
Implementation of IEEE 802.15.4 Unslotted

CSMA/CA Protocol on Contiki OS

Hamadoun Tall, Gérard Chalhoub, Michel Misson
Clermont-Université

LIMOS UMR 6158 CNRS

Aubière, France

Abstract— IEEE 802.15.4 is a standard designed for low rate

wireless personal area network. This standard uses the Carrier

Sensing Multiple Access/Collision Avoidance (CSMA/CA)

algorithm to manage the medium access process. CSMA/CA is a

random wireless access algorithm that allows each node with

equal probability to access the channel. Having a compliant

implementation of CSMA/CA algorithm which follows the IEEE

802.15.4 specifications is very important in order to obtain

realistic results. Some of the well-known Wireless Sensor

Networks (WSNs) operating systems such as Contiki OS do not

provide a compliant version. In this paper, we present an

implementation of the IEEE 802.15.4 unslotted CSMA/CA

protocol on Contiki OS. Simulation results using Contiki OS

Cooja simulator showed that our implementation is compliant

and achieves a better packet delivery rate and better throughput

compared to the provided CSMA/CA version on Contiki OS.

Keywords—IEEE 802.15.4, CSMA/CA, Contiki, performance

evaluation, throughput.

I. INTRODUCTION

IEEE 802.15.4 [1] is a short range wireless communication

standard that offers low complexity, low data rate

transmission and low energy consumption. It is widely used

in the wireless sensor networks applications and it provides a

theoretical throughput of 250 Kbps for resource constraints

and low cost wireless sensor nodes.

The IEEE 802.15.4 standard allows two types of channel

access mechanisms: beacon enabled and non-beacon enabled.

The latter case uses unslotted carrier sense multiple access

with collision avoidance (CSMA/CA), whereas the former

uses a slotted CSMA/CA algorithm with a super frame

structure. CSMA/CA makes each node use a randomized

waiting time before trying to access the communication

medium. The use of a random mechanism helps to reduce

collisions and interferences in the network. The CSMA/CA

of IEEE 802.15.4 is very widely used in MAC protocols that

are based on carrier sensing. The ZigBee standard MAC

algorithm is also based on it [2]. Contiki [3] is one of the

most famous low-power operating systems used for

simulations and testbeds of wireless sensor network

protocols. Nevertheless, Contiki does not provide a compliant

implementation of this CSMA/CA algorithm [10].

The goal of this work is to provide an implementation

evaluation of the IEEE 802.15.4 unslotted CSMA/CA

standard version on Contiki 2.7. This implementation is based

on the Rime [12] networking protocol stack of Contiki OS.

The remainder of this paper is organized as follow. In section

II, we provide an overview of different implementations of

the CSMA/CA on different simulators and operating systems.

In section III, we describe in details the CSMA/CA algorithm

and we present our modifications to the Contiki 2.7

CSMA/CA implementation. Simulation results are presented

in section IV, and the paper is concluded in section V.

II. RELATED WORK

In [4] and [5], authors present a throughput analysis of the

IEEE 802.15.4 CSMA/CA algorithm using OPNET

simulator. A model for the IEEE 802.15.4 GTS mechanism is

implemented. The work of these two papers address the

maximum throughput of IEEE 802.15.4 channel but the limits

imposed by the capacities of WSNs operating systems are

ignored. Hence, the reported maximum channel capacity may

not be an accurate estimation from an application perspective.

An analytical throughput evaluation of the IEEE 802.15.4

slotted CSMA/CA algorithm is presented in [9]. Analytical

models typically require simplifying assumptions to produce

results. However, in real WSNs, these assumptions may not

be true in many cases [8]. To support analytical results,

simulations or experimentations are needed to validate the

obtained results.

