples. By
distinguishing which model showed the best fit, additional information about the
reigning filtration modus was obtained.

209 3. Results and discussion

- 210 *3.1. Centrate clean-up by flocculation*
- 211 3.1.1. Efficiency of NaOH and Ca(OH)₂ promoted flocculation of centrate
- 212 The applicability of flocculation of exhaust medium was investigated using three
- 213 different centrates (Table 1).

Table 1. Characteristics of three centrates used to test flocculation. Measurements were performed in duplo (n = 2).

Centrate number	Dry weight	P concentration	N concentration	OD
	particulate matter			
	(g L⁻¹)	(μM)	(mM)	(Abs 550nm)
1	0.27 ± 0.03	2.1 ± 0.1	0.42 ± 0.04	0.84 ± 0.02
2	0.23 ± 0.08	59 ± 2	1.29 ± 0.08	0.63 ± 0.02
3	0.15 ± 0.04	706 ± 14	2.56 ± 0.03	0.48 ± 0.02
Fresh medium	-	1700	25	-

²¹⁶ Both flocculation efficiency and filterability, determined as MFI's, increased

applied in order to flocculate centrate and improve its filterability. Acquired filtration

220 data fitted best with the standard blocking and cake filtration model [31] (

Table 2). Merely based on flocculation efficiency and improvement of filterability, one

would be inclined to use Ca(OH)₂ flocculation at highest pH of 11.5 to flocculate

223 centrate.

significantly with increasing pH (ANOVA, P<0.01), as illustrated in Fig 3 and

²¹⁸ Table 2 respectively. Hence, augmentation of pH with either NaOH or Ca(OH)₂ can be

Fig 3: Flocculation efficiency versus pH for two different alkali species. Centrates 1
 and 2 were investigated.

227 Table 2: MFI's ks and kc of flocculated centrate (n=2) using two different alkali

species on centrates 1 and 2.

Alkali	рН	ks	kc
		(m ⁻¹)	(s·m⁻²)
NaOH	control	1.92 ± 0.03	9E+03 ± 1E+03
	9.5	1.91 ± 0.02	7E+03 ± 4E+03
	10.5	1.84 ± 0.06	3E+03 ± 2E+03
	11.5	0.21 ± 0.04	17 ± 4
$Ca(OH)_2$	control	1.91 ± 0.02	5E+03 ± 3E+02
	9.5	1.88 ± 0.02	6E+03 ± 1E+03
	10.5	1.6 ± 0.4	3E+3 ± 4E+03
	11.5	0.3 ± 0.1	3E+01 ± 2E+01

229

230 The MFI's of stirred flocculated solutions were also measured. Due to the aggregation

231 of suspended particles, the filtration mechanism changed from standard blocking

towards cake filtration. The ks and kc indices of centrates flocculated at pH of 11.5 (ks

of 5.0 ± 0.2 and kc of $9 \cdot 10^3 \pm 5 \cdot 10^3$) were significantly lower compared to control

indices (ks of 6.5 ± 0.4 and kc of $4 \cdot 10^4 \pm 2 \cdot 10^4$) (ANOVA, P<0.01). Thus, filterability of

centrate flocculated at high pH was improved even without removal of flockedparticles.

237 These results suggest the feasibility of flocculation to improve filterability of the

238 centrate. However, flocculation at intermediate alkaline pH did not yield consistent

239 efficiencies when centrate features changed. Furthermore, divergent efficiencies were

240 obtained when different alkalis were used.

241 3.1.2. Implication of NaOH or $Ca(OH)_2$ utilization

A pH increase induced by addition of Ca(OH)₂ resulted in significantly higher

243 flocculation efficiencies (ANOVA, P<0.01) compared to NaOH flocculation (Fig 3 and

Table 3). This effect was pronounced at slightly to moderately alkaline pH's, where

calcium phosphate precipitation is known to induce flocculation [20]. On the one hand,

246 Ca(OH)₂ flocculation caused a higher phosphate removal at slightly to moderately

247 alkaline pH values (Table 3). This result suggests that Ca(OH)₂ flocculation caused

248 higher calcium phosphate precipitation compared to NaOH flocculation, inducing

249 better removal of organic substances.

250 Similar results were obtained by Castrillo et al. [32] when comparing the use of

251 Ca(OH)₂ and NaOH to flocculate microalgae. Yet, these authors also noted the

formation of calcium carbonate precipitates with Ca(OH)₂ flocculation which ended up

in the flocculated pellet [32]. Similarly, microscopic analysis demonstrated the

appearance of rather large calcium carbonate crystals in the flocs at slightly to

255 moderately alkaline pH values (Fig 4). The formation of calcium carbonate crystals is

256 likewise suggested by a much higher calcium removal in relation to phosphate

257	compared to the 5:3 M Ca:P stoichiometry of hydroxyapatite (Ca ₅ (PO ₄) ₃) which was
258	believed to precipitate during flocculation (modelled with Visual MINTEQ, [33,34]).
259	These crystals can enhance sweep flocculation, contributing to the higher removal
260	rates obtained by $Ca(OH)_2$ flocculation. Since removed phosphate concentrations are
261	three orders of magnitude smaller than the amounts of removed calcium, precipitation
262	of calcium carbonate is likely to have a much higher influence on the flocculation
263	efficiency at slightly to moderately alkaline pH values. A higher $Ca(OH)_2$ requirement
264	to raise the pH to equivalent values compared to NaOH (see section 3.1.3), however,
265	dissision at the advantage of the bights offician size achieved

265 diminishes the advantage of the higher efficiencies achieved.

