
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Implementation of Haskell modules for automata
and Sticker systems

Perera, K.K.K.R.
Graduate School of Mathematics, Kyushu University

Mizoguchi, Yoshihiro
Faculty of Mathematics, Kyushu University

http://hdl.handle.net/2324/13974

出版情報：Journal of Math-for-Industry (JMI). 1 (A), pp.51-56, 2009-04-08. 九州大学大学院数理
学研究院
バージョン：
権利関係：

Journal of Math-for-industry, Vol.1(2009A-7), pp.51–56

A案 B案

D案 E案 F案

C案

Implementation of Haskell modules for
automata and Sticker systems

K.K.K.R.Perera and Yoshihiro Mizoguchi

Received on March 11, 2009 / Revised on March 17, 2009

Abstract.
We realized operations appeared in the theory of automata using Haskell languages. Using the
benefits of functions of lazy evaluations in Haskell, we can express a language set which contains
infinite elements as concrete functional notations like mathematical notations. Our modules can be
used not only for analyzing the properties about automata and their application systems but also
for self study materials or a tutorial to learn automata, grammar and language theories. We also
implemented the modules for sticker systems. Paun and Rozenberg explained a concrete method to
transform an automaton to a sticker system in 1998. We modified their definitions and improved
their insufficient results. Using our module functions, we can easily define finite automata and linear
grammars and construct sticker systems which have the same power of finite automata and linear
grammars.

Keywords. Automata, Language, Sticker System, DNA Computing, Haskell

1. Introduction

The sticker system is a formal model based on sticking op-
erations, which is an abstraction of the Watson-Crick com-
plementarity. We use the term domino to represent double
stranded DNA sequences with sticky ends. By using the
sticking operator, dominoes can be annealed and formed a
complete double stranded sequence. Paun and Rozenberg
[3] explained a concrete method to transform automata
to sticker systems. In this paper we are trying to intro-
duce simple efficient transformation and implement it using
Haskell module functions. We also indicate and improve
the insufficient results in [3]. We modify the expression
of dominoes and the sticking operator for realizing Haskell
functions. We change the definition of a domino (D) from a
string of pairs of alphabet to a triple (l, r, x) of two string l,

r and an integer x. For example
(

λ
C

) [
AT
TA

] (
GC
λ

)
in [3] is represented as (ATGC, CTA,−1). According to
this modification, the definition of sticking operator has
been reformulated.

One of the benefits of using Haskell language is that it
has descriptions for infinite set of strings using lazy evalu-
ation schemes. For example, the infinite set {a, b}∗ is de-
noted by finite length of expression sstar [’a’,’b’]. We
use the take function to view contents of an infinite set (e.g.
take 5 (sstar [’a’,’b’]) is ["","a","b","aa","ba"].
Further using set theoretical notions in Haskell, we can eas-
ily realize the definitions of various kinds of set of dominoes.
For example, to make a sticker system which generates the
equivalent language of a finite automaton, we need an atom

set

A2 =
k+1∪
i=1

{(xu, x, 0)| x ∈ Σ∗, u ∈ Σ∗, |xu| = k + 2,

|u| = i, δ∗(0, xu) = i − 1}.

In Haskell notations, we have following function definitions.

aA2::Automaton->[Domino]

aA2 m@(q,s,d,q0,f) = concat [(aA2’ m i)| i<- [1..(k+1)]]

where k = (length q)-1

aA2’::Automaton->Int->[Domino]

aA2’ m@(q,s,d,q0,f) i = [(x++u,x,0)| (x,u) <- xupair,

(dstar d 0 (x++u)) ==(i-1)]

where xupair = [(x,u)|x<-(sigman s (k+2-i)),

u<-(sigman s i)]

k = (length q)-1

The precise definition of the generated sticker system is
described in Section 3. We prove that the generated lan-
guages are equal by using our formulations.

The Haskell module can be downloaded from our home-
page1.

2. Automaton Module

Let Σ is an alphabet and Σ∗ is the set of all strings over
Σ including the empty string λ. For a string w, we denote
the length of w by |w|.

1http://haskell.math.kyushu-u.ac.jp/

51

52 Journal of Mathematics for Industry, Vol.1(2009A-7)

Definition 1. A finite automaton is a five-tuple of M =
(Q, Σ, δ, q0, F), where Q is the finite set of states, Σ is the
alphabet, q0 is the initial state, F is the set of final states
and δ : Q × Σ → Q is the transition function.