In [16], a model of discrete Markov chain that can

dynamically represent different network loads is proposed to

evaluate the IEEE 802.15.4 slotted CSMA/CA algorithm. By

computing the steady-state distribution probability of the

Markov chain, authors present an evaluation formula for

throughput, energy consumption, and access latency. They

further analyse the parameters that influence performance

like packet arrival rate, initial backoff exponent and

maximum number of backoffs. To validate the proposed

model, NS2 simulator is used to evaluate the performance of

the 802.15.4 CSMA/CA algorithm under different scenarios.

In [17], authors provide a performance evaluation of the

CSMA/CA algorithm based on the NS2 simulator in several

scenarios. They also conducted a performance comparison of

the CSMA/CA between IEEE 802.15.4 and IEEE 802.11.

In [18], using OMNeT++ simulator, authors present the

results of performance evaluation of four scheduling

algorithms: Random Select (RS), Destination Priority

Queueing (DPQ), Longest Queue First (LQF), and Shortest

Packet First (SPF) designed for the unslotted CSMA/CA

algorithm to address the issues of fairness and bandwidth

efficiency. From the simulation results, they showed that

under uniform traffic conditions, the LQF with buffer size of

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

PEMWN - 2015 Conference Proceedings

Volume 4, Issue 04

Special Issue - 2016

1

13 and 78 bytes has the best performance in terms of fairness,

while for throughput and packet delay, the DPQ with the

maximum buffer size of 1538 bytes gives the best result.

Analytical studies and evaluation by simulation often fail

to take into account the architecture of the operating system

and the stack overhead on the network protocols. On the

other hand, simulators such as Cooja [11] and TOSSIM [21]

emulate the operation system constraint (Contiki and TinyOS

[14], respectively) during the execution of the protocols.

In [13], authors present TKN15.4, an IEEE 802.15.4

MAC layer implementation for TinyOS 2. In this

implementation, the MAC layer specifies the initial

CSMA/CA parameters but the algorithm itself is

implemented and executed in the radio driver. The radio

driver is also responsible for performing any random backoffs

and for the transmission of acknowledgements. According to

the authors, on a typical mote platform, some requirements

cannot be met by a platform independent MAC protocol [15],

rather they should be pushed from the MAC layer to the

Physical layer, ideally to the hardware level. Consequently

they argue that the CSMA/CA algorithm and the transmission

of acknowledgements should be exposed as services by the

radio abstraction. For this reason, they consider it as a part of

the execution environment rather than the TKN15.4 MAC.

In [19], authors present an experimental evaluation of the

Slotted CSMA/CA algorithm by considering realistic

conditions using TelosB motes and an implementation of the

protocol over TinyOS. The obtained results are compared to

the ones presented in [20]. Results in terms of average delay

show the gap between theoretical and empirical approaches

and they give some implementation considerations that need

to be taken into account when designing theoretical models

for evaluating the delay in WSNs in order to have a more

accurate model to work with.

In [10], authors present an analytical approach and

simulation results of unslotted CSMA/CA algorithm with

Cooja WSN simulator. The authors showed that using

Contiki OS with the default CSMA/CA implementation, a

node can only transmit a maximum of 8 kbps. To enhance the

network throughput, authors propose an amelioration of the

default implemented version of CSMA/CA on Contiki OS.

They modified the CSMA/CA algorithm waiting time before

performing the Clear channel Assessment (CCA). For the

null radio duty cycling algorithm, this time is 125 ms. The

CSMA/CA MAC layer uses a callback timer (ctimer) of

Contiki to invoke the function responsible for performing the

CSMA/CA MAC layer activities corresponding to a packet

transmission. The modification was to set the value of the

callback timer to 0, so that, in case there is a packet in the

MAC layer queue, CSMA/CA mechanism immediately

performs clear channel assessment. Simulation results using

Cooja simulator showed that the modification increases the

throughput of each node in the network. In this

implementation, node throughput can reach 45 kbps instead

of 8 kbps with Contiki original CSMA/CA implementation.

This modification improves the throughput for each node, but

some important specifications of the standard CSMA/CA

algorithm are missing. The increasing backoff window in

case of a CCA busy is not respected. Moreover, when a node

has only one packet in its MAC layer queue, the backoff

window is not respected but instead the packet is sent

immediately.

