Implementation of Haskell modules for automata and Sticker systems
Perera，K．K．K．R．
Graduate School of Mathematics，Kyushu University
Mizoguchi，Yoshihiro
Faculty of Mathematics，Kyushu University

http：／／hdl．handle．net／2324／13974

[^0]
Implementation of Haskell modules for automata and Sticker systems

K.K.K.R.Perera and Yoshihiro Mizoguchi

Received on March 11, 2009 / Revised on March 17, 2009

Abstract

. We realized operations appeared in the theory of automata using Haskell languages. Using the benefits of functions of lazy evaluations in Haskell, we can express a language set which contains infinite elements as concrete functional notations like mathematical notations. Our modules can be used not only for analyzing the properties about automata and their application systems but also for self study materials or a tutorial to learn automata, grammar and language theories. We also implemented the modules for sticker systems. Paun and Rozenberg explained a concrete method to transform an automaton to a sticker system in 1998. We modified their definitions and improved their insufficient results. Using our module functions, we can easily define finite automata and linear grammars and construct sticker systems which have the same power of finite automata and linear grammars.

Keywords. Automata, Language, Sticker System, DNA Computing, Haskell

1. InTRODUCTION

The sticker system is a formal model based on sticking operations, which is an abstraction of the Watson-Crick complementarity. We use the term domino to represent double stranded DNA sequences with sticky ends. By using the sticking operator, dominoes can be annealed and formed a complete double stranded sequence. Paun and Rozenberg [3] explained a concrete method to transform automata to sticker systems. In this paper we are trying to introduce simple efficient transformation and implement it using Haskell module functions. We also indicate and improve the insufficient results in [3]. We modify the expression of dominoes and the sticking operator for realizing Haskell functions. We change the definition of a domino (D) from a string of pairs of alphabet to a triple (l, r, x) of two string l, r and an integer x. For example $\binom{\lambda}{C}\left[\begin{array}{c}A T \\ T A\end{array}\right]\binom{G C}{\lambda}$ in [3] is represented as $(A T G C, C T A,-1)$. According to this modification, the definition of sticking operator has been reformulated.

One of the benefits of using Haskell language is that it has descriptions for infinite set of strings using lazy evaluation schemes. For example, the infinite set $\{a, b\}^{*}$ is denoted by finite length of expression sstar ['a', 'b']. We use the take function to view contents of an infinite set (e.g. take 5 (sstar ['a', 'b']) is ["","a","b","aa","ba"]. Further using set theoretical notions in Haskell, we can easily realize the definitions of various kinds of set of dominoes. For example, to make a sticker system which generates the equivalent language of a finite automaton, we need an atom
set

$$
\begin{aligned}
A_{2}=\bigcup_{i=1}^{k+1}\{(x u, x, 0) \mid & x \in \Sigma^{*}, u \in \Sigma^{*},|x u|=k+2, \\
& \left.|u|=i, \delta^{*}(0, x u)=i-1\right\} .
\end{aligned}
$$

In Haskell notations, we have following function definitions.

```
aA2::Automaton-> [Domino]
aA2 m@(q,s,d,q0,f) = concat [(aA2' m i)| i<- [1..(k+1)]]
    where k = (length q)-1
aA2': : Automaton->Int-> [Domino]
aA2' m@(q,s,d,q0,f) i = [(x++u,x,0)| (x,u) <- xupair,
    (dstar d 0 (x++u)) ==(i-1)]
where xupair = [(x,u)|x<-(sigman s (k+2-i)),
            u<-(sigman s i)]
    k = (length q)}-
```

The precise definition of the generated sticker system is described in Section 3. We prove that the generated languages are equal by using our formulations.

The Haskell module can be downloaded from our homepage ${ }^{1}$.

2. Automaton Module

Let Σ is an alphabet and Σ^{*} is the set of all strings over Σ including the empty string λ. For a string w, we denote the length of w by $|w|$.

[^1]Definition 1. A finite automaton is a five-tuple of $M=$ $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where Q is the finite set of states, Σ is the alphabet, q_{0} is the initial state, F is the set of final states and $\delta: Q \times \Sigma \rightarrow Q$ is the transition function.

A transition function $\delta: Q \times \Sigma \rightarrow Q$ is generally extended to a function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ by $\delta^{*}(q, \lambda)=q$ and $\delta^{*}(q, x w)=\delta^{*}(\delta(q, x), w)$ for $q \in Q, x \in \Sigma$ and $w \in \Sigma^{*}$.
Definition 2. For a finite automaton $\mathrm{M}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, we define the language $L(M)$ accepted by M by $L(M)=$ $\left\{w \in \Sigma^{*} \mid \delta^{*}\left(q_{0}, w\right) \in Q_{F}\right\}$.
Example 1. Automata M_{1} and M_{2} is defined as follows. $M_{1}=\left(\{0,1\},\{a, b\}, \delta_{1}, 0,\{1\}\right)$ and $M_{2}=(\{0,1,2\},\{a, b\}$, $\left.\delta_{2}, 0,\{1\}\right)$, where $\delta_{1}(0, a)=0, \delta_{1}(0, b)=1, \delta_{1}(1, a)=$ $1, \delta_{1}(1, b)=0, \delta_{2}(0, a)=1, \delta_{2}(0, b)=2, \delta_{2}(1, a)=2$, $\delta_{2}(1, b)=0, \delta_{2}(2, a)=2, \delta_{2}(2, b)=2$. Figure 1 is the transition diagram for M_{1} and M_{2}. The examples are expressed as follows using our Haskell Modules.

```
m1::Automaton
m1 = ([0,1], ['a','b'], d1, 0, [1])
    where d1 0 'a' = 0
        d1 0 'b' = 1
        d1 1 'a' = 1
        d1 1 'b' = 0
```

m2: : Automaton
$\mathrm{m} 2=([0,1,2],[' a ', ' b '], d 2,0,[1])$
where d2 0 'a' = 1
$d 20^{\prime} b{ }^{\prime}=2$
d2 $1{ }^{\prime} \mathrm{a}$ ' $=2$
d2 $1^{\prime}{ }^{\prime} b^{\prime}=0$
d2 $2{ }^{\prime} \mathrm{a}$ ' = 2
d2 $2{ }^{\prime} b^{\prime}=2$

Figure 1: Example of finite automata

We note that $L\left(M_{1}\right)=\left\{\left.w \in \Sigma^{*}| | w\right|_{b}=1(\bmod 2)\right\}$, and $L\left(M_{2}\right)=\left\{a(b a)^{n} \mid n=0,1, \ldots\right\}$. In our module the function Automaton.language returns the accepted language. To compute the accepted language generated by M_{1}, we use Automaton.language m 1 , where m 1 is the automaton described in Haskell.