A transition function δ : Q × Σ → Q is generally ex-
tended to a function δ∗ : Q × Σ∗ → Q by δ∗(q, λ) = q and
δ∗(q, xw) = δ∗(δ(q, x), w) for q ∈ Q, x ∈ Σ and w ∈ Σ∗.
Definition 2. For a finite automaton M=(Q,Σ, δ, q0, F),
we define the language L(M) accepted by M by L(M) =
{w ∈ Σ∗|δ∗(q0, w) ∈ QF }.
Example 1. Automata M1 and M2 is defined as follows.
M1 = ({0, 1}, {a, b}, δ1, 0, {1}) and M2 = ({0, 1, 2}, {a, b},
δ2, 0, {1}), where δ1(0, a) = 0, δ1(0, b) = 1, δ1(1, a) =
1, δ1(1, b) = 0, δ2(0, a) = 1, δ2(0, b) = 2, δ2(1, a) = 2,
δ2(1, b) = 0, δ2(2, a) = 2, δ2(2, b) = 2. Figure 1 is the tran-
sition diagram for M1 and M2. The examples are expressed
as follows using our Haskell Modules.

m1::Automaton

m1 = ([0,1], [’a’,’b’], d1, 0, [1])

where d1 0 ’a’ = 0

d1 0 ’b’ = 1

d1 1 ’a’ = 1

d1 1 ’b’ = 0

m2::Automaton

m2 = ([0,1,2], [’a’,’b’], d2, 0, [1])

where d2 0 ’a’ = 1

d2 0 ’b’ = 2

d2 1 ’a’ = 2

d2 1 ’b’ = 0

d2 2 ’a’ = 2

d2 2 ’b’ = 2

0

’a’

1’b’
’b’

’a’

(a) M1

0

1’a’

2’b’
’b’

’a’
’a’,’b’

(b) M2

Figure 1: Example of finite automata

We note that L(M1) = {w ∈ Σ∗ | |w|b = 1(mod 2)}, and
L(M2) = {a(ba)n |n = 0, 1, ...}. In our module the func-
tion Automaton.language returns the accepted language.
To compute the accepted language generated by M1, we
use Automaton.language m1, where m1 is the automaton
described in Haskell.

Following is a code for finding accepted language and
their executions.

accepts::Automaton->[String]->[String]

accepts m ss = [w | w <- ss, (dstar d s0 w) ‘elem‘ f]

where (q, s, d, s0, f)=m

language::Automaton ->[String]

language m = accepts m (sstar s)

where (q, s, d, s0, f)=m� �
*AutomatonEx>take 10 $ Automaton.language m1
["b","ba","ab","baa","aba","aab","bbb"
,"baaa","abaa","aaba"]
*AutomatonEx>take 5 $ Automaton.language m2
["a","aba","ababa","abababa","ababababa"]� �

3. Sticker Module

Definition 3. Let Σ be a set of alphabet and Z a set of
integers and ρ ⊆ Σ×Σ. An element (l, r, n) of Σ∗×Σ∗×Z
is a domino over (Σ, ρ), if the following conditions holds:

• If n ≥ 0 then (l[i + n], r[i]) ∈ ρ,
for 1 ≤ i ≤ min(|l| − n, |r|)

• If n < 0 then (l[i], r[i − n]) ∈ ρ,
for 1 ≤ i ≤ min(|r| + n, |l|)

We denote the set of all dominoes over (Σ, ρ) by D.
The possible shapes of the dominoes are illustrated as

follows: x u
x’ , x

x’ , x
v x’ , x u

v x’ , where x =

x1x2 · · ·xn, x′ = x′
1x

′
2 · · ·x′

n, u, v, ∈ Σ∗ and (xi, x
′
i) ∈ ρ for

1 ≤ i ≤ n. Sticky ends can be placed in the upper strand
or lower strand.
Example 2. We can represent a double stranded sequence(

λ
C

) [
AT
TA

] (
GC
CG

)
in [3] by (ATGC,CTACG,−1)

in our module. Similarly,
(

G
λ

) [
AT
TA

]
can be repre-

sented by (GAT, TA, 1).
Definition 4. The sticking operator µ : D×D → D∪{⊥}
is defined as follows:

µ((l1, r1, n1), (l2, r2, n2)) =
{

(l1l2, r1r2, n1) (if (*))
⊥ (otherwise)

(*) (l1l2, r1r2, n1) ∈ D and n1 + |r1| − |l1| = n2

Definition 5. Sticker System γ is a four tuple
γ = (Σ, ρ, A,R) of an alphabet set Σ, ρ ⊆ Σ × Σ, a finite
set of axioms A(⊆ D) and a finite set of pairs of dominoes
R ⊆ D × D.