Table 3. Influence of alkali species, phosphate concentration and pH on flocculation

267 efficiency, calcium removal and phosphate removal. Removals are expressed as

268 changes in molar concentration. Calcium removal is calculated as the difference

269 between the remaining dissolved calcium after flocculation and the initial

270 concentration supplemented with the added $Ca(OH)_2$ (if applied).

271

Alkali	Phosphate start concentration	Calcium start concentration	рН	Flocculation efficiency	Remaining calcium	Remaining phosphate
	(μM)	(mM)		(%)	(mM)	(μM)
NaOH	3 ± 1	1.97 ± 0.06	9.5	2 ± 2	1.1 ± 0.2	2 ± 2
			10.5	10 ± 8	0.32 ± 0.02	2.5 ± 0.5
			11.5	89 ± 2	0.19 ± 0.06	0.2 ± 0.2
	364 ± 14	1.97 ± 0.06	9.5	10 ± 3	1.5 ± 0.1	193 ± 27
			10.5	40 ± 3	0.39 ± 0.05	28 ± 20
			11.5	90 ± 1	0.23 ± 0.06	3 ± 3
Ca(OH)₂	4 ± 4	9.47 ± 0.06	9.5	13 ± 3	1.54 ± 0.02	1 ± 0.6
		16.9 ± 0.06	10.5	43 ± 14	0.8 ± 0.1	0 ± 0.1
		39.47 ± 0.06	11.5	92 ± 4	6.6 ± 0.1	-0.06 ± 0.06
	371 ± 4	8.22 ± 0.06	9.5	24 ± 4	0.99 ± 0.02	71 ± 27
		16.97 ± 0.06	10.5	64 ± 5	0.92 ± 0.03	4 ± 3
		39.47 ± 0.06	11.5	92 ± 4	6.8 ± 0.4	0.2 ± 0.2

Fig 4. DIC image of Ca(OH)₂ flocculated aggregates at pH 10 containing crystals

275 3.1.3. Chemicals consumption in response to pH increase

276	Fig 5 shows the	pH increase relativ	e to the amount o	of added h	ydroxide. T	he obtained
-----	-----------------	---------------------	-------------------	------------	-------------	-------------

- 277 curves resemble titration curves of a weak acid with a strong base. Hence, to obtain a
- pH value above 11 disproportionally large amounts of alkali are required. Due to the
- lower dissociation constant of Ca(OH)₂, a 1.6 times higher dosage on average is needed
- to obtain the same pH in comparison with NaOH. Depending on the chemical used,
- sodium or calcium ions were also added to the centrate. To obtain a pH of 10.5, 15.2
- 282 mM sodium is added which is equivalent to 3.8% of the original medium
- concentration. However, 29.3 mM of calcium is added as Ca(OH)₂ to obtain a pH of
- 10.5 which corresponds to 861% of the medium concentration. During the flocculation
- 285 process, calcium phosphates and carbonates will precipitate and part of the excess
- 286 calcium will disappear again from the medium.

Fig 5. Increase in pH as a function of hydroxide concentration added in the form of NaOH or Ca(OH)₂

290 To enable recycling of the medium, cleared centrate requires neutralisation. Addition of equimolar amounts of H⁺ restores the pH value of stirred NaOH flocculated centrate 291 292 (Fig 6). Since OH⁻ ions partake in the formation of crystals and flocs, they are removed from the centrate after flocculation. Consequently, the H^+ requirement to neutralise 293 294 the cleared solution is reduced 4.8 times on average. Neutralisation with HCl adds a 295 maximum relative amount of salt of 14% to the standard concentration. This means 296 that even under the most thorough flocculation conditions a continuous recycle of 87.7% can be maintained without increase in salinity. 297

298

Fig 6: OH⁻ and H⁺ requirement for respective alkalinisation and subsequent
 acidification of centrate that was either stirred or filtered upon flocculation. OH⁻ was
 added as NaOH and H⁺ as HCI.

3.1.4. Influence of phosphate concentration on flocculation

304 Flocculation of microalgae has been shown to depend on the presence of relatively high concentrations of phosphate in the medium [20]. In addition, Bernhardt et al. [35] 305 showed that even low concentrations of AOM (a few mg C L⁻¹) impaired the 306 307 flocculation process. When AOM is present, flocculation will only occur sufficiently if phosphate concentrations exceed 350 μM and calcium concentrations exceed 500 μM 308 309 [20]. Due to the marine nature of the growth media used in this study, with a calcium 310 concentration of 3.4 mM, the latter condition is fulfilled. Phosphate, however, is a macronutrient which is almost completely consumed during algae cultivation. Two out 311 312 of three tested centrates contained less than 350 μ M of phosphate (Table 1). Supplementation with KH_2PO_4 up to $364 \pm 14 \mu M$ phosphate resulted in significantly 313 higher flocculation efficiencies for NaOH flocculation (ANOVA, P<0.005, Table 3) and 314 an improved filterability of the centrate at moderately alkaline pH values. Since 315

316 Ca(OH)₂ flocculation was already more effective at original phosphate concentrations -

317 supposedly due to the additional formation of calcium carbonates - no significantly

higher removal rates were reached (α =0.05) by this increase in phosphate

319 concentration.