III. IMPLEMENTING CSMA/CA STANDARD

VERSION ON CONTIKI 2.7

Having a standard implementation of CSMA/CA on Contiki

OS is important. We need this MAC layer algorithm to be

used with other upper layer protocols for performance

evaluation. The aim of this paper is to present an

implementation of the unslotted CSMA/CA version on

Contiki OS which respects the specifications of the IEEE

802.15.4 standard version. In this section, we will describe in

details the available implementation of the CSMA/CA

algorithm in Contiki OS by identifying the parts that do not

respect the standard specifications. We will also explain the

modifications that we made in order to make it compliant to

the IEEE 802.15.4 standard.

On Contiki OS [3] without radio duty cycling mechanism,

when the MAC layer running CSMA/CA algorithm receives

a data packet for the upper layer, the packet is enqueued in

the MAC layer buffer. But, when the received packet is a

broadcast packet, it is not enqueued; rather, it is diffused

straight-away, without performing any carrier sensing. The

unicast packet is also treated as a broadcast packet when the

MAC queue is full. It means that, if no space is available in

the MAC layer to enqueue the unicast packet, it is transmitted

without any carrier sensing. When the MAC layer sent an

unicast packet as a broadcast packet, this packet is not

acknowledged and thus it is not retransmitted in case of data

collision or corruption. That leads to data loss and reduces the

throughput of the network. When the null radio duty cycling

mechanism is activated on Contiki OS, whenever the MAC

layer running CSMA/CA algorithm has a packet to transmit,

it delays medium carrier sensing to 125 ms. Afterwards, it

performs carrier sensing and if no activity is detected, the

packet is transmitted. If packets acknowledgement (ACK) is

enabled, the MAC layer waits for a predefined interval of

time to detect the ACK message. If no ACK is received in the

allotted time interval (192 us), the system backs off for a

random amount of time. The interval of the random backoff

depends on the Channel Check Interval (CCI) used by the

radio duty cycling mechanism instead of the standard known

value of the CSMA/CA algorithm. The backoff time is 125

ms which is equivalent to the default value of the CCI for null

radio duty cycling on Contiki OS. When the MAC layer tries

to transmit a data packet and it senses that the channel is

busy, it backs off for a random amount of time, like already

stated above. After every successful packet transmission, the

MAC layer with null duty cycling and CSMA/CA algorithm

waits for 125 ms before trying to transmit the next packet in

the MAC layer queue.

This strange behaviour of the implemented CSMA/CA on

Contiki OS limits the throughput as shown in [10]. Our

implementation of the CSMA/CA algorithm respects the

specifications of the standard version. The main part of the

algorithm presented in Fig.1 is described by the following

paragraph.

For each transmission attempt, each node holds the

following tree variables: NB, CW and BE. NB is the number

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

PEMWN - 2015 Conference Proceedings

Volume 4, Issue 04

Special Issue - 2016

2

of times the CSMA/CA algorithm was required to backoff

while attempting the current transmission. CW represents the

number of consecutive positive CCAs that need to be done

before the transmission starts. BE is the backoff exponent, it

is the maximum number of backoff periods that a node will

wait before attempting to assess the channel.

First, NB, CW, and BE are respectively initialized to 0, 1,

and BEmin. At the reception of a data packet, any transmission

activity is delayed (backoff state) for a random number of

backoff periods in the range (0, 2BE - 1) [step 1]. After this

delay, channel sensing is performed for one backoff period

[step 2]. If the channel is assessed to be busy [step 3], CW is

set to 1, NB and BE are increased by 1, ensuring that BE is

not bigger than BEmax, and the algorithm returns to step 1. In

case NB reaches 4, the algorithm will unsuccessfully

terminate, which means that the node does not succeed in

accessing the channel. If the channel is assessed to be idle,

CW is set to 0. When CW is equal to 0, the transmission may

then start.