Let Q = {q0, q1, ..., qk} be a finite set, which consists of
k+1 elements. For a finite automaton M = (Q, Σ, δ, q0, FM),
the sticker system γM = (Σ, ρ, A,R) is defined as follows:

ρ = {(a, a)|a ∈ Σ}
A = A1 ∪ A2

A1 = {(x, x, 0) |x ∈ L(M), |x| ≤ k + 2}

K.K.K.R.Perera and Yoshihiro Mizoguchi 53

A2 = {(xu, x, 0) | |xu| = k + 2, |u| = i,

δ∗(q0, xu) = qi−1, 1 ≤ i ≤ k + 1}
R = R1 ∪ F

R1 = {((λ, λ, 0), (xu, vx,−|v|))|
|xu| = k + 2, |u| = i, |v| = j, δ∗(qj−1, xu) = qi−1,

1 ≤ i ≤ k + 1, 1 ≤ j ≤ k + 1}
F = {((λ, λ, 0), (x, vx,−|v|))

| |v| = i, |x| = j, δ(qi−1, x) ∈ FM ,

1 ≤ i ≤ k + 1, 1 ≤ j ≤ k + 2}

For a sticker system γ = (Σ, ρ, A, R), we define a relation
⇒γ on D as follows.

x ⇒γ y
def⇐⇒ y = µ(α, µ(x, β)) for some (α, β) ∈ R,

Let ⇒∗
γ be the reflective and transitive closure of ⇒γ .

Definition 6. The set of dominoes LM(γ) generated by
γ is defined by LM(γ) = {(l, r, 0)|a ⇒∗ (l, r, 0), a ∈ A, |l| =
|r|}. The language L(γ) generated by γ is defined by L(γ) =
{l ∈ Σ∗|(l, r, 0) ∈ LM(γ)}.
Example 3. Consider the sticker system γM1 generated
by the automaton M1 in Example 1. Since δ∗1(0, bbb) = 1
then the domino (bbb, b, 0) ∈ A. Also we have ((λ, λ, 0),
(bab, bbbab,−2)) ∈ F by δ∗(1, bab) ∈ FM1 . The domino

(bbb, b, 0) is figured as b b b
b and (bab, bbbab,−2) is

figured as
b a b

b b b a b .

µ((bbb, b, 0), (bab, bbbab,−2)) = (bbbbab, bbbbab, 0))

Since (bbb, b, 0) ∈ A and (bbb, b, 0) ⇒∗
γ (bbbbab, bbbbab, 0),

we have bbbbab ∈ L(γM1).
For i = 1, ..., k + 1, we define Xi, Yi and Fi as follows:

Xi = {(xu, x, 0) ∈ A | |xu| = k + 2, |u| = i, u, x ∈ Σ∗},
Yi = {(xu, x, 0) | a ⇒∗

γ (xu, x, 0), a ∈ A, |u| = i,

u, x ∈ Σ∗},
Zi = {((λ, λ, 0), (x, vx,−i)) ∈ F | |v| = i, v, x ∈ Σ∗}

Lemma 1. Define the sticker system γ = γM for a finite
automaton M = (Q, Σ, δ, q0, FM). For i = 1, 2, ..., k +1 the
followings hold.

(i) For a ∈ A, If a ⇒∗
γ (l, r, n), then n = 0 and |r| ≤ |l|

≤ |r| + k + 1.

(ii) If (l, r, 0) ∈ LM(γ), then (l, r, 0) ∈ A or there ex-
ist x, u, x′ ∈ Σ∗ such that |u| = i, 1 ≤ |x|, 1 ≤
|x′|, l = x′ux and ((λ, λ, 0), (x′, ux′,−i)) ∈ Fi. i.e.
µ((xu, x, 0), (x′, ux′,−i)) = (l, r, 0) and (xu, x, 0) ∈
Yi.

(iii) Xi = {(xu, x, 0) | |u| = i, |xu| = k + 2, u, x ∈ Σ∗,
δ∗(q0, xu) = qi−1}.

(iv) If (xu, x, 0) ∈ Yi and |xu| ≤ k+2 then (xu, x, 0) ∈ Xi.

(v) If (xu, x, 0) ∈ Yi and |xu| > k + 2, then there exist
x′′, u′, x′ ∈ Σ∗ such that |x′u| = k+2, 1 ≤ |u′| ≤ k+1,
x′′u′x′ = x and ((λ, λ, 0), (x′u, u′x,−|u′|)) ∈ R1.
i.e. µ((x′′u′, x′′, 0), (x′u, u′x′,−|u′|)) = (xu, x, 0) and
(x′′u′, x′′, 0) ∈ Y|u′|.

(cf.
x” u’ x’ u
x” u’ x’ =

x u
x)

(vi) Yi = {(xu, x, 0) | |u| = i, δ∗(q0, xu) = qi−1,
(k + 2) | |xu|, u, x ∈ Σ∗}.