At a pH above 10.5, precipitation of magnesium hydroxides will occur and contribute to the removal of organic substances. Flocculation at high pH is less affected by the increase of phosphate due to the lower relative contribution of calcium phosphate precipitation at these pH values. Thus, adding surplus phosphate is unnecessary to obtain a sufficient flocculation at high pH.

325 Due to the variability of algae cultivation, phosphate concentration of obtained centrates may vary. One of the three centrates tested contained an initial phosphate 326 concentration of 706 μ M and slightly less organic matter (Table 1). Despite the higher 327 328 phosphate concentration, similar flocculation efficiencies were attained compared to 329 flocculation of centrates with a phosphate concentration of 350 μ M (data not shown). 330 Phosphate concentrations higher than 350µM will therefore not contribute to the flocculation efficiency. Moreover, due to the cost and the declining phosphate 331 332 reserves, it is not considered sustainable to add additional phosphate to the medium

- to enhance flocculation. Beukels et al. [20] suggested re-dissolving all precipitated
- 334 phosphate after flocculation by mild acidification. However, adding additional
- 335 phosphate is most preferably avoided.
- 336 *3.1.5.* Nutrient removal caused by alkali induced flocculation

337 Nitrate and phosphate removal

338	As expected, nitrate was not removed from the medium as it does not participate in
339	the flocculation process (overall removal of 0.6 \pm 4.2%). Thus, residual nitrate can be
340	reused entirely. Phosphates, on the other hand, do partake in the flocculation process
341	as mentioned above. Phosphate removal depends on which alkali was used and on
342	initial phosphate concentration (ANOVA, $P<0.05$). Ca(OH) ₂ induced flocculation results
343	in a significantly higher phosphate removal at the respective pH levels applied.
344	Nevertheless, at pH 11.5 most of the phosphate (99 \pm 3% on average) is removed,
345	regardless of the phosphate start concentration, centrate and alkali. Hence, partial or
346	complete replenishment of phosphate is necessary prior to medium reuse.
347	Magnesium and calcium removal
348	As magnesium and calcium contribute to the flocculation process [17,36,37] one can
349	expect them to be removed during the course of it. As displayed in Table 4, magnesium
350	removal is significantly dependent on pH and on the alkali species applied (ANOVA,
351	P<0.001). Ca(OH) ₂ flocculation results in a higher removal. At the concentrations tested
352	phosphate hardly affects magnesium withdrawal. At high pH magnesium hydroxides
353	form. When flocculation is executed at high pH, on average 71 \pm 6% (or 28 \pm 2 mM) of
354	the original magnesium content of fresh medium has to be replenished.
355	At each pH level, calcium removal was significantly dependent on the applied base
356	(ANOVA, P<0.005). These removals, as summarized in Table 4, are calculated by
357	comparing the remaining concentration with the total calcium concentration upon
358	addition of the alkaline chemicals. Especially at a pH of 9.5, the difference in calcium
359	removal between NaOH and Ca(OH) $_2$ flocculation is distinct. It can be attributed to the

360	calcium carbonate formation and higher flocculation efficiency attained with $Ca(OH)_2$.
361	Similar to magnesium, when NaOH is used, on average 93.9 \pm 0.8% (or 3.19 \pm 0.03 mM)
362	of the original calcium will need to be replenished after flocculation at high pH prior to
363	recycling of the growth medium.
364	Use of $Ca(OH)_{2}$ can bring additional calcium to the medium. For instance, despite the
501	
365	high calcium removal, surplus calcium (6.7 \pm 0.2 mM) in comparison to the standard
366	medium concentration (3.4 mM) is present after flocculation at pH 11.5. Under these
367	conditions, calcium will accumulate in the medium during repeated medium reuse
368	cycles. At pH 9.5 and 10.5, calcium removal was sufficient to obtain calcium
369	concentrations which were slightly lower than the standard concentration.

Table 4. Influence of alkali species, phosphate concentration and pH on magnesium and calcium removal during flocculation.

Alkali	Phosphate concentration	рН	Mg removal	Ca removal
	(μM)		(%)	(%)
NaOH	2	9.5	-1.4 ± 0.02	44.5 ± 0.8
		10.5	3.55 ± 0.06	83.63 ± 0.0
		11.5	64.5 ± 0,1	90.4 ± 0.3
	350	9.5	-0.6 ± 0.1	23.4 ± 0.6
		10.5	5.7 ± 0.3	80.0 ± 0.2
		11.5	62.56 ± 0.06	88.4 ± 0.3
Ca(OH) ₂	2	9.5	0.9 ± 0.14	83.76 ± 0.07
		10.5	11.1 ± 0,1	95.3 ± 0.4
		11.5	67.3 ± 0.2	83.34 ± 0.02
	350	9.5	5.0 ± 0.5	87.97 ± 0.07
		10.5	14.2 ± 0.2	94.6±0.1
		11.5	77.8 ± 0.4	82.70 ± 0.08

372

373 Trace elements removal

Removal of trace elements from the centrate due to NaOH flocculation was also
documented. Fig 7 shows that except for molybdenum, all trace elements were
removed in a manner dependent on pH level and correlated to flocculation efficiency
(ANOVA, P<0.01). Molybdenum is primarily present as the molybdate anion MoO₄²⁻.
Unlike the other micronutrients, the dissolved molybdate concentration increases with
increasing pH (modelled with Visual MINTEQ, [33,34]).

