
University of Nevada
Reno

Implementation of Interactive Course Web Site

A professional paper submitted in partial fulfillment
 of the requirements for the degree of

 Master of Science
with a major in Computer Science

by

Mohammad R. Islam

Dr. Frederick C. Harris, Jr., advisor
August 2000

i

Abstract
At the time we began development, we took it on faith that the Servlet API would

soon be ported to other web servers (Apache, Netscape, IIS), and of course our faith has

been amply rewarded. Not only are Apache, NSAPI, and ISAPI servlet plugins available

from several vendors, but high-powered, Java technology-enabled application servers like

WebLogic's Tengah and ATG's Dynamo are fully servlet-compliant. The

HTML/JavaScript front end gave us the most lightweight platform-independent solution

and was adequate for our needs because our interface, besides a few forms, consisted

mostly of information presentation. The Servlet API provided us with a simple, robust,

and powerful object framework for building this HTML-based application, including

objects for retrieving arguments from a web-server request, a simple stream interface for

sending the HTML response to the client, and even more advanced functionali ty, such as

cookies and server-side includes of servlets.

This study involves extensive use of java servlets to develop an interactive course

website. Some techniques of Online Educations are implemented in this paper. The

packages used are Java Development Kit, Java Servlet Development Kit, a Relational

Database Management System (miniSQL), JDBC driver Software to connect the

database, Apache Web Server.

ii

Contents

Abstract i

List of Figures iii

List of Table iv

1. Introduction 1

2. Background Literature 2

3. An Invitation to Servlets 3
3.1 What is a Servlet?….………………………………….…..……………….. 3

 3.2 Practical Application for Java Servlets ….………………...……….……… 4
3.3 Servlets vs CGI….………………………………...…………...………….... 5

 3.4 The Basic Servlet Architecture……………………………...…...…………. 6
 3.5 Reasons to use Java Servlets….………………...………………………….. 7

3.5.1 Eff icient ….………………………………….….…………………….. 7
3.5.2 Persistent ….……………………………...…....……………………... 8
3.5.3 Portable ….………………………………………….……………...… 8
3.5.4 Robust………………………………………………………………… 8

 3.5.5 Extensible……………………………………………………………... 8
 3.5.6 Secure…………………………………………………………………. 9
 3.5.7 Widespread Acceptance………………………………………………. 9

4. Database Access with JDBC 9
 4.1 JDBC API Overview……………………………………………………….. 10

 4.2 JDBC Architecture ….………………………………….…..……………… 10
 4.3 Two-tier and Three-tier Models……………………….………..………….. 12

5. Project Overview 13
5.1 Description of the project….…………………...……………...…..………... 14

6. Conclusions 31

7. Future Work 31

References 32

iii

List of Figures

Figure 1: A servlet communicating with database………….…………………….. 4
Figure 2: A servlet’s li fecycle ……………………………………………………. 7
Figure 3: Pure Java JDBC Technology based drivers…………...………………... 10
Figure 4: JDBC-ODBC drivers …………………………………….………..…… 11
Figure 5. JDBC two-tier model…………………………………….……………... 12
Figure 5. JDBC two-tier model.…………………………………………………... 13
Figure 7: The login screen that connects to Welcome.java………………………. 16
Figure 8: Options for TA/Instructor generated by Welcome.java………...……… 17
Figure 9: Options for Students generated by Welcome.java……………………… 18
Figure 10: Adding an user ..………………………………………….…………….. 19
Figure 11: Changing password ………………………………...………………….. 20
Figure 12: Deleting an user ….…………………………………...………………... 21
Figure 13: List of the users………………………………………………………… 22
Figure 14: Building a new quiz…………………………………………………….. 23
Figure 15: Selecting multiple choice questions for a new quiz……………………. 24
Figure 16: Selecting true/false questions for a new quiz…………………………... 25
Figure 17: Selecting text questions for a new quiz………………………………… 26
Figure 18: Grading a quiz………………………………………………………….. 27
Figure 19: Quiz question Submission……………………………………………… 28
Figure 20: Student taking the quiz…………………………………………………. 29
Figure 21: File Upload……………………………………………………………... 30

iv

List of Tables

Table 1: List of Servlets.………………………………………………………….. 15

1. Introduction
There is much excitement over the Internet and World Wide Web. The Internet

ties the “information world” together. The World Wide Web makes the Internet easy to

use and gives it the flair and sizzle of multimedia. Organizations see the Internet and the