Fig. 1: IEEE 802.15.4 unslotted CSMA/CA algorithm.

IV. SIMULATIONS ENVIRONMENT AND

PERFORMANCE EVALUATION

We evaluated the performance of our CSMA/CA

implementation by means of simulation performed with the

Cooja simulator [11]. Cooja is a flexible Java-based simulator

designed for simulating sensor networks running the Contiki

operating system [3].

A. Results analysis

To analyse the performance of our CSMA/CA

implementation, we considered a wide range of simulation

settings using a star topology. We chose to evaluate the

performance of our implementation according to the

following metrics: (i) respect of the backoff duration taking

into account the Backoff Exponent (BE), (ii) packet reception

rate at the sink node which gives an idea about the capacity of

the CSMA/CA algorithm to efficiently deliver the data

packets, (iii) the received throughput (S) at the sink node

according to the offered load (G) which shows the capacity of

the network to support heavy traffic.

In our results, each point of the graphic is an average

value over ten simulations. We compare the results of our

CSMA/CA implementation with results obtained by the

default CSMA/CA version provided on Contiki OS and also

with the modified CSMA/CA version proposed by [10].

B. Respecting backoff duration according to BE value

Using a scenario of two nodes, one sink and one sender,

where the sender has to transmit one data packet per second

to the sink, we note the number of backoff periods for the

twenty first packets before the CCA mechanism evaluation.

Each backoff period is equal to 320 us.

Fig. 2 shows that the backoff duration in terms of backoff

periods before performing the CCA for each packet is less

than 8 which respects the IEEE 802.15.4 unslotted

CSMA/CA specifications. Since in this scenario we have

only one sender transmitting to the sink, there is no

interference or collision so the maximum backoff periods

before each CCA should remain below or equal to 2BEmin - 1

= 7.

In Fig. 3, we use a scenario of 9 nodes where 8

senders have to transmit 2 data packets per second to the sink.

We note the number of backoff periods consumed by the

node number 4 before the CCA. We notice that in case of

CCA busy or packet collision (ACK message is not receive)

the BE value is increased.

Fig. 2: Backoff duration, 2 nodes scenario.

Fig. 3: Backoff duration, 9 nodes scenario.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

PEMWN - 2015 Conference Proceedings

Volume 4, Issue 04

Special Issue - 2016

3

C. Packet reception rate at the sink node

In this scenario, we use a star topology of 9 nodes (one sink

and 8 senders) to evaluate the packet reception rate (the

reception rate being the ratio of the number of received

packets over the number of generated packets). We varied the

packet generation rate for each node in the network (except

the sink node) in {1 pkt/s, 4 pkt/s, 8 pkt/s, 12 pkt/s, 16 pkt/s,

20 pkt/s, 24 pkt/s, 28 pkt/s}. Where 1 pkt/s represents an

underloaded network, whereas 28 pkt/s represents an

overloaded network.

Fig. 4 shows that the packet reception rate of our

version of CSMA/CA is greater than 60% even under a high

traffic load. Whereas the provided CSMA/CA version on

Contiki OS gives very low reception rates essentially due to

the long periods of backoff that nodes under go before each

transmission.

Fig. 4: Packet reception rate vs offered load.

D. Offered load and throughput

On Contiki OS, CSMA/CA algorithm is implemented

using timers and events. The way events are handled in the

operating system has an impact on the throughput. Even

though the analytical approach states that IEEE 802.15.4

unslotted CSMA/CA achieves a certain throughput, we

cannot conclude that the stated throughput can be achieved

by user application. Contiki processes run in a cooperative

context and the process of sending a data packet may not

respect the schedule of needed traffic load. This makes a

challenge to have each node to provide the offered load of

250 kbps. Results are obtained using the same previous

topology. Each point is an average value of ten simulations.

Figures 5 and 6 show the received throughput on the sink

node depending on the offered load. Fig. 5 represents the

results obtained with the provided CSMA/CA on Contiki OS

and Fig. 6 compares the results of our implemented version

with the modified version (callbackTimeNull CSMA/CA)

proposed in [10] where the callback timer for CCA

mechanism evaluation is set to 0.