Following is a code for finding accepted language and their executions.

```
accepts::Automaton-> [String] -> [String]
accepts m ss = [w | w <- ss, (dstar d s0 w) 'elem' f]
        where (q, s, d, s0, f)=m
```

language::Automaton $->$ [String]
language $m=$ accepts m (sstar s)
where ($q, s, d, s 0, f$) $=m$
*AutomatonEx>take 10 \$ Automaton.language m1 ["b" , "ba" , "ab" , "baa" , "aba" , "aab" , "bbb" ,"baaa", "abaa", "aaba"]
*AutomatonEx>take 5 \$ Automaton.language m2 ["a", "aba", "ababa", "abababa", "ababababa"]

3. Sticker Module

Definition 3. Let Σ be a set of alphabet and Z a set of integers and $\rho \subseteq \Sigma \times \Sigma$. An element (l, r, n) of $\Sigma^{*} \times \Sigma^{*} \times \mathbf{Z}$ is a domino over (Σ, ρ), if the following conditions holds:

- If $n \geq 0$ then $(l[i+n], r[i]) \in \rho$, for $1 \leq i \leq \min (|l|-n,|r|)$
- If $n<0$ then $(l[i], r[i-n]) \in \rho$, for $1 \leq i \leq \min (|r|+n,|l|)$

We denote the set of all dominoes over (Σ, ρ) by D.
The possible shapes of the dominoes are illustrated as
 $x_{1} x_{2} \cdots x_{n}, x^{\prime}=x_{1}^{\prime} x_{2}^{\prime} \cdots x_{n}^{\prime}, u, v, \in \Sigma^{*}$ and $\left(x_{i}, x_{i}^{\prime}\right) \in \rho$ for $1 \leq i \leq n$. Sticky ends can be placed in the upper strand or lower strand.
Example 2. We can represent a double stranded sequence $\binom{\lambda}{C}\left[\begin{array}{c}A T \\ T A\end{array}\right]\binom{G C}{C G}$ in $[3]$ by $(A T G C, C T A C G,-1)$ in our module. Similarly, $\binom{G}{\lambda}\left[\begin{array}{c}A T \\ T A\end{array}\right]$ can be represented by $(G A T, T A, 1)$.
Definition 4. The sticking operator $\mu: D \times D \rightarrow D \cup\{\perp\}$ is defined as follows:

$$
\mu\left(\left(l_{1}, r_{1}, n_{1}\right),\left(l_{2}, r_{2}, n_{2}\right)\right)=\left\{\begin{array}{l}
\left(l_{1} l_{2}, r_{1} r_{2}, n_{1}\right) \\
\perp \quad(\text { otherwise })
\end{array}(\text { if }(*))\right.
$$

$\left.{ }^{*}\right)\left(l_{1} l_{2}, r_{1} r_{2}, n_{1}\right) \in D$ and $n_{1}+\left|r_{1}\right|-\left|l_{1}\right|=n_{2}$
Definition 5. Sticker System γ is a four tuple
$\gamma=(\Sigma, \rho, A, R)$ of an alphabet set $\Sigma, \rho \subseteq \Sigma \times \Sigma$, a finite set of axioms $A(\subseteq D)$ and a finite set of pairs of dominoes $R \subseteq D \times D$.

Let $Q=\left\{q_{0}, q_{1}, \ldots, q_{k}\right\}$ be a finite set, which consists of $k+1$ elements. For a finite automaton $M=\left(Q, \Sigma, \delta, q_{0}, F_{M}\right)$, the sticker system $\gamma_{M}=(\Sigma, \rho, A, R)$ is defined as follows:

$$
\begin{aligned}
\rho & =\{(a, a) \mid a \in \Sigma\} \\
A & =A_{1} \cup A_{2} \\
A_{1} & =\{(x, x, 0)|x \in L(M),|x| \leq k+2\}
\end{aligned}
$$

$$
\begin{aligned}
A_{2}= & \{(x u, x, 0)||x u|=k+2,|u|=i, \\
& \left.\delta^{*}\left(q_{0}, x u\right)=q_{i-1}, 1 \leq i \leq k+1\right\} \\
R= & R_{1} \cup F \\
R_{1}= & \{((\lambda, \lambda, 0),(x u, v x,-|v|)) \mid \\
& |x u|=k+2,|u|=i,|v|=j, \delta^{*}\left(q_{j-1}, x u\right)=q_{i-1}, \\
& 1 \leq i \leq k+1,1 \leq j \leq k+1\} \\
F= & \{((\lambda, \lambda, 0),(x, v x,-|v|)) \\
& \left||v|=i,|x|=j, \delta\left(q_{i-1}, x\right) \in F_{M},\right. \\
& 1 \leq i \leq k+1,1 \leq j \leq k+2\}
\end{aligned}
$$

For a sticker system $\gamma=(\Sigma, \rho, A, R)$, we define a relation \Rightarrow_{γ} on D as follows.

$$
x \Rightarrow_{\gamma} y \quad \stackrel{\text { def }}{\Longleftrightarrow} y=\mu(\alpha, \mu(x, \beta)) \text { for some }(\alpha, \beta) \in R
$$

Let \Rightarrow_{γ}^{*} be the reflective and transitive closure of \Rightarrow_{γ}.
Definition 6. The set of dominoes $L M(\gamma)$ generated by γ is defined by $L M(\gamma)=\left\{(l, r, 0)\left|a \Rightarrow^{*}(l, r, 0), a \in A,|l|=\right.\right.$ $|r|\}$. The language $L(\gamma)$ generated by γ is defined by $L(\gamma)=$ $\left\{l \in \Sigma^{*} \mid(l, r, 0) \in L M(\gamma)\right\}$.