Web as crucial to their information systems strategies. Java provides a number of built -in

networking capabiliti es that make it easy to develop Internet-based and Web-based

applications [2].

Online Education refers to any form of learning and teaching that takes place via a

computer network. The network could be a local bulletin board system (BBS) or it could

be the global Internet and World Wide Web. The network could also be a local area

network (LAN) or an intranet within a particular organization. Historically, online

interaction has been called "computer mediated communication" (CMC), although this

term covers applications beyond instruction (e.g., decision-making in work teams). The

most common function used in online education is electronic mail , chat, bulletin board

etc. Online education also involves access to databases in the form of text files or

multimedia web pages, as well as the exchange of information (e.g., assignments, course

materials) via file transfers [7].

Online education is becoming increasingly common in schools, colleges, and the

training realm. Initially, it was used to supplement existing classroom instruction, but

over time, online classes have become the primary form of interaction and information.

The purpose of this ‘ Implementation of Interactive Course Website’ is to construct some

of the basic characteristics of online education.

Some of the available technologies to develop Web Applications are CGI,

proprietary server APIs, server-side JavaScript, or Microsoft’s Active Server Pages [3].

All these are viable solutions, but they each have their own set of problem. Servlets

enhance the functionali ty of World Wide Web servers. Servlet technology today is

primarily designed for use with the HTTP protocol of the World Wide Web, but servlets

are being developed for other technologies. Servlets are effective for developing Web

based solutions that help provide secure access to a Web site, that interact with databases

on behalf of a client, that dynamically generate custom HTML documents to be displayed

2

by browsers and that maintain unique session information for each client [1]. Many

developers feel that servlets are the right solutions for database-intensive applications that

communicate with so-called thin clients-applications that require minimal client-side

support. The server is responsible for the database access. Clients connect to the server

using standard protocols available on all client platforms. Thus, the logic code can be

written once and reside on the server for access by the clients.

2. Background Literature
In late 1996, Java on the server side was a very hot development topic. Several

major software vendors were marketing technologies specifically aimed at helping

server-side Java developers do their jobs more eff iciently. Most of these products

provided a prebuilt i nfrastructure that could li ft the developer’s attention from the raw

socket level into the more productive application level. For example, Netscape introduced

something it named “server-side applets” ; the World Wide Web Consortium included

extensible modules called “ resources” with its Java-based Jigsaw web server; and with its

Website server, O’Reil ly Software promoted the use of a technology it (only

coincidentally) dubbed “servlets.” The drawback: each of these technologies was tied to a

particular server and designed for very specific tasks.

In early 1970, JavaSoft (a company that has since been reintegrated into Sun

Microsystems as the Java Software Division) finalized its definition of Java servlets [4].

This action consolidated the scattered technologies into a single, standard, generic

mechanism for developing modular server-side Java code. Servlets were designed to

work with both Java-based and non-Java-based servers. Supports for servlets has since

been implemented in nearly every web server, from Apache to Zeus.

While servlets can be used to extend the functionali ty of any Java-enabled server,

today they are most often used to extend web servers, providing a powerful, eff icient

replacement for CGI scripts. When you use a servlet to create dynamic content for a web

page or otherwise extend the functionali ty of a web server, you are in effect creating a

web application. While a web page merely displays static content and lets the user

navigate through that content, a web application provides a more interactive experience.