(vii) F =
k+1∪
i=1

Zi

(Proof) (i),(iii),(iv) and (vii) are trivial.
(ii) Let (l, r, 0) be a domino and ((λ, λ, 0), (xu, vx,−|v|)) ∈
R1. If µ((l, r, 0), (xu, vx,−|v|)) ̸= ⊥ then µ((l, r, 0),
(xu, vx,−i)) = (lxu, rvx, 0) and 0+ |r|− |l| = −|v|. |lxu|−
|rvx| = |l| + |x| + |u| − |r| − |v| − |x| = |u| ≠ 0. So
µ((l, r, 0), (xu, vx,−i)) ̸∈ LM(γ).
Let (xu, x, 0) be a domino with x, u ∈ Σ∗, 1 ≤ x and 1 ≤
|u| ≤ k+1. If µ((xu, x, 0), (l′, r′, n′)) ̸= ⊥ and (xul′, xr′, 0) ∈
LM(γ), then (l′, r′, n′) is (x′, ux′,−|u|) for some x′ ∈ Σ∗

and 1 ≤ x′. So there exist ((λ, λ, 0), (x′, ux′,−|u|)) ∈ F
and a ⇒∗

γ (xu, x, 0) ⇒γ (l, r, 0).
(v) Since |xu| > k + 2, there exists a domino (x′′u′, x′′, 0)
such that a ⇒∗

γ (x′′u′, x′′, 0) ⇒γ (xu, u, 0). This means
there exists ((λ, λ, 0), (x′u, u′x′,−|u′|)) ∈ R1 such that
µ((x′′u′, x′′, 0), (x′u, u′x′,−|u′|)) = (x′′u′x′u, x′′u′x′, 0) =
(xu, x, 0). So we have x = x′′u′x′, |x′u| = k + 2 and
1 ≤ |u′| ≤ k + 1.
(vi) (⊂) Let (xu, x, 0) ∈ Yi. If |xu| ≤ k+2 then δ∗(q0, xu) =
qi−1 by (iii) and (iv). If |xu| > k + 2 then there exists a
domino (x′′u′, x′′, 0) ∈ Y|u′| and ((λ, λ, 0), (x′u, u′x′,−|u′|))
∈ R1 such that x = x′′u′x by (v). Since (x′′u′, x′′, 0) ∈ Y|u′|
we have δ∗(q0, x

′′u′) = q|u′|−1. Since ((λ, λ, 0), (x′u, u′x′,
−|u′|)) ∈ R1, we have δ∗(q|u′|−1, x′u) = q|u|−1. So we have
δ∗(q0, xu) = δ∗(q0, x

′′u′x′u) = q|u|−1 = qi−1.
(⊃) Let (xu, x, 0) be an element of the right-hand set. That
is δ∗(q0, xu) = qi−1, |u| = i and (k + 2) | |xu|. We prove
(xu, x, 0) ∈ Yi using induction on n where |xu| = n(k + 2).
If |xu| = k + 2 then (xu, x, 0) ∈ Xi by (iii), (xu, x, 0) ∈ A
and we have (xu, x, 0) ∈ Yi.
Assume (xu, x, 0) ∈ Yi for any xu ∈ Σ∗ with |xu| = n(k +
2). Let (xu, x, 0) be a domino and |xu| = (n + 1)(k + 2).
We put x = x′u′x′′ where |x′′u| = k + 2, 1 ≤ |u′| ≤ k + 1
and δ∗(q0, x

′u′) = q|u′|−1. Since |x′u′| = |xu| − |x′′u| =
n(k + 2), we have (x′u′, x′, 0) ∈ Yi by the hypothesis of
the induction. Since δ∗(q|u′|−1, x

′′u) = δ∗(δ∗(q0, x
′u′), x′′u)

= δ∗(q0, x
′u′x′′u) = qi−1, we have ((λ, λ, 0), (x′′u, u′x′′,

−|u′|)) ∈ R1. Since µ((x′u′, x′, 0), (x′′u, u′x′′, −|u′|)) =
(x′u′x′′u, x′u′x′′, 0) = (xu, x, 0), we have (x′u′, x′, 0) ⇒γ

(xu, x, 0) and (xu, x, 0) ∈ Yi.
The idea of the proof of the next theorem is originally

introduced by Paun and Rozenberg([3]) in 1998. It lacked
several conditions and formal proofs in their paper. We
modified and improved them and proved it using our for-
mulations.

54 Journal of Mathematics for Industry, Vol.1(2009A-7)

Theorem 1. Define the sticker system γ = γM for a finite
automaton M = (Q, Σ, δ, q0, FM). Then L(γ) = L(M).