Example 3. Consider the sticker system $\gamma_{M_{1}}$ generated by the automaton M_{1} in Example 1. Since $\delta_{1}^{*}(0, b b b)=1$ then the domino $(b b b, b, 0) \in A$. Also we have $((\lambda, \lambda, 0)$, $(b a b, b b b a b,-2)) \in F$ by $\delta^{*}(1, b a b) \in F_{M_{1}}$. The domino $(b b b, b, 0)$ is figured as \begin{tabular}{|lll}
b \& b \& b

b \&

 and $(b a b, b b b a b,-2)$ is figured as

\& \& \& b \& a

b \& b \& b \& a \& b

\& b \& b \& b \&
\end{tabular} .

$$
\mu((b b b, b, 0),(b a b, b b b a b,-2))=(b b b b a b, b b b b a b, 0))
$$

Since $(b b b, b, 0) \in A$ and $(b b b, b, 0) \Rightarrow{ }_{\gamma}^{*}(b b b b a b, b b b b a b, 0)$, we have $b b b b a b \in L\left(\gamma_{M_{1}}\right)$.

For $i=1, \ldots, k+1$, we define X_{i}, Y_{i} and F_{i} as follows:

$$
\begin{aligned}
& X_{i}=\left\{(x u, x, 0) \in A| | x u\left|=k+2,|u|=i, u, x \in \Sigma^{*}\right\}\right. \\
& Y_{i}=\left\{(x u , x , 0) \left|a \Rightarrow_{\gamma}^{*}(x u, x, 0), a \in A,|u|=i\right.\right. \\
&\left.u, x \in \Sigma^{*}\right\} \\
& Z_{i}=\left\{((\lambda, \lambda, 0),(x, v x,-i)) \in F\left||v|=i, v, x \in \Sigma^{*}\right\}\right.
\end{aligned}
$$