3

A web application can be as simple as a keyword search on a document archive or as

complex as an electronic storefront. Web application are being deployed on the Internet

and on corporate intranets or extranets, where they have the potential to increase the

productivity and change the way that companies, large and small , do business.

Servlets have been quick to gain acceptance because, unlike many new

technologies that must first explain the problem or task they were created to solve,

servlets are a clear solution to a well -recognized and widespread need: generating

dynamic web content. From corporations down to individual web programmers, people

who struggled with the maintenance and performance problems of CGI-based web

programming are turning to servlets for their power, portabili ty, and eff iciency. Others,

who were perhaps intimidated by CGI programmer’s apparent reliance on manual HTTP

communication and the Perl and C languages, are looking to servlets as a manageable

first step into the world of web programming.

3. An Invitation to Servlets
This chapter answers the question "What is a Servlet?", shows typical uses for

Servlets, compares Servlets to CGI programs and explains the basics of the Servlet

architecture and the Servlet li fecycle. It also gives a quick introduction to HTTP and its

implementation in the HttpServlet class.

3.1 What is a Servlet?

Servlets are modules of Java code that run in a server application (hence the name

"Servlets", similar to "Applets" on the client side) to answer client requests. Servlets are

not tied to a specific client-server protocol but they are most commonly used with HTTP

and the word "Servlet" is often used in the meaning of "HTTP Servlet" [1].

Servlets are modules that extend request/response-oriented servers, such as Java-

enabled web servers. For example, a servlet might be responsible for taking data in an

HTML order-entry form and applying the business logic used to update a company's

order database.

4

Figure1: A servlet communicating with database

Servlets are to servers what applets are to browsers. Unlike applets, however,

servlets have no graphical user interface.

3.2. Practical Application for Java Servlets

Servlets can be used for any number of Web-related applications. Here are some

important applications of servlets:

� Development of e-commerce “store fronts” is becoming one of the most

common uses for java servlets. A servlet can build an online catalog based

on the contents of a database. It can then present this catalog to the

customer using dynamic HTML. The customer will choose the items to be

ordered, enter the shipping and billi ng information, and then submit the

data to a servlet. When the servlet received the posted data, it will process

the order and place them in the database for fulfillment. Every one of these

processes can easily be implemented using Java servlets.

� Servlets can be used to deploy Web sites that open up large legacy

systems on the Internet. Many companies have massive amounts of data

stored on large mainframe systems. These businesses do not want to re-

architect their systems. So they choose to provide inexpensive Web

interfaces into them. Because we have the entire JDK at our disposal and

security provided by the Web server, we can use servlets to interface into

these systems using anything from TCP/IP to CORBA.

5

� When developing a distributed object application that will be deployed to

the Web, we run into access issues. If we choose to use applets in out

client browser, we are only able to open a connection to the originating

server, which might be behind a firewall . Getting through a firewall using

RMI is a very common problem. If servlets are employed, we can tunnel

through the firewall using a servlet technology called HTTP Tunneling.

This enables the applet to access objects that can be running almost

anywhere on the network.

3.3 Servlets vs. CGI

The traditional way of adding functionali ty to a Web Server is the Common

Gateway Interface (CGI), a language-independent interface that allows a server to start an

external process which gets information about a request through environment variables,

the command line and its standard input stream and writes response data to its standard

output stream [6]. Each request is answered in a separate process by a separate instance

of the CGI program, or CGI script (as it is often called because CGI programs are usually

written in interpreted languages like Perl).

Servlets has the following advantages over CGI:

� A Servlet does not run in a separate process. This removes the overhead of

creating a new process for each request.

� A Servlet stays in memory between requests. A CGI program (and probably also

an extensive runtime system or interpreter) needs to be loaded and started for each

CGI request.

� There is only a single instance, which answers all requests concurrently. This

saves memory and allows a Servlet