381 Fig 7. Trace element removal at different pH values (a) and comparison with

382 occurring flocculation efficiencies at corresponding pH (b) (n=2)

383 3.1.6. Practical implications of high pH induced flocculation

384 Flocculation by addition of Ca(OH)₂ would be favoured to improve filterability of

385 centrate due to the higher flocculation ratio at intermediate pH values. At pH 10.5 at

- low phosphate concentrations, Ca(OH)₂ flocculation was found to be 2.1 times more
- 387 effective compared to NaOH flocculation. In addition, lime is an economically
- favourable and less hazardous alkali [38]. However, lime is more difficult to handle

389	because it is used as slurry which has to be constantly agitated. Furthermore,
390	additional calcium is added to the centrate. Even after flocculation, slightly more
391	calcium than the standard calcium concentration may remain dissolved, particularly if
392	appreciable amounts of AOM are present in the centrate. Small excesses will
393	accumulate with repeated medium recirculation, disturbing the broth composition.
394	NaOH flocculation is an alternative option. To obtain consistent high flocculation
395	efficiencies, pH values up to 11.5 are needed. At this pH, flocculation is 87 \pm 5%
396	effective on average while sodium enrichment is moderate (maximum 14% of standard
397	medium concentration). Furthermore, phosphate dependency is insignificant, thus,
398	unsustainable phosphate addition is unnecessary. However, at high pH values,
399	magnesium, calcium, phosphate and trace elements are quantitatively removed. By
400	optimising production, residual phosphate can be minimized, reducing phosphate loss.
401	An advantage of flocculation at high pH is the appreciable degree of disinfection
402	occurring in the process. It was reported that at pH 11.0 – 11.5 and a contact time of
403	4h, bacterial organisms are completely inactivated [39] and pathogenic
404	microorganisms may be killed [40].
405	3.2. Centrate clean-up by stand-alone sand filtration
406	Only minor amounts of suspended solids were retained on a sand filter composed of
407	35 cm of coarse sand (250 - 500 $\mu m)$ topped with 5 cm of fine sand (Dv50 of 170 $\mu m).$
408	Over six separate runs, an average removal of $7 \pm 4\%$ based on optical density was
409	obtained. During filtration, the water height above the sand bed increased steadily
410	with a final increase of 22 \pm 4% compared to the initial height. An average outlet flow

411	of 8.2 \pm 0.6 m ³ ·m ⁻² ·h ⁻¹ was maintained. Furthermore, the fouling index ks (standard
412	blocking) of collected permeate decreased with only 3 \pm 2% after 30 minutes and 21 \pm
413	21% after 55 minutes. Removal rates of 90% up to 97.3% as reported by Sabiri et al.
414	[22] and Naghavi et al. [23] for the sand filtration of microalgae were not obtained.
415	Algae investigated in those studies had minimum diameters of 10 and 30 μm
416	respectively. The results of this investigation indicate that some particles present in
417	the centrate were retained on the sand filter but the overall removal is not sufficient
418	to improve the filterability significantly.
419	<i>3.2.1.</i> Nutrients retained by stand-alone sand filtration
420	No nitrate and only very small amounts of phosphate were removed from the
421	centrate, -0.2 \pm 0.9% and 2.3 \pm 1.9% respectively. Likewise, no or only minute amounts
422	of calcium and magnesium were retained on the sand, -1.1 \pm 0.1% and 0.81 \pm 0.03%
423	respectively. Therefore, no extra cost would be generated to rejuvenate the centrate
424	should one opt to solely use sand filtration for cleansing.
425	3.3. Centrate clean-up by combination of flocculation and sand filtration
426	Sand filtration of centrate which was flocculated at pH of 10.5 or higher by addition of
427	$Ca(OH)_2$ resulted in rapid clogging of the sand bed, inhibiting filtration completely.
428	Similar clogging was observed after flocculation at pH of 11.5 with NaOH.
429	Consequently, only the combination of NaOH flocculation at pH 10.5 with sand
430	filtration was further investigated. With a clean sand bed a reduction of 87 \pm 2% in
431	optical density was obtained. However, removal rates of subsequent filtration runs

- 432 decreased rapidly until it was reduced to $61 \pm 6\%$ (Fig 8a, run 1B and 2B). This
- 433 decreased retention may have been caused by the build-up of clumps of sand that
- 434 disturb the integrity of the sand bed. Retention capacity was completely restored after
- 435 a cleaning of the sand bed with acidified water to disintegrate these clumps (Fig 8a,
- 436 run 2A). Over all runs, on average, 78 ± 18% of particles were removed and MFI's were
- 437 improved with 75 <u>+</u> 19%. Under 'ideal' circumstances (A runs), 87 <u>+</u> 2% of particles
- 438 were removed and MFI's were improved with $84 \pm 14\%$.