Lemma 1. Define the sticker system $\gamma=\gamma_{M}$ for a finite automaton $M=\left(Q, \Sigma, \delta, q_{0}, F_{M}\right)$. For $i=1,2, \ldots, k+1$ the followings hold.
(i) For $a \in A$, If $a \Rightarrow_{\gamma}^{*}(l, r, n)$, then $n=0$ and $|r| \leq|l|$ $\leq|r|+k+1$.
(ii) If $(l, r, 0) \in L M(\gamma)$, then $(l, r, 0) \in A$ or there exist $x, u, x^{\prime} \in \Sigma^{*}$ such that $|u|=i, 1 \leq|x|, 1 \leq$ $\left|x^{\prime}\right|, l=x^{\prime} u x$ and $\left((\lambda, \lambda, 0),\left(x^{\prime}, u x^{\prime},-i\right)\right) \in F_{i}$. i.e. $\mu\left((x u, x, 0),\left(x^{\prime}, u x^{\prime},-i\right)\right)=(l, r, 0)$ and $(x u, x, 0) \in$ Y_{i}.
(iii) $X_{i}=\left\{(x u, x, 0)| | u\left|=i,|x u|=k+2, u, x \in \Sigma^{*}\right.\right.$, $\left.\delta^{*}\left(q_{0}, x u\right)=q_{i-1}\right\}$.
(iv) If $(x u, x, 0) \in Y_{i}$ and $|x u| \leq k+2$ then $(x u, x, 0) \in X_{i}$.
(v) If $(x u, x, 0) \in Y_{i}$ and $|x u|>k+2$, then there exist $x^{\prime \prime}, u^{\prime}, x^{\prime} \in \Sigma^{*}$ such that $\left|x^{\prime} u\right|=k+2,1 \leq\left|u^{\prime}\right| \leq k+1$, $x^{\prime \prime} u^{\prime} x^{\prime}=x$ and $\left((\lambda, \lambda, 0),\left(x^{\prime} u, u^{\prime} x,-\left|u^{\prime}\right|\right)\right) \in R_{1}$. i.e. $\mu\left(\left(x^{\prime \prime} u^{\prime}, x^{\prime \prime}, 0\right),\left(x^{\prime} u, u^{\prime} x^{\prime},-\left|u^{\prime}\right|\right)\right)=(x u, x, 0)$ and $\left(x^{\prime \prime} u^{\prime}, x^{\prime \prime}, 0\right) \in Y_{\left|u^{\prime}\right|}$.
$\left(c f . \begin{array}{|l|l|ll|}\hline x " & u^{\prime} & x, & u \\ x " & u^{\prime} & x & \\ \hline\end{array}=\begin{array}{|ll|}\hline x & u \\ x & \\ \hline\end{array}\right)$
(vi) $Y_{i}=\left\{(x u, x, 0)| | u \mid=i, \delta^{*}\left(q_{0}, x u\right)=q_{i-1}\right.$,
$(k+2)\left||x u|, u, x \in \Sigma^{*}\right\}$.
(vii) $F=\bigcup_{i=1}^{k+1} Z_{i}$
(Proof) (i),(iii),(iv) and (vii) are trivial.
(ii) Let $(l, r, 0)$ be a domino and $((\lambda, \lambda, 0),(x u, v x,-|v|)) \in$ R_{1}. If $\mu((l, r, 0),(x u, v x,-|v|)) \neq \perp$ then $\mu((l, r, 0)$, $(x u, v x,-i))=(l x u, r v x, 0)$ and $0+|r|-|l|=-|v| .|l x u|-$ $|r v x|=|l|+|x|+|u|-|r|-|v|-|x|=|u| \neq 0$. So $\mu((l, r, 0),(x u, v x,-i)) \notin L M(\gamma)$.
Let $(x u, x, 0)$ be a domino with $x, u \in \Sigma^{*}, 1 \leq x$ and $1 \leq$ $|u| \leq k+1$. If $\mu\left((x u, x, 0),\left(l^{\prime}, r^{\prime}, n^{\prime}\right)\right) \neq \perp$ and $\left(x u l^{\prime}, x r^{\prime}, 0\right) \in$ $L M(\gamma)$, then $\left(l^{\prime}, r^{\prime}, n^{\prime}\right)$ is $\left(x^{\prime}, u x^{\prime},-|u|\right)$ for some $x^{\prime} \in \Sigma^{*}$ and $1 \leq x^{\prime}$. So there exist $\left((\lambda, \lambda, 0),\left(x^{\prime}, u x^{\prime},-|u|\right)\right) \in F$ and $a \Rightarrow_{\gamma}^{*}(x u, x, 0) \Rightarrow_{\gamma}(l, r, 0)$.
(v) Since $|x u|>k+2$, there exists a domino ($x^{\prime \prime} u^{\prime}, x^{\prime \prime}, 0$) such that $a \Rightarrow_{\gamma}^{*}\left(x^{\prime \prime} u^{\prime}, x^{\prime \prime}, 0\right) \Rightarrow_{\gamma}(x u, u, 0)$. This means there exists $\left((\lambda, \lambda, 0),\left(x^{\prime} u, u^{\prime} x^{\prime},-\left|u^{\prime}\right|\right)\right) \in R_{1}$ such that $\mu\left(\left(x^{\prime \prime} u^{\prime}, x^{\prime \prime}, 0\right),\left(x^{\prime} u, u^{\prime} x^{\prime},-\left|u^{\prime}\right|\right)\right)=\left(x^{\prime \prime} u^{\prime} x^{\prime} u, x^{\prime \prime} u^{\prime} x^{\prime}, 0\right)=$ $(x u, x, 0)$. So we have $x=x^{\prime \prime} u^{\prime} x^{\prime},\left|x^{\prime} u\right|=k+2$ and $1 \leq\left|u^{\prime}\right| \leq k+1$.
(vi) (\subset) Let $(x u, x, 0) \in Y_{i}$. If $|x u| \leq k+2$ then $\delta^{*}\left(q_{0}, x u\right)=$ q_{i-1} by (iii) and (iv). If $|x u|>k+2$ then there exists a domino ($\left.x^{\prime \prime} u^{\prime}, x^{\prime \prime}, 0\right) \in Y_{\left|u^{\prime}\right|}$ and $\left((\lambda, \lambda, 0),\left(x^{\prime} u, u^{\prime} x^{\prime},-\left|u^{\prime}\right|\right)\right)$ $\in R_{1}$ such that $x=x^{\prime \prime} u^{\prime} x$ by (v). Since $\left(x^{\prime \prime} u^{\prime}, x^{\prime \prime}, 0\right) \in Y_{\left|u^{\prime}\right|}$ we have $\delta^{*}\left(q_{0}, x^{\prime \prime} u^{\prime}\right)=q_{\left|u^{\prime}\right|-1}$. Since $\left((\lambda, \lambda, 0),\left(x^{\prime} u, u^{\prime} x^{\prime}\right.\right.$, $\left.\left.-\left|u^{\prime}\right|\right)\right) \in R_{1}$, we have $\delta^{*}\left(q_{\left|u^{\prime}\right|-1}, x^{\prime} u\right)=q_{|u|-1}$. So we have $\delta^{*}\left(q_{0}, x u\right)=\delta^{*}\left(q_{0}, x^{\prime \prime} u^{\prime} x^{\prime} u\right)=q_{|u|-1}=q_{i-1}$.
(\supset) Let $(x u, x, 0)$ be an element of the right-hand set. That is $\delta^{*}\left(q_{0}, x u\right)=q_{i-1},|u|=i$ and $(k+2)||x u|$. We prove $(x u, x, 0) \in Y_{i}$ using induction on n where $|x u|=n(k+2)$. If $|x u|=k+2$ then $(x u, x, 0) \in X_{i}$ by (iii), $(x u, x, 0) \in A$ and we have $(x u, x, 0) \in Y_{i}$.
Assume $(x u, x, 0) \in Y_{i}$ for any $x u \in \Sigma^{*}$ with $|x u|=n(k+$ 2). Let $(x u, x, 0)$ be a domino and $|x u|=(n+1)(k+2)$. We put $x=x^{\prime} u^{\prime} x^{\prime \prime}$ where $\left|x^{\prime \prime} u\right|=k+2,1 \leq\left|u^{\prime}\right| \leq k+1$ and $\delta^{*}\left(q_{0}, x^{\prime} u^{\prime}\right)=q_{\left|u^{\prime}\right|-1}$. Since $\left|x^{\prime} u^{\prime}\right|=|x u|-\left|x^{\prime \prime} u\right|=$ $n(k+2)$, we have $\left(x^{\prime} u^{\prime}, x^{\prime}, 0\right) \in Y_{i}$ by the hypothesis of the induction. Since $\delta^{*}\left(q_{\left|u^{\prime}\right|-1}, x^{\prime \prime} u\right)=\delta^{*}\left(\delta^{*}\left(q_{0}, x^{\prime} u^{\prime}\right), x^{\prime \prime} u\right)$ $=\delta^{*}\left(q_{0}, x^{\prime} u^{\prime} x^{\prime \prime} u\right)=q_{i-1}$, we have $\left((\lambda, \lambda, 0),\left(x^{\prime \prime} u, u^{\prime} x^{\prime \prime}\right.\right.$, $\left.\left.-\left|u^{\prime}\right|\right)\right) \in R_{1}$. Since $\mu\left(\left(x^{\prime} u^{\prime}, x^{\prime}, 0\right),\left(x^{\prime \prime} u, u^{\prime} x^{\prime \prime},-\left|u^{\prime}\right|\right)\right)=$ $\left(x^{\prime} u^{\prime} x^{\prime \prime} u, x^{\prime} u^{\prime} x^{\prime \prime}, 0\right)=(x u, x, 0)$, we have $\left(x^{\prime} u^{\prime}, x^{\prime}, 0\right) \Rightarrow_{\gamma}$ $(x u, x, 0)$ and $(x u, x, 0) \in Y_{i}$.

The idea of the proof of the next theorem is originally introduced by Paun and Rozenberg([3]) in 1998. It lacked several conditions and formal proofs in their paper. We modified and improved them and proved it using our formulations.