In fig. 5, we present the traffic that was sent in order to

show the limitation of the default CSMA/CA, whereas in Fig.

6, the offered load represents the traffic that is generated and

offered to the MAC layer.

Fig. 5 shows how the throughput gets a boost once the

packet queues are full. Indeed, this is due to the fact that the

provided version of CSMA/CA sends packets without any

delay when a packet is generated or received and the packet

queue is full. The throughput of our implementation

outperforms the one obtained with the provided CSMA/CA

on Contiki OS. That is essentially due to the delay of 125 ms

used by Contiki CSMA/CA before sending a new packet

[10]. In our case, only the backoff mechanism of the standard

is used before the transmission.

The results of callbackTimeNull CSMA/CA version

outperform our implemented version when the offered load is

less than 50 kbps. This is because in callbackTimeNull

CSMA/CA when the node has only one packet in the MAC

buffer queue, the packet is immediately sent without

backoffs. But in our standard version, in any case we fire a

backoff before CCA mechanism evaluation preceding data

transmission.

Notice that in both cases the offered load is less than 250

kbps. It is a challenge to achieve the offered load of 250 kbps

because on Contiki OS, processes run in the cooperative

context, and these processes run sequentially with respect to

other processes in this cooperative context. A cooperative

code must run to completion before other cooperatively
scheduled code can run. This mechanism affect the execution

time of an event when the timer used to schedule this event is

the etimer (event timer). The timer used for packet generation

on Contiki is the event timer that can explain why the offered

load is limited.

Fig. 5: Sent traffic vs throughput, provided version of CSMA/CA.

Fig. 6: Offered load vs throughput, implemented version and

CallbackTimerNull version of CSMA/CA.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

PEMWN - 2015 Conference Proceedings

Volume 4, Issue 04

Special Issue - 2016

4

V. CONCLUSION

The CSMA/CA is one of the most used algorithms to access

the wireless medium in loosely synchronised wireless

networks. The IEEE 802.15.4 standard proposes an unslotted

CSMA/CA that is not provided on Contiki OS. In this paper,

we propose an implementation of unslotted CSMA/CA which

respects the specifications of the IEEE 802.15.4 standard.

Simulation results using Cooja simulator show that our

implementation respects the IEEE 802.15.4 specifications and

outperforms the CSMA/CA default version provided on

Contiki OS in terms of packets reception rate and throughput.

Using Contiki OS we were not able to achieve the desired

offered load. This is essentially due to the fact that the timer

that is used for generating data packets is interrupted by the

timer used for the CSMA/CA. Our future work will focus on

how to provide offered load of 250 kbps using Contiki OS.

We also intend to evaluate our implementation on a testbed

and implement the slotted version of CSMA/CA on Contiki

OS in our future work.

REFERENCES

[1] Part 15.4: Wireless Medium Access Control (MAC) and Physical

Layer(PHY) Specifications for Low-Rate Wireless Personal Area

Networks (LR-WPANs), IEEE Std. 802.15.4, 2006.

[2] Z. Aliance, Zigbee Specifications. San Ramon, CA: Zigbee Standard

Organisation, 2008.

[3] A. Dunkels, B. Gr ̈onvall, and T. Voigt, “Contiki a lightweight and
flexible operating system for tiny networked sensors,” in Proceedings
of the 29th Annual IEEE International Conference on Local Computer

Networks, pp. 455–462, November 2004. K. Elissa, “Title of paper if

known,” unpublished.

[4] P. Jurcık, A. Koubaa, M. Alves, E. Tovar, and Z. Hanz ́alek, “A
simulation model for the IEEE 802.15.4 protocol: delay/throughput

evaluation of the GTS mechanism,” in Proceedings of the 15th
International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS’07), pp. 109–
116, IEEE, Istanbul, Turky, October 2007.