Fig 8. Progression of particle removal (a), hydraulic head (b) and outlet flow (c) of consecutive sand filtration runs of NaOH flocculated centrate at pH 10.5. The sand bed was rinsed with acidified water between run 1B and 2A.

443 During filtration, the centrate volume and pressure above the filtration surface

- 444 increased rapidly which indicates clogging of the filter (Fig 8b). The outlet flow
- 445 decreased accordingly (Fig 8c). This respective increase and decrease was less
- 446 pronounced in the secondary runs (1B, 2B), indicating a less clogged sand bed with

447	formation of preferential pathways. At the end of the runs, the filtration modus had
448	changed from rapid to slow sand filtration. The enhanced removal was partly due to
449	mechanical straining of the aggregates in the sand bed. In addition, flocs accumulated
450	on the surface of the sand forming an extra filtration layer, increasing the filtration
451	efficiency of the sand filter.

- 452 3.3.1. Practical implications of the combination of flocculation and sand453 filtration
- 454 Our results in a lab-scale setup, are counter indicative for the combination of very high
- 455 pH (>11) induced flocculation with sand filtration. A large scale sand filter can

456 withstand higher pressure while providing a continuous inlet flow, which may sustain

- 457 longer filtration runs with higher flows, but extensive test runs at pilot scale are
- 458 needed to verify this.
- 459 Based on the results at hand, filtration through a sand bed consisting of 7 parts of
- 460 coarse sand topped with 1 part of fine sand, preceded by NaOH induced flocculation at
- 461 pH 10.5 is recommended. If under these conditions pressure still reaches the
- 462 maximum operating pressure of 1.5 bar adopted in most sand filtration systems, the
- top layer can be removed. A small loss in filterability of the centrate will however
- 464 occur. Flocculation with $Ca(OH)_2$ or at higher pH is best combined with a different
- 465 separation technique or decantation.

466 The proposed method mainly removes particular matter from the medium. Small

- 467 particles passing the sand filter are retained on the micro membrane. Dissolved
- 468 organic material, however, is only partly removed from the medium. Preliminary

measurements showed that NaOH flocculation resulted in a removal of dissolved total
organic carbon of 25 ± 3 % at a pH of 10.5 and 72 ± 4 % at a pH of 11.5. Remaining
organics are recirculated back to the cultivation system. Hence, accumulation of these
components may occur with extensive medium recycling. Their effect on productivity
requires further investigation.

474 *3.4. Cost calculation*

Based on the above, a combination of sand filtration and high pH induced flocculation 475 is proposed as a means of pre-treatment for recycling used algae cultivation media. 476 The additional cost of a sand filtration setup to an existing microfiltration setup, and 477 478 consumption of chemicals and nutrients should therefore be compared to the replacement cost of fresh medium and the saved cost on filter membrane renewal. 479 Table 5 gives an overview of the cost for a medium filtration setup applicable to a 480 ProviAPT[™] pilot production module of 0.288 ha. The installation cost for the 481 482 membrane unit comprises three micro hollow fibre membranes and a circulation pump. The cost of the sand filtration unit contains a sand filter, sand, a circulation 483 pump and a 1m³ vessel to allow circulation of the centrate over the sand filter. To 484 485 obtain the total installed cost, equipment costs were multiplied with a typical Lang factor for fluids processing of 4.74. Since the microfiltration unit is already part of the 486 current setup to deliver contaminant-free fresh media, its installation and the 487 488 associated costs do not add to the cost of its application for medium re-use. Actually, as a result of the suggested pre-treatments, the number of membrane module 489

490 replacements should become reduced. However, at present, data for an accurate491 impact estimate are not available.

492	Total flocculation cost was calculated by taking into account alkali cost to increase pH,
493	cost of acid requirement to neutralise the medium and the replenishment cost of
494	nutrients which were removed from the medium during the course of flocculation. By
495	using NaOH instead of Ca(OH) $_{2}$ to increase the pH to 10.5 and 11.5 the chemical and
496	nutrient cost is 6% and 21% cheaper respectively. The cost of chemicals and nutrient
497	replenishment for NaOH induced flocculation at pH 10.5 and 11.5 is respectively 1.12
498	$€ \cdot m^{-3}$ and 3.70 $€ \cdot m^{-3}$ of treated centrate. Sand filtration adds approximately 0.18 $€ \cdot m^{-3}$.
499	These costs are relatively small compared to the current cost of fresh medium of 13.21
500	$€ \cdot m^{-3}$. It should be noted that fresh medium is composed of expensive artificial food
501	grade salts (9.32 €·m ⁻³ medium), food grade nutrients (2.12 €·m ⁻³ medium) and water
502	(1.77 €·m ⁻³ medium). Assuming a recycling rate of 75%, the medium cost decreases to
503	4.32 €·m ⁻³ . Complete rejuvenation of all nutrients is included in this cost.
504	For a 0.288 ha production installation of the ProviAPT [™] system, flocculation at a pH of
505	10.5 and subsequent sand filtration make for an additional running cost of 0.44 €·kg ⁻¹
506	DW. Medium costs constitute 1.62 €·kg ⁻¹ DW or 0.95 €·kg ⁻¹ DW when respectively 75%
507	or 90% of medium is reused. At 75% recycle the total cost the proposed scheme of
508	2.08 €·kg ⁻¹ DW would mean a 58% cut in cost compared to the total fresh medium cost
509	of 4.95 €·kg ⁻¹ DW. With a cost of 1.39 €·kg ⁻¹ DW at 90% recycle, a gain of 72% can be
510	accomplished.