Theorem 1. Define the sticker system $\gamma=\gamma_{M}$ for a finite automaton $M=\left(Q, \Sigma, \delta, q_{0}, F_{M}\right)$. Then $L(\gamma)=L(M)$.
(Proof) (\subset) Let $w \in L\left(\gamma_{M}\right)$. Then we have $a \Rightarrow_{\gamma}^{*}(w, w, 0)$ for some $a \in A$. If $(w, w, 0) \in A$ then $w \in L(M)$ by definition. If $(w, w, 0) \notin A$ then there exist $(x u, x, 0)$ and $\left((\lambda, \lambda, 0),\left(x^{\prime}, u x^{\prime},-|u|\right)\right) \in F$ such that $a \Rightarrow_{\gamma}^{*}(x u, x, 0)$ and $\mu\left((x u, x, 0),\left(x^{\prime}, u x^{\prime},-|u|\right)\right)=(w, w, 0)$.
Since $a \Rightarrow_{\gamma}^{*}(x u, x, 0)$, we have $\delta^{*}\left(q_{0}, x u\right)=q_{|u|-1}$ from Lemma $1(\mathrm{vi})$. Since $\left((\lambda, \lambda, 0),\left(x^{\prime}, u x^{\prime},-|u|\right)\right) \in F$, we have $\delta^{*}\left(q_{|u|-1}, x^{\prime}\right) \in F_{M}$. Since $\delta^{*}\left(q_{0}, w\right)=\delta^{*}\left(q_{0}, x u x^{\prime}\right)$
$=\delta^{*}\left(q_{|u|-1}, x^{\prime}\right) \in F_{M}$, we have $w \in L(M)$.
($\supset)$ Let $w \in L(M)$. If $|w| \leq k+2$ then $(w, w, 0) \in A$ and $w \in L\left(\gamma_{M}\right)$.
If $k+2 \leq|w| \leq 2(k+2)$ then we put $w=w^{\prime} x^{\prime}$ where $\left|w^{\prime}\right|=$ $k+2$. If $\delta^{*}\left(q_{0}, w^{\prime}\right)=q_{i-1}$ then $\left(w^{\prime \prime} u, w^{\prime \prime}, 0\right) \in A$ where $w^{\prime}=w^{\prime \prime} u$ and $|u|=i$. Since $\delta^{*}\left(q_{i-1}, x^{\prime}\right)=\delta^{*}\left(\delta^{*}\left(q_{0}, w^{\prime}\right), x^{\prime}\right)$ $=\delta^{*}\left(q_{0}, w\right) \in F_{M}$, we have $\left((\lambda, \lambda, 0),\left(x^{\prime}, u x^{\prime},-i\right)\right) \in F$. Since $\mu\left(\left(w^{\prime \prime} u, w^{\prime \prime}, 0\right),\left(x^{\prime}, u x^{\prime},-1\right)\right)=\left(w^{\prime \prime} u x^{\prime}, w^{\prime \prime} u x^{\prime}, 0\right)=$ $(w, w, 0)$, we have $\left(w^{\prime \prime} u, w^{\prime \prime}, 0\right) \Rightarrow_{\gamma}(w, w, 0)$ and $w \in L\left(\gamma_{M}\right)$. If $|w|>2(k+2)$, let $w=w^{\prime} x^{\prime}$ where $(k+2)\left|\left|w^{\prime}\right|\right.$ and $\left|x^{\prime}\right| \leq k+2$. If $\delta^{*}\left(q_{0}, w^{\prime}\right)=q_{i-1}$ then $\left(w^{\prime \prime} u, w^{\prime \prime}, 0\right) \in Y_{i}$ where $w^{\prime}=w^{\prime \prime} u$ and $|u|=i$ by Lemma $1(\mathrm{vi})$. Since $\delta^{*}\left(q_{i-1}, x^{\prime}\right)=\delta^{*}\left(\delta^{*}\left(q_{0}, w^{\prime}\right), x^{\prime}\right)=\delta\left(q_{0}, w\right) \in F_{M}$, we have $\left((\lambda, \lambda, 0),\left(x^{\prime}, u x^{\prime},-i\right)\right) \in F$. Since $\mu\left(\left(w^{\prime \prime} u, w^{\prime \prime}, 0\right)\right.$,
$\left.\left(x^{\prime}, u x^{\prime},-i\right)\right)=\left(w^{\prime \prime} u x^{\prime}, w^{\prime \prime} u x^{\prime}, 0\right)=(w, w, 0)$, we have $(w, w, 0) \in L\left(\gamma_{M}\right)$.
Note: We correct the limit length of x in F from k to $k+2$ in [3]. Consider the sticker system $\gamma_{M_{1}}$ generated by the automaton M_{1} in Example 1 again. Since ($a b b, a b$, $0) \in A,((\lambda, \lambda, 0),(a b a, b a b a,-1)) \in F$ and $\mu((a b b, a b, 0)$, $(a b a, b a b a,-1))=(a b b a b a, a b b a b a, 0)$, we have $a b b a b a \in$ $L\left(\gamma_{M_{1}}\right)$. In the definition of F in [3], the limit of length $|x|$ for $(x, v x,-|v|) \in F$ is $k=1$. Since $|a b a|>1$, we do not have $((\lambda, \lambda, 0),(a b a, b a b a,-1))$ in F by the definition in [3]. So even $a b b a b a \in L\left(M_{1}\right)$, abbaba $\notin L\left(\gamma_{M_{1}}\right)$ according to the definition of sticker system described in [3].

4. Grammar Module

Definition 7. A grammar is a four tuple $G=(T, N, R, S)$ of terminal symbols T, non-terminal symbols N, transformation rules R and a start symbol S.
Definition 8. The language $L(G)$ generated by grammar $G=(\Sigma, N, R, S)$ is defined as $L(G)=\left\{w \in \Sigma^{*} \mid S \Rightarrow_{G}^{*} w\right\}$. For a grammar $\mathrm{g}=G$, (Grammar.language g) computes the $L(G)$.
Example 4. The grammars $G_{1}=(\{a, b\},\{S\},\{S \rightarrow a S b$, $S \rightarrow a b\}, S)$ and $G_{2}=(\{a, b\},\{S, A\},\{S \rightarrow A, S \rightarrow a S b$, $A \rightarrow a A, A \rightarrow a\}, S)$ are expressed as follows using our Haskell Modules.

```
gex1::Grammar
gex1=(['a','b'],['S'],[('S',"aSb"),('S',"ab")],'S')
gex2::Grammar
gex2=(['a','b'],['S','A'],[('S',"A"),('S',"aSb"),
('A',"aA"),('A',"a")],'S')
```

```
*GrammarExChar> gex1
("ab","S",[('S',"aSb"),('S',"ab")],'S')
*GrammarExChar>take 10 $ Grammar.language gex1
["ab", "aabb", "aaabbb", "aaaabbbb",
"aaaaabbbbb", "aaaaaabbbbbb",
"aaaaaaabbbbbbb", "aaaaaaaabbbbbbbb",
"aaaaaaaaabbbbbbbbb", "aaaaaaaaaabbbbbbbbbb"]
*GrammarExChar> gex2
("ab", "SA", [('S', "A"), ('S', "aSb"), ('A', "aA"),
('A',"a")],'S')
*GrammarExChar> take 10 $ Grammar.language
GrammarEx.gex2
["a", "aa", "aab", "aaabb", "aaa",
"aaaabbb", "aaaa", "aaab", "aaaab", "aaaaabbb"]
```