(Proof) (⊂) Let w ∈ L(γM). Then we have a ⇒∗
γ (w, w, 0)

for some a ∈ A. If (w, w, 0) ∈ A then w ∈ L(M) by
definition. If (w, w, 0) ̸∈ A then there exist (xu, x, 0) and
((λ, λ, 0), (x′, ux′,−|u|)) ∈ F such that a ⇒∗

γ (xu, x, 0) and
µ((xu, x, 0), (x′, ux′,−|u|)) = (w, w, 0).
Since a ⇒∗

γ (xu, x, 0), we have δ∗(q0, xu) = q|u|−1 from
Lemma 1(vi). Since ((λ, λ, 0), (x′, ux′,−|u|)) ∈ F , we have
δ∗(q|u|−1, x

′) ∈ FM . Since δ∗(q0, w) = δ∗(q0, xux′)
= δ∗(q|u|−1, x

′) ∈ FM , we have w ∈ L(M).
(⊃) Let w ∈ L(M). If |w| ≤ k + 2 then (w, w, 0) ∈ A and
w ∈ L(γM).
If k+2 ≤ |w| ≤ 2(k+2) then we put w = w′x′ where |w′| =
k + 2. If δ∗(q0, w

′) = qi−1 then (w′′u,w′′, 0) ∈ A where
w′ = w′′u and |u| = i. Since δ∗(qi−1, x

′) = δ∗(δ∗(q0, w
′), x′)

= δ∗(q0, w) ∈ FM , we have ((λ, λ, 0), (x′, ux′,−i)) ∈ F .
Since µ((w′′u,w′′, 0), (x′, ux′,−1)) = (w′′ux′, w′′ux′, 0) =
(w,w, 0), we have (w′′u,w′′, 0) ⇒γ (w, w, 0) and w ∈ L(γM).
If |w| > 2(k + 2), let w = w′x′ where (k + 2) | |w′| and
|x′| ≤ k + 2. If δ∗(q0, w

′) = qi−1 then (w′′u,w′′, 0) ∈ Yi

where w′ = w′′u and |u| = i by Lemma 1(vi). Since
δ∗(qi−1, x

′) = δ∗(δ∗(q0, w
′), x′) = δ(q0, w) ∈ FM , we have

((λ, λ, 0), (x′, ux′,−i)) ∈ F . Since µ((w′′u,w′′, 0),
(x′, ux′,−i)) = (w′′ux′, w′′ux′, 0) = (w,w, 0), we have
(w,w, 0) ∈ L(γM).
Note: We correct the limit length of x in F from k to
k + 2 in [3]. Consider the sticker system γM1 generated
by the automaton M1 in Example 1 again. Since (abb, ab,
0) ∈ A, ((λ, λ, 0), (aba, baba, −1)) ∈ F and µ((abb, ab, 0),
(aba, baba,−1)) = (abbaba, abbaba, 0), we have abbaba ∈
L(γM1). In the definition of F in [3], the limit of length |x|
for (x, vx,−|v|)∈ F is k = 1. Since |aba| > 1, we do not
have ((λ, λ, 0), (aba, baba, −1)) in F by the definition in
[3]. So even abbaba ∈ L(M1), abbaba ̸∈ L(γM1) according
to the definition of sticker system described in [3].

4. Grammar Module

Definition 7. A grammar is a four tuple G = (T, N,R, S)
of terminal symbols T , non-terminal symbols N , transfor-
mation rules R and a start symbol S.

Definition 8. The language L(G) generated by grammar
G = (Σ, N, R, S) is defined as L(G) = {w ∈ Σ∗|S ⇒∗

G w}.
For a grammar g= G, (Grammar.language g) computes
the L(G).

Example 4. The grammars G1 = ({a, b}, {S}, {S → aSb,
S → ab}, S) and G2 = ({a, b}, {S, A}, {S → A, S → aSb,
A → aA, A → a}, S) are expressed as follows using our
Haskell Modules.

gex1::Grammar

gex1=([’a’,’b’],[’S’],[(’S’,"aSb"),(’S’,"ab")],’S’)

gex2::Grammar

gex2=([’a’,’b’],[’S’,’A’],[(’S’,"A"),(’S’,"aSb"),

(’A’,"aA"),(’A’,"a")],’S’)

� �
*GrammarExChar> gex1
("ab","S",[(’S’,"aSb"),(’S’,"ab")],’S’)
*GrammarExChar>take 10 $ Grammar.language gex1
["ab","aabb","aaabbb","aaaabbbb",
"aaaaabbbbb","aaaaaabbbbbb",
"aaaaaaabbbbbbb","aaaaaaaabbbbbbbb",
"aaaaaaaaabbbbbbbbb","aaaaaaaaaabbbbbbbbbb"]
*GrammarExChar> gex2
("ab","SA",[(’S’,"A"),(’S’,"aSb"),(’A’,"aA"),
(’A’,"a")],’S’)
*GrammarExChar> take 10 $ Grammar.language
GrammarEx.gex2
["a","aa","aab","aaabb","aaa",
"aaaabbb","aaaa","aaab","aaaab","aaaaabbb"]� �
For a string w = x1x2 · · ·xn and 1 ≤ i ≤ n, Left(w, i) =

x1 · · ·xi and Right(w, i) = xn−i+1 · · ·xn.