[5] S. Fan, J. Li, H. Sun, and R. Wang, “Throughput analysis of GTS
allocation in beacon enabled IEEE 802.15.4,” in Proceedings of the 3rd
IEEE International Conference on Computer Science and Information

Technology (ICCSIT ’10), pp. 561–565, July 2010.

[6] A. Kumar, P. G. Namboothiri, S. Deshpande, S. Vidhyadharan, K. M.

Sivalingam, and S. A. V. Satya Murty, “Testbed based throughput
analysis in a wireless sensor network,” in Proceedings of the 18th
National Conference on Communications (NCC’12), pp. 1–5, February

2012.

[7] J. Edwards, F. Demers, M. St-Hilaire, and T. Kunz, “Comparison of
ns2.34’s ZigBee/802.15.4 implementation to Memsic’s IRIS Motes,” in
Proceedings of the 7th International Wireless Communications and

Mobile Computing Conference (IWCMC ’11), pp.986–991, July 2011.

[8] S.W.Golomb, “Mathematical models—uses and

limitations,”Simulation, vol. 4, no. 14, pp. 197–198, 1970.

[9] T.-J. Lee, H. R. Lee, and M. Y. Chung, “MAC throughput limit
analysis of slotted CSMA/CA in IEEE 802.15.4 WPAN,” IEEE
Communications Letters, vol. 10, no. 7, pp. 561–563, 2006.

[10] Farooq, M. O., and Kunz, T. (2015). Contiki-Based IEEE 802.15. 4

Channel Capacity Estimation and Suitability of Its CSMA-CA MAC

Layer Protocol for Real-Time Multimedia Applications. Mobile

Information Systems, 2015.

[11] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-

level sensor network simulation with COOJA,” in Proceedings of the
31st Annual IEEE Conference on Local Computer Networks (LCN

’06), pp. 641–648, November 2006.

[12] Dunkels, A. (2007, January). Rime—a lightweight layered

communication stack for sensor networks. In Proceedings of the

European Conference on Wireless Sensor Networks (EWSN),

Poster/Demo session, Delft, The Netherlands.

[13] HAUER, Jan-Hinrich. TKN15. 4: An IEEE 802.15. 4 MAC

implementation for TinyOS. 2009.

[14] Levis, Philip, et al. "Tinyos: An operating system for sensor networks."

Ambient intelligence. Springer Berlin Heidelberg, 2005. 115-148.

[15] Jan Flora and Philippe Bonnet. Never Mind the Standard Here is the

TinyOS 802.15.4 Stack. Technical Report 06-10, University of

Copenhagen, 2006.

[16] Wen H, Lin C, Chen ZJ et al. An improved Markov model for IEEE

802.15.4 slotted CSMA/CA mechanism. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 24(3): 495-504 May 2009.

[17] Zheng J, Lee J M. A comprehensive performance study of IEEE

802.15.4. Sensor Network Operations, IEEE Press, 2006, pp.218-237.

[18] Kim, Kyeong Soo, and Leonid G. Kazovsky. "Design and performance

evaluation of scheduling algorithms for unslotted CSMA/CA with

backoff MAC protocol in multiple-access WDM ring networks."

Information Sciences 149.1 (2003): 135-149.

[19] F. Despaux, Ye-Qiong Song, Abdelkader Lahmadi. On the Gap

Between Mathematical Modeling and Measurement Analysis for

Performance Evaluation of the 802.15.4 MAC Protocol. RTN - 12th

International Workshop on Real-Time Networks - 2013, Jul 2013,

Paris, France. 2013. <hal-00877452>.

[20] Jelena Misic and Vojislav Misic. Wireless Personal Area Networks:

Performance, Interconnection, and Security with IEEE 802.15.4. Wiley

Publishing, 2008.

[21] Levis, Philip, and Nelson Lee. "Tossim: A simulator for tinyos

networks." UC Berkeley, September 24 (2003).

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

PEMWN - 2015 Conference Proceedings

Volume 4, Issue 04

Special Issue - 2016

5