For a string $w=x_{1} x_{2} \cdots x_{n}$ and $1 \leq i \leq n, \operatorname{Left}(w, i)=$ $x_{1} \cdots x_{i}$ and $\operatorname{Right}(w, i)=x_{n-i+1} \cdots x_{n}$.

Definition 9. Let $N=\left\{X_{1}, X_{2}, \cdots, X_{k}\right\}$ be a finite set of k non-terminal symbols and $S=X_{1}$. For a linear grammar $G=(\Sigma, N, P, S)$, the sticker system $\gamma_{G}=(\sigma, \rho, A, R)$ is defined similar to [3] as follows.

$$
\begin{aligned}
\rho= & \{(a, a) \mid a \in \Sigma\} \\
X_{1}= & S\left(\text { if } i=1 \text { then } X_{i}=S\right) \\
T(i, k)= & \left\{w \in \Sigma^{*}\left|X_{i} \Rightarrow^{*} w,|w|=k\right\}\right. \\
T(i, l, r)= & \left\{\left(w_{l}, j, w_{r}\right) \in\left(\Sigma^{*} \times N \times \Sigma^{*}\right) \mid\right. \\
& \left.X_{i} \Rightarrow w_{l} X_{j} w_{r},\left|w_{l}\right|=l,\left|w_{r}\right|=r\right\} \\
A= & A_{1} \cup A_{2} \cup A_{3} \\
A_{1}= & \{(x, x, 0) \mid x \in T(1, m), m \leq 3 k+2\} \\
A_{2}= & \bigcup_{i=1}^{k}\{(u x, x,|u|) \mid \\
& w \in T(i, m), i+1 \leq m \leq 3 k+2, \\
& x=\operatorname{Right}(w, m-i), u=\operatorname{Left}(w, i)\} \\
A_{3}= & \bigcup_{i=1}^{k}\{(x u, x, 0) \mid \\
& w \in T(i, m), i+1 \leq m \leq 3 k+2, \\
& x=\operatorname{Left}(w, m-i), u=\operatorname{Right}(w, i)\} \\
R= & R_{1} \cup R_{2} \cup R_{3} \cup R_{4} \cup R_{5} \cup R_{6} \\
R_{1}= & \bigcup_{i=1}^{k+1} \bigcup_{l=0}\{((u x, x v,|u|),(z, z, 0)) \mid \\
& (w, j, z) \in T(i, k+1, l), u=\operatorname{Left}(w, i), \\
& x=\operatorname{Right}(w, i),|v|=j\} \\
R_{2}= & \bigcup_{i=1}^{k+1} \bigcup_{l=0}\{((x, x v, 0),(z u, z, 0)) \mid(x, j, w) \\
& \in T(i, l, k+1), z=\operatorname{Left}(w, k+1-i), \\
& u=\operatorname{Right}(w, i),|v|=j\}
\end{aligned}
$$

$$
\begin{aligned}
R_{3}= & \bigcup_{l=1}^{2 k+2}\{((x, x v, 0),(z, z, 0)) \mid(x, j, z) \in T(0, l, m) \\
& 0 \leq m \leq 2 k+2-l,|v|=j\} \\
R_{4}= & \bigcup_{i=1}^{k} \bigcup_{l=0}^{k+1}\{((z, z, 0),(x u, v x,-|v|)) \mid(z, j, w) \\
& \in T(i, l, k+1), x=\operatorname{Left}(w, k+1-i), \\
& u=\operatorname{Right}(w, i),|v|=j\} \\
R_{5}= & \bigcup_{i=1}^{k} \bigcup_{l=0}^{k+1}\{((u z, z,|u|),(x, v x,-|v|)) \mid(w, j, z) \\
& \in T(i, k+1, l), u=\operatorname{Left}(w, i), \\
& x=\operatorname{Right}(w, k+1-i),|v|=j\} \\
& 2 k+2 \\
R_{6}= & \bigcup_{l=1}\{((z, z, 0),(x, v x,-|v|)) \mid(z, j, x) \\
& \in T(1, m, l), 0 \leq m \leq 2 k+2-l,|v|=j\} \\
k= & |N|
\end{aligned}
$$

We modified the limitation of the production rules ([3]) in G to allow the form $X \rightarrow x Y y$ for $|x|=|y|=1$. To prove the next generalized theorem, we change the limit length of w in A from $3 k+1$ to $3 k+2$, the length of z in R_{1}, R_{2}, R_{4} and R_{5} from k to $k+1$, and the length of z in R_{3} and R_{6} from $2 k+1$ to $2 k+2$.
Theorem 2 ([3]). Define the sticker system $\gamma=\gamma_{G}$ for a linear grammar $G=(\Sigma, N, P, S)$. If a linear grammar G has only production rules of the forms $X \rightarrow x Y y$ and $X \rightarrow x$ for $X, Y \in N, x, y \in T^{*}, 1 \leq|x y|,|x| \leq 1$ and $|y| \leq 1$, then $L\left(\gamma_{G}\right)=L(G)$.
(Proof)
We define a set Y_{i} for $i=1, \cdots, k$ as follows.

$$
\begin{aligned}
Y_{i}= & \left\{x u \in \Sigma^{*}\left|a \Rightarrow_{\gamma}^{*}(x u, x, 0), a \in A,|u|=i\right\}\right. \\
& \cup\left\{u x \in \Sigma^{*}\left|a \Rightarrow_{\gamma}^{*}(x, u x,-|u|), a \in A,|u|=i\right\}\right.
\end{aligned}
$$