Definition 9. Let N = {X1, X2, · · · , Xk} be a finite set of
k non-terminal symbols and S = X1. For a linear grammar
G = (Σ, N, P, S), the sticker system γG = (σ, ρ, A,R) is
defined similar to [3] as follows.

ρ = {(a, a) | a ∈ Σ}
X1 = S(if i = 1 then Xi = S)

T (i, k) = {w ∈ Σ∗ |Xi ⇒∗ w, |w| = k}
T (i, l, r) = {(wl, j, wr) ∈ (Σ∗ × N × Σ∗) |

Xi ⇒ wlXjwr, |wl| = l, |wr| = r}
A = A1 ∪ A2 ∪ A3

A1 = {(x, x, 0)|x ∈ T (1,m),m ≤ 3k + 2}

A2 =
k∪

i=1

{(ux, x, |u|) |

w ∈ T (i,m), i + 1 ≤ m ≤ 3k + 2,

x = Right(w, m − i), u = Left(w, i)}

A3 =
k∪

i=1

{(xu, x, 0) |

w ∈ T (i,m), i + 1 ≤ m ≤ 3k + 2,

x = Left(w, m − i), u = Right(w, i)}
R = R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5 ∪ R6

R1 =
k∪

i=1

k+1∪
l=0

{((ux, xv, |u|), (z, z, 0))|

(w, j, z) ∈ T (i, k + 1, l), u = Left(w, i),
x = Right(w, i), |v| = j}

R2 =
k∪

i=1

k+1∪
l=0

{((x, xv, 0), (zu, z, 0))|(x, j, w)

∈ T (i, l, k + 1), z = Left(w, k + 1 − i),
u = Right(w, i), |v| = j}

K.K.K.R.Perera and Yoshihiro Mizoguchi 55

R3 =
2k+2∪
l=1

{((x, xv, 0), (z, z, 0)) | (x, j, z) ∈ T (0, l,m),

0 ≤ m ≤ 2k + 2 − l, |v| = j}

R4 =
k∪

i=1

k+1∪
l=0

{((z, z, 0), (xu, vx,−|v|)) | (z, j, w)

∈ T (i, l, k + 1), x = Left(w, k + 1 − i),
u = Right(w, i), |v| = j}

R5 =
k∪

i=1

k+1∪
l=0

{((uz, z, |u|), (x, vx,−|v|)) | (w, j, z)

∈ T (i, k + 1, l), u = Left(w, i),
x = Right(w, k + 1 − i), |v| = j}

R6 =
2k+2∪
l=1

{((z, z, 0), (x, vx,−|v|)) | (z, j, x)

∈ T (1, m, l), 0 ≤ m ≤ 2k + 2 − l, |v| = j}
k = |N |

We modified the limitation of the production rules ([3])
in G to allow the form X → xY y for |x| = |y| = 1. To
prove the next generalized theorem, we change the limit
length of w in A from 3k + 1 to 3k + 2, the length of z in
R1, R2, R4 and R5 from k to k + 1, and the length of z in
R3 and R6 from 2k + 1 to 2k + 2.
Theorem 2 ([3]). Define the sticker system γ = γG for
a linear grammar G = (Σ, N, P, S). If a linear grammar
G has only production rules of the forms X → xY y and
X → x for X, Y ∈ N , x, y ∈ T ∗, 1 ≤ |xy|, |x| ≤ 1 and
|y| ≤ 1, then L(γG) = L(G).
(Proof)

We define a set Yi for i = 1, · · · , k as follows.

Yi = {xu ∈ Σ∗ | a ⇒∗
γ (xu, x, 0), a ∈ A, |u| = i}

∪{ux ∈ Σ∗ | a ⇒∗
γ (x, ux,−|u|), a ∈ A, |u| = i}

It is easy to show that Yi ⊂ {w |Xi ⇒∗
G w, |w| ≥ k + 1}

and L(γG) ⊂ L(G). We prove Yi ⊃ {w |Xi ⇒∗
G w, |w| ≥

k+1} using induction on the length of |w|. Assume Xi ⇒∗
G

w and |w| ≥ k +1. If |w| ≤ 3k +2 then there exist x and u
satisfying w = xu and |u| = i such that (xu, x, 0) ∈ A3. So
we have w ∈ Yi. We assume Xi ⇒∗