511 Table 5: Summarized cost for installation of filtration equipment, chemical usage for

512 flocculation, nutrient addition after flocculation and medium cost

Installation cost			
Unit			Cost
			(euro)
Membrane filtration unit (Lang factor 4.74)			67826
Micro membrane filter: 11.2m ² 0.2µm (n=3)			13468
Circulation pump			841
Sand filtration unit (Lang factor 4.74)			8107
Sand filter			795
Sand			108
Circulation pump			355
1m ³ buffer vessel			452
Energy cost			
Unit			Cost
			(euro∙m⁻³)
Membrane filtration unit: circulation pump			0.025
Sandfiltration unit: circulation pump			0.01
Chemical usage flocculation			
Flocculation pH	Chemical	Consumption	Cost
		(kg·m⁻³)	(euro∙m⁻³)
11.5	NaOH	2.3	0.87
	Ca(OH) ₂	3.4	1.02
	HCI	0.41	0.44
10.5	NaOH	0.8	0.30
	Ca(OH)₂	1.3	0.39
	HCI	0.15	0.16
Extra nutrient usage			
Alkali and flocculation pH	Salt	Consumption	Cost
		(kg·m⁻³)	(euro∙m⁻³)
NaOH (11.5)	MgCl₂·6H₂O	2.70	0.76
	MgSO ₄ ·7H ₂ O	3.28	1.44
	CaCl ₂ ·2H ₂ O	0.47	0.19
Ca(OH) ₂ (11.5)	MgCl ₂ ·6H ₂ O	3.03	0.85
	MgSO₄·7H₂O	3.67	1.61
		0	0
NaOH (10 5)		0 59	0 17
		0.71	0.31
		0.71	0.31
		0.44	0.18

Ca(OH) ₂ (10.5)	MgCl ₂ ·6H ₂ O	0.87	0.24
	MgSO ₄ ·7H ₂ O	1.06	0.47
	$CaCl_2 \cdot 2H_2O$	0.37	0.15
Medium cost			
Medium			Cost
			(euro∙m⁻³)
100% fresh			13.21
75% recycle			4.32
90% recycle			2.54

514 **4. Conclusion**

515 The main goal of this study consisted in finding a polishing treatment of centrate 516 originating from harvest operations of high density cultures of Nannochloropsis sp. to 517 feed it into a microfiltration setup generating contaminant-free growth medium. A combination of NaOH flocculation at pH 10.5 and subsequent sand filtration removed 518 78 ± 18% of particles and improved 'modified fouling indices' with 75 + 19 %. Our 519 520 results indicate that there is room for some improvement by optimization of washing 521 regimes. In any case, the treatment will greatly decrease fouling and deterioration of filter membrane, thus allowing prolonged recirculation of growth medium. During such 522 523 prolonged medium recycling, dissolved organic components may accumulate in the 524 medium, the effect of which on productivity requires further investigation. Yet, at a sustained recycle rate of 90%, a cost saving of 3.56 €·kg⁻¹ DW, i.e. 72% of the fresh 525

526 medium cost, can be achieved.

527 References

F.G. Acién, J.M. Fernández, J.J. Magán, E. Molina, Production cost of a real
microalgae production plant and strategies to reduce it., Biotechnol. Adv. 30
(2012) 1344–53. doi:10.1016/j.biotechadv.2012.02.005.