It is easy to show that $Y_{i} \subset\left\{w\left|X_{i} \Rightarrow{ }_{G}^{*} w,|w| \geq k+1\right\}\right.$ and $L\left(\gamma_{G}\right) \subset L(G)$. We prove $Y_{i} \supset\left\{w\left|X_{i} \Rightarrow_{G}^{*} w,|w| \geq\right.\right.$ $k+1\}$ using induction on the length of $|w|$. Assume $X_{i} \Rightarrow_{G}^{*}$ w and $|w| \geq k+1$. If $|w| \leq 3 k+2$ then there exist x and u satisfying $w=x u$ and $|u|=i$ such that $(x u, x, 0) \in A_{3}$. So we have $w \in Y_{i}$. We assume $X_{i} \Rightarrow_{G}^{*} w$ and $w^{\prime} \in Y_{j}$ for any w^{\prime} and j satisfying $X_{j} \Rightarrow_{G}^{*} w^{\prime}$ and $\left|w^{\prime}\right|<|w|$. According to the limitation of production rules in G, we have $X_{i} \Rightarrow_{G}$ $x_{1} X_{i_{1}} y_{1} \Rightarrow_{G} x_{1} x_{2} X_{i_{2}} y_{2} y_{1} \Rightarrow_{G}^{*} x_{1} x_{2} \cdots x_{n} y_{n} \cdots y_{2} y_{1}=w$ for $x_{p}, y_{p} \in T^{*},\left|x_{p}\right| \leq 1,\left|y_{p}\right| \leq 1$ and $1 \leq\left|x_{p} y_{p}\right| \quad(p=$ $1, \cdots, n)$. If $|w|>3 k+2$ then there exist m and X_{j} such that $\left(\left(\left|x_{1} x_{2} \cdots x_{m}\right|=k+1\right.\right.$ and $\left.\left|y_{1} y_{2} \cdots y_{m}\right| \leq k+1\right)$ or $\left(\left|x_{1} x_{2} \cdots x_{m}\right| \leq k+1\right.$ and $\left.\left.\left|y_{1} y_{2} \cdots y_{m}\right|=k+1\right)\right)$ and $X_{i} \Rightarrow_{G}^{*} x_{1} x_{2} \cdots x_{m} X_{j} y_{m} \cdots y_{2} y_{1}$. We prove the case for $\left|x_{1} x_{2} \cdots x_{m}\right| \leq k+1$ and $\left|y_{1} y_{2} \cdots y_{m}\right|=k+1$ in the followings. The other case is similarly proved. Let $w^{\prime}=x_{m+1} \cdots x_{n} y_{n} \cdots y_{m+1}$. We note $\left|w^{\prime}\right|>3 k+2-(k+$ 1) $-(k+1)=k$ by $|w|>3 k+2$. Since $X_{j} \Rightarrow_{G}^{*} w^{\prime}$ and $\left|w^{\prime}\right|<|w|$, we have $w^{\prime} \in Y_{j}$ using the assumption of the
induction. Since $X_{j} \Rightarrow_{G}^{*} w^{\prime}$ and $\left|w^{\prime}\right| \geq k+1$, there exist x^{\prime} and u^{\prime} satisfying $w^{\prime}=x^{\prime} u^{\prime}$ and $\left|u^{\prime}\right|=j$ such that $a \Rightarrow_{\gamma}^{*}\left(x^{\prime} u^{\prime}, x^{\prime}, 0\right)$ for some $a \in A$. Let $x=y_{m} \cdots y_{m-i+1}$, $u=y_{m-i} \cdots y_{1}$ and $z=x_{1} x_{2} \cdots x_{m}$. Since $X_{i} \Rightarrow{ }_{G}^{*} z X_{j} x u$ and $|u|=i$, we have $\left((z, z, 0),\left(x u, u^{\prime} x,-\left|u^{\prime}\right|\right)\right) \in R_{4}$ and $\left(x^{\prime} u^{\prime}, x^{\prime}, 0\right) \Rightarrow_{\gamma}\left(z x^{\prime} u^{\prime} x u, z x^{\prime} u^{\prime} x, 0\right)$. Since $z x^{\prime} u^{\prime} x u=w$ and $|u|=i$, we have $w \in Y_{i}$

Next we prove $L(G) \subset L\left(\gamma_{G}\right)$. Let $w \in L(G)$. If $|w| \leq 3 k+2$ then $(w, w, 0) \in A$ and $w \in L\left(\gamma_{G}\right)$. Assume $|w|>3 k+2$. According to the limitation of production rules in G, we have $S \Rightarrow_{G} x_{1} X_{i_{1}} y_{1} \Rightarrow_{G} x_{1} x_{2} X_{i_{2}} y_{2} y_{1}$ $\Rightarrow_{G}^{*} w=x_{1} x_{2} \cdots x_{n} y_{n} \cdots y_{2} y_{1}$ for $x_{p}, y_{p} \in T^{*},\left|x_{p}\right| \leq 1$, $\left|y_{p}\right| \leq 1$ and $1 \leq\left|x_{p} y_{p}\right|(p=1, \cdots, n)$. There exist m and X_{i} such that $\left(\left(\left|x_{1} x_{2} \cdots x_{m}\right|=k+1\right.\right.$ and $\left|y_{1} y_{2} \cdots y_{m}\right| \leq$ $k+1)$ or $\left(\left|x_{1} x_{2} \cdots x_{m}\right| \leq k+1\right.$ and $\left.\left.\left|y_{1} y_{2} \cdots y_{m}\right|=k+1\right)\right)$ and $S \Rightarrow{ }_{G}^{*} x_{1} x_{2} \cdots x_{m} X_{i} y_{m} \cdots y_{2} y_{1}$. We prove the case for $\left|x_{1} x_{2} \cdots x_{m}\right| \leq k+1$ and $\left|y_{1} y_{2} \cdots y_{m}\right|=k+1$ in the followings. Let $w^{\prime}=x_{m+1} \cdots x_{n} y_{n} \cdots y_{m+1}$. Since $X_{i} \Rightarrow_{G}^{*} w^{\prime}$ and $\left|w^{\prime}\right| \geq k+1$, we have $w^{\prime} \in Y_{i}$ and there exist x^{\prime} and u^{\prime} satisfying $w^{\prime}=x^{\prime} u^{\prime}$ and $\left|u^{\prime}\right|=i$ such that $a \Rightarrow_{\gamma}^{*}\left(x^{\prime} u^{\prime}, x^{\prime}, 0\right)$ for some $a \in A$. Since $S=X_{1} \Rightarrow_{G}^{*}$ $x_{1} x_{2} \cdots x_{m} X_{i} y_{m} \cdots y_{2} y_{1}$ and $\left|x_{1} x_{2} \cdots x_{m}\right|+\left|y_{1} y_{2} \cdots y_{m}\right| \leq$ $2 k+2$, we have $\left(\left(x_{1} \cdots x_{m}, x_{1} \cdots x_{m}, 0\right),\left(y_{m} \cdots y_{1}\right.\right.$, $\left.\left.u^{\prime} y_{m} \cdots y_{1},-i\right)\right) \in R_{6}$. Since $\mu\left(\left(x_{1} \cdots x_{m}, x_{1} \cdots x_{m}, 0\right)\right.$, $\left.\mu\left(\left(x^{\prime} u^{\prime}, x^{\prime}, 0\right),\left(y_{m} \cdots y_{1}, u^{\prime} y_{m} \cdots y_{1},-i\right)\right)\right)=(w, w, 0)$, we have $w \in L\left(\gamma_{G}\right)$.