G w and w′ ∈ Yj for any
w′ and j satisfying Xj ⇒∗

G w′ and |w′| < |w|. According
to the limitation of production rules in G, we have Xi ⇒G

x1Xi1y1 ⇒G x1x2Xi2y2y1 ⇒∗
G x1x2 · · ·xnyn · · · y2y1 = w

for xp, yp ∈ T ∗, |xp| ≤ 1, |yp| ≤ 1 and 1 ≤ |xpyp| (p =
1, · · · , n). If |w| > 3k + 2 then there exist m and Xj such
that ((|x1x2 · · ·xm| = k + 1 and |y1y2 · · · ym| ≤ k + 1)
or (|x1x2 · · ·xm| ≤ k + 1 and |y1y2 · · · ym| = k + 1))
and Xi ⇒∗

G x1x2 · · ·xmXjym · · · y2y1. We prove the case
for |x1x2 · · ·xm| ≤ k + 1 and |y1y2 · · · ym| = k + 1 in
the followings. The other case is similarly proved. Let
w′ = xm+1 · · ·xnyn · · · ym+1. We note |w′| > 3k + 2− (k +
1) − (k + 1) = k by |w| > 3k + 2. Since Xj ⇒∗

G w′ and
|w′| < |w|, we have w′ ∈ Yj using the assumption of the

induction. Since Xj ⇒∗
G w′ and |w′| ≥ k + 1, there ex-

ist x′ and u′ satisfying w′ = x′u′ and |u′| = j such that
a ⇒∗

γ (x′u′, x′, 0) for some a ∈ A. Let x = ym · · · ym−i+1,
u = ym−i · · · y1 and z = x1x2 · · ·xm. Since Xi ⇒∗

G zXjxu
and |u| = i, we have ((z, z, 0), (xu, u′x,−|u′|)) ∈ R4 and
(x′u′, x′, 0) ⇒γ (zx′u′xu, zx′u′x, 0). Since zx′u′xu = w
and |u| = i, we have w ∈ Yi

Next we prove L(G) ⊂ L(γG). Let w ∈ L(G). If
|w| ≤ 3k + 2 then (w,w, 0) ∈ A and w ∈ L(γG). As-
sume |w| > 3k + 2. According to the limitation of produc-
tion rules in G, we have S ⇒G x1Xi1y1 ⇒G x1x2Xi2y2y1

⇒∗
G w = x1x2 · · ·xnyn · · · y2y1 for xp, yp ∈ T ∗, |xp| ≤ 1,

|yp| ≤ 1 and 1 ≤ |xpyp| (p = 1, · · · , n). There exist m and
Xi such that ((|x1x2 · · ·xm| = k + 1 and |y1y2 · · · ym| ≤
k + 1) or (|x1x2 · · ·xm| ≤ k + 1 and |y1y2 · · · ym| = k + 1))
and S ⇒∗

G x1x2 · · ·xmXiym · · · y2y1. We prove the case
for |x1x2 · · ·xm| ≤ k + 1 and |y1y2 · · · ym| = k + 1 in
the followings. Let w′ = xm+1 · · ·xnyn · · · ym+1. Since
Xi ⇒∗

G w′ and |w′| ≥ k + 1, we have w′ ∈ Yi and there
exist x′ and u′ satisfying w′ = x′u′ and |u′| = i such that
a ⇒∗

γ (x′u′, x′, 0) for some a ∈ A. Since S = X1 ⇒∗
G

x1x2 · · ·xmXiym · · · y2y1 and |x1x2 · · ·xm| +|y1y2 · · · ym| ≤
2k + 2, we have ((x1 · · · xm, x1 · · · xm, 0), (ym · · · y1,
u′ym · · · y1, −i)) ∈ R6. Since µ((x1 · · ·xm, x1 · · · xm, 0),
µ((x′u′, x′, 0), (ym · · · y1, u′ym · · · y1, −i))) = (w,w, 0), we
have w ∈ L(γG).

Example 5. Consider the Language generated by linear
grammar G = ({S}, {a, b}, S, {S → ab, S → aSb}).
The language generated by G is L(G) = {anbn|n ≥ 1}.

Now we can induce the domino
aaaaabbbbb
aaaaabbbbb by using

pair of elements (a
a , b

bb) ∈ R6 , (aa
aa , bb

bb) ∈ R4

and
aabb
aab ∈ A3. All of elements in A and R are listed in

Appendix.