531 532 533	[2]	J. Yang, M. Xu, X. Zhang, Q. Hu, M. Sommerfeld, Y. Chen, Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance., Bioresour. Technol. 102 (2011) 159–65. doi:10.1016/j.biortech.2010.07.017.
534 535 536	[3]	L. Rodolfi, G.C. Zittelli, L. Barsanti, G. Rosati, M.R. Tredici, Growth medium recycling in Nannochloropsis sp. mass cultivation, Biomol. Eng. 20 (2003) 243–248. doi:10.1016/S1389-0344(03)00063-7.
537 538 539 540	[4]	F. Hadj-Romdhane, P. Jaouen, J. Pruvost, D. Grizeau, G. Van Vooren, P. Bourseau, Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture., Bioresour. Technol. 123 (2012) 366–74. doi:10.1016/j.biortech.2012.07.085.
541 542 543 544	[5]	F. Hadj-Romdhane, X. Zheng, P. Jaouen, J. Pruvost, D. Grizeau, J.P. Croué, et al., The culture of Chlorella vulgaris in a recycled supernatant: effects on biomass production and medium quality., Bioresour. Technol. 132 (2013) 285–92. doi:10.1016/j.biortech.2013.01.025.
545 546 547 548	[6]	T. De Baerdemaeker, B. Lemmens, C. Dotremont, J. Fret, L. Roef, K. Goiris, et al., Benchmark study on algae harvesting with backwashable submerged flat panel membranes., Bioresour. Technol. 129 (2013) 582–91. doi:10.1016/j.biortech.2012.10.153.
549 550 551	[7]	W. Huang, H. Chu, B. Dong, J. Liu, Evaluation of different algogenic organic matters on the fouling of microfiltration membranes, Desalination. 344 (2014) 329–338. doi:10.1016/j.desal.2014.03.039.
552 553 554 555	[8]	X. Zhang, L. Fan, F. a. Roddick, Understanding the fouling of a ceramic microfiltration membrane caused by algal organic matter released from Microcystis aeruginosa, J. Memb. Sci. 447 (2013) 362–368. doi:10.1016/j.memsci.2013.07.059.
556 557 558 559 560	[9]	F. Qu, H. Liang, Z. Wang, H. Wang, H. Yu, G. Li, Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: influences of interfacial characteristics of foulants and fouling mechanisms., Water Res. 46 (2012) 1490–500. doi:10.1016/j.watres.2011.11.051.
561 562 563	[10]	W. Zhang, W. Zhang, X. Zhang, P. Amendola, Q. Hu, Y. Chen, Characterization of dissolved organic matters responsible for ultrafiltration membrane fouling in algal harvesting, Algal Res. 2 (2013) 223–229. doi:10.1016/j.algal.2013.05.002.
564 565 566	[11]	N. Her, G. Amy, HR. Park, M. Song, Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling., Water Res. 38 (2004) 1427–38. doi:10.1016/j.watres.2003.12.008.

567 568 569 570	[12]	S.A. Alizadeh Tabatabai, J.C. Schippers, M.D. Kennedy, Effect of coagulation on fouling potential and removal of algal organic matter in ultrafiltration pretreatment to seawater reverse osmosis., Water Res. 59 (2014) 283–94. doi:10.1016/j.watres.2014.04.001.
571 572	[13]	K. Howe, M. Clarck, Effect of coagulation pretreatment on membrane filtration performance, Am. Water Work. Assoc. 98 (2006) 133 – 146.
573 574 575	[14]	T.F. Marhaba, N.S. Pipada, Coagulation: Effectiveness in Removing Dissolved Organic Matter Fractions, Environ. Eng. Sci. 17 (2000) 107–115. doi:10.1089/ees.2000.17.107.
576 577 578 579	[15]	Z. Wu, Y. Zhu, W. Huang, C. Zhang, T. Li, Y. Zhang, et al., Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium., Bioresour. Technol. 110 (2012) 496–502. doi:10.1016/j.biortech.2012.01.101.
580 581	[16]	G. Shelef, A. Sukenik, Microalgae Harvesting and Processing : A Literature Review, 1984.
582 583 584 585	[17]	D. Vandamme, I. Foubert, I. Fraeye, B. Meesschaert, K. Muylaert, Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications., Bioresour. Technol. 105 (2012) 114–9. doi:10.1016/j.biortech.2011.11.105.
586 587 588 589	[18]	A. Schlesinger, D. Eisenstadt, A. Bar-Gil, H. Carmely, S. Einbinder, J. Gressel, Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production., Biotechnol. Adv. 30 (2012) 1023–30. doi:10.1016/j.biotechadv.2012.01.011.
590 591 592	[19]	D. Vandamme, I. Foubert, I. Fraeye, K. Muylaert, Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation., Bioresour. Technol. 124 (2012) 508–11. doi:10.1016/j.biortech.2012.08.121.
593 594 595 596	[20]	A. Beuckels, O. Depraetere, D. Vandamme, I. Foubert, E. Smolders, K. Muylaert, Influence of organic matter on flocculation of Chlorella vulgaris by calcium phosphate precipitation, Biomass and Bioenergy. 54 (2013) 107–114. doi:10.1016/j.biombioe.2013.03.027.
597	[21]	J.Y. Huang, Granular filters for tertiary wastewater treatment, (1972).
598 599 600	[22]	N.E. Sabiri, J.B. Castaing, a. Massé, P. Jaouen, Performance of a sand filter in removal of micro-algae from seawater in aquaculture production systems, Environ. Technol. 33 (2012) 667–676. doi:10.1080/09593330.2011.587027.