Example 5. Consider the Language generated by linear grammar $G=(\{S\},\{a, b\}, S,\{S \rightarrow a b, S \rightarrow a S b\})$.
The language generated by G is $L(G)=\left\{a^{n} b^{n} \mid n \geq 1\right\}$.

Now we can induce the domino $\begin{aligned} & \text { aaaaabbbbb } \\ & \text { aaaaabbbbb }\end{aligned}$ by using pair of elements $\left(\begin{array}{c}\mathrm{a} \\ \mathrm{a}\end{array}, \begin{array}{c}\mathrm{b} \\ \mathrm{bb}\end{array}\right) \in R_{6},\left(\begin{array}{c}\mathrm{aa} \\ \mathrm{aa}\end{array}, \begin{array}{c}\mathrm{bb} \\ \mathrm{bb}\end{array}\right) \in R_{4}$ and | $\begin{array}{l}\text { aabb } \\ \text { aab }\end{array}$ |
| :--- |$\in A_{3}$. All of elements in A and R are listed in Appendix.

5. Conclusion

We can define the dominoes using set theoretical notations in Haskell and simulate sticker systems, finite automata and grammar systems. Using our system, we could find some insufficient conditions to construct the sticker systems written in [3]. One of related work is implementation of HaLex [5]. HaLex is a Haskell library enables us to model and manipulate a regular language. HaLex also provide the facilities for defining deterministic and non deterministic finite automata, regular expressions etc. It does not represent an infinite set as a language. One of the merits of our modules is treating the generated languages as an infinite set using lazy evaluations.

Acknowledgment

We would like to thank Ai Omodaka for her contribution to write Haskell codes and the great support made during
the research.

References

[1] Alhazov,A.,Cavaliere,M.: Computing by Observing Bio-systems:The Case of Sticker Systems, LNCS 3384,Proc.DNA.,10(2005) 1-13.
[2] Kari,L., Paun,G., Rozenberg,G., Salomaa,A.,Yu,S.: DNA computing, sticker systems, and universality, Acta Informatica,35(1998) 401-420.
[3] Paun,G.,Rozenberg,G.: Sticker systems, Theoretical Computer Science,204(1998) 183-203.
[4] Sakakibara,Y.,Kobayashi,S.: Sticker systems with complex structures, Soft Computing,5(2001) 114-120.
[5] Saraiva,J.: HaLeX: A Haskell Library to Model, Manipulate and Animate Regular Languages , proceedings of the ACM Workshop on Functional and Declarative Programming in Education (FDPE/PLI'02), Pittsburgh, USA(2002).

Appendix

In Appendix, we show examples of sticker systems generated from automata and grammar by using our Haskell module functions.
Example 6. For an automaton $M_{1}=(\{0,1\}, \Sigma, \delta, 0,\{1\})$ in Example 1, we have the sticker system $\gamma_{M_{1}}$ as follows.

$$
\begin{aligned}
\gamma_{M_{1}} & =(\Sigma, \rho, A, R) \\
\rho & =\{(a, a),(b, b)\} \\
A & =A_{1} \cup A_{2}
\end{aligned}
$$

(A1)

b	ab	ba	aab	baa	aba	bbb
b	ab	ba	aab	baa	aba	bbb

(A2)

(D)

Example 7. For a linear grammar $G_{1}=\{\{S\},\{a, b\}, S$, $\{S \rightarrow a b, S \rightarrow a S b\}\}$, we have the sticker system $\gamma_{G_{1}}$ as follows.

$$
\begin{aligned}
\gamma_{G_{1}} & =(\Sigma, \rho, A, R) \\
\rho & =\{(a, a),(b, b)\} \\
A & =A_{1} \cup A_{2} \cup A_{3}
\end{aligned}
$$

(A1)
(A2)

$a b$ $a b$	aabb aabb
$a b$ $a a b b$ b $a b b$ $a b$ a aabb aab	

$$
R=R_{1} \cup R_{2} \cup R_{3} \cup R_{4} \cup R_{5} \cup R_{6}
$$

(R1)

(R3)

(R4)

(R5)

(R6)

K.K.K.R. Perera

Graduate School of Mathematics, Kyushu University, Japan.
E-mail: kissani(at)math.kyushu-u.ac.jp
Y.Mizoguchi

Faculty of Mathematics, Kyushu University,Japan.
E-mail: ym(at)math.kyushu-u.ac.jp

[^0]: 出版情報：Journal of Math－for－Industry（JMI）．1（A），pp．51－56，2009－04－08．九州大学大学院数理学研究院
 バージョン：
 権利関係：

[^1]: ${ }^{1}$ http://haskell.math.kyushu-u.ac.jp/