5. Conclusion

We can define the dominoes using set theoretical notations
in Haskell and simulate sticker systems, finite automata
and grammar systems. Using our system, we could find
some insufficient conditions to construct the sticker sys-
tems written in [3]. One of related work is implementa-
tion of HaLex [5]. HaLex is a Haskell library enables us
to model and manipulate a regular language. HaLex also
provide the facilities for defining deterministic and non de-
terministic finite automata, regular expressions etc. It does
not represent an infinite set as a language. One of the mer-
its of our modules is treating the generated languages as
an infinite set using lazy evaluations.

Acknowledgment

We would like to thank Ai Omodaka for her contribution
to write Haskell codes and the great support made during

56 Journal of Mathematics for Industry, Vol.1(2009A-7)

the research.

References

[1] Alhazov,A.,Cavaliere,M.: Computing by Observing
Bio-systems:The Case of Sticker Systems, LNCS
3384,Proc.DNA.,10(2005) 1–13.

[2] Kari,L., Paun,G., Rozenberg,G., Salomaa,A.,Yu,S.:
DNA computing, sticker systems, and universality,
Acta Informatica,35(1998) 401–420.

[3] Paun,G.,Rozenberg,G.: Sticker systems, Theoretical
Computer Science,204(1998) 183–203.

[4] Sakakibara,Y.,Kobayashi,S.: Sticker systems with
complex structures, Soft Computing,5(2001) 114–120.

[5] Saraiva,J.: HaLeX: A Haskell Library to Model, Ma-
nipulate and Animate Regular Languages , proceedings
of the ACM Workshop on Functional and Declarative
Programming in Education (FDPE/PLI’02), Pitts-
burgh, USA(2002).

Appendix

In Appendix, we show examples of sticker systems gener-
ated from automata and grammar by using our Haskell
module functions.
Example 6. For an automaton M1 = ({0, 1}, Σ, δ, 0, {1})
in Example 1, we have the sticker system γM1 as follows.

γM1 = (Σ, ρ, A, R)
ρ = {(a, a), (b, b)}
A = A1 ∪ A2

(A1)
b

b

ab

ab

ba

ba

aab

aab

baa

baa

aba

aba

bbb

bbb
...

(A2)
aaa

aa

bba

bb

abb

ab

bab

ba

baa

b

aab

a

aba

a

bbb

b

R = D ∪ F

(D)
aaa

aaa

bba

abb

aaa

baa

bba

bbb

abb

aab

bab

aba

abb

bab

bab

bba

aba

aaab

baa

aaba

aba

abab

baa

abba

aba

baab

baa

baba

aba

bbab

baa

bbba

aab

aaaa

bbb

aabb

aab

abaa

bbb

abbb

aab

baaa

bbb

babb

aab

bbaa

bbb

bbbb

baa

ab

baa

bb

aab

aa

aab

ba

aba

aa

aba

ba

bbb

ab

bbb

bb

aaa

aaa

aaa

aba

aaa

baa

aaa

bba

bab

aab

bab

abb

bab

bab

bab

bbb

bba

aab

bba

abb

bba

bab

bba

bbb

abb

aaa

abb

aba

abb

baa

abb

bba

(F)
b

ab

b

bb

a

aaa

a

aba

a

baa

a

bba

ab

aab

ba

aba

ab

bab

ba

bba

aa

aaaa

bb

aabb

aa

abaa

bb

abbb

aa

baaa

bb

babb

aa

bbaa

bb

bbbb
...

Example 7. For a linear grammar G1 = {{S}, {a, b}, S,
{S → ab, S → aSb}}, we have the sticker system γG1 as
follows.

γG1 = (Σ, ρ, A,R)
ρ = {(a, a), (b, b)}
A = A1 ∪ A2 ∪ A3

(A1)
ab

ab

aabb

aabb

(A2)
ab

b

aabb

abb

(A3)
ab

a

aabb

aab

R = R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5 ∪ R6

(R1) (
aa

aa
,

bb

bb
) (

aa

ab
,

bb

bb
)

(R2) (
aa

aaa
,

bb

b
) (

aa

aab
,

bb

b
)

(R3) (
a

aa
,

b

b
) (

a

ab
,

b

b
)

(
aa

aaa
,

bb

bb
) (

aa

aab
,

bb

bb
)

(R4) (
aa

aa
,

bb

ab
) (

aa

aa
,

bb

bb
)

(R5) (
aa

a
,

bb

abb
) (

aa

a
,

bb

bbb
)

(R6) (
a

a
,

b

ab
) (

a

a
,

b

bb
)

(
aa

aa
,

bb

abb
) (

aa

aa
,

bb

bbb
)

K.K.K.R. Perera
Graduate School of Mathematics, Kyushu University, Japan.
E-mail: kissani(at)math.kyushu-u.ac.jp
Y.Mizoguchi
Faculty of Mathematics, Kyushu University,Japan.
E-mail: ym(at)math.kyushu-u.ac.jp