- 601 [23] B. Naghavi, R.F. Malone, C. Station, B. Rouge, Algae removal by fine sand/silt
 602 filtration, Water Res. 20 (1986) 377–383. doi:10.1016/0043-1354(86)90087-4.
- 603 [24] M. Michiels, Bioreactor, BE1017763, 2009.
- L. Roef, M. Jacqmain, M. Michiels, Microalgae production in the self- supported
 ProviAPT vertical flat-panel photobioreactor system, in: C. Posten, C. Walter
 (Eds.), Microalgal Biotechnol. Potential Prod., De Gruyter, 2009: pp. 243–245.
- R.R. Guillard, J. Ryther, Studies of marine planktonic diatoms. I. Cyclotella nana
 Hustedt, and Detonula confervacea (Cleve) Gran., Can. J. Microbiol. 8 (1962)
 229–239. doi:10.1139/m62-029.
- 610 [27] D. Vandamme, I. Foubert, B. Meesschaert, K. Muylaert, Flocculation of
 611 microalgae using cationic starch, J. Appl. Phycol. 22 (2009) 525–530.
 612 doi:10.1007/s10811-009-9488-8.
- 613 [28] J.P. Gustafsson, Visual MINTEQ, (2012).
- 614 http://www2.lwr.kth.se/English/OurSoftware/vminteq/.
- 615 [29] APHA, Standard methods for the examination of water and wastewater, 1999.
- [30] J.C. Schippers, J. Verdouw, The modified fouling index, a method of determing
 the fouling characteristics of water, Desalination. 32 (1980) 137–148.
 doi:10.1016/S0011-9164(00)86014-2.
- 619 [31] C.-H. Wei, S. Laborie, R. Ben Aim, G. Amy, Full utilization of silt density index
 620 (SDI) measurements for seawater pre-treatment, J. Memb. Sci. 405-406 (2012)
 621 212–218. doi:10.1016/j.memsci.2012.03.010.
- [32] M. Castrillo, L.M. Lucas-Salas, C. Rodríguez-Gil, D. Martínez, High pH-induced
 flocculation-sedimentation and effect of supernatant reuse on growth rate and
 lipid productivity of Scenedesmus obliquus and Chlorella vulgaris., Bioresour.
 Technol. 128 (2013) 324–9. doi:10.1016/j.biortech.2012.10.114.
- [33] Y. Song, H.H. Hahn, E. Hoffmann, P.G. Weidler, Effect of humic substances on
 the precipitation of calcium phosphates, J. Environ. Sci. 18 (2006) 852–857.
 doi:10.1016/S1001-0742(06)60004-1.
- [34] X. Cao, W. Harris, Carbonate and magnesium interactive effect on calcium
 phosphate precipitation., Environ. Sci. Technol. 42 (2008) 436–42.
 doi:10.1021/es0716709.
- [35] H. Bernhardt, H. Schell, O. Hoyer, O. Lüsse, Influence of algogenic organic
 substances on flocculation and filtration, Acta Hydrochim. Hydrobiol. 18 (1989)
 18–30.

- [36] J.S. García-Pérez, A. Beuckels, D. Vandamme, O. Depraetere, I. Foubert, R. Parra,
 et al., Influence of magnesium concentration, biomass concentration and pH on
 flocculation of Chlorella vulgaris, Algal Res. 3 (2014) 24–29.
- 638 doi:10.1016/j.algal.2013.11.016.
- [37] P. V. Brady, P.I. Pohl, J.C. Hewson, A coordination chemistry model of algal
 autoflocculation, Algal Res. 5 (2014) 226–230. doi:10.1016/j.algal.2014.02.004.
- [38] D. Vandamme, Flocculation based harvesting processes for microalgae biomassproduction, 2013.
- L. Semerjian, G.M. Ayoub, High-pH–magnesium coagulation–flocculation in
 wastewater treatment, Adv. Environ. Res. 7 (2003) 389–403.
 doi:10.1016/S1093-0191(02)00009-6.

650 Figure and table captions

651	Table 1. Characteristics of three centrates used to test flocculation. Measurements were
652	performed in duplo (n = 2)
653	Table 2: MFI's ks and kc of flocculated centrate (n=2) using two different alkali species on
654	centrates 1 and 213
655	Table 3. Influence of alkali species, phosphate concentration and pH on flocculation efficiency,
656	calcium removal and phosphate removal. Removals are expressed as changes in molar
657	concentration. Calcium removal is calculated as the difference between the remaining
658	dissolved calcium after flocculation and the initial concentration supplemented with the added
659	Ca(OH) ₂ (if applied)15
660	Table 4. Influence of alkali species, phosphate concentration and pH on magnesium and
661	calcium removal during flocculation21
662	Table 5: Summarized cost for installation of filtration equipment, chemical usage for
663	flocculation, nutrient addition after flocculation and medium cost
664	
665	Fig 1: View of a ProviAPT™ microalgae production plant of 48 m ³ culture volume
666	Fig 2: Experimental setup of the sand filtration unit
667	Fig 3: Flocculation efficiency versus pH for two different alkali species. Centrates 1 and 2 were
668	investigated13
669	Fig 4. DIC image of $Ca(OH)_2$ flocculated aggregates at pH 10 containing crystals16
670	Fig 5. Increase in pH as a function of hydroxide concentration added in the form of NaOH or
671	Ca(OH) ₂ 17

672	Fig 6: OH^{-} and H^{+} requirement for respective alkalinisation and subsequent acidification of
673	centrate that was either stirred or filtered upon flocculation. OH ${}^{\!\scriptscriptstyle -}$ was added as NaOH and ${\rm H}^{\!\scriptscriptstyle +}$ as
674	HCl
675	Fig 7. Trace element removal at different pH values (a) and comparison with occurring
676	flocculation efficiencies at corresponding pH (b) (n=2) 22
677	Fig 8. Progression of particle removal (a), hydraulic head (b) and outlet flow (c) of consecutive
678	sand filtration runs of NaOH flocculated centrate at pH 10.5. The sand bed was rinsed with
679	acidified water between run 1B and 2A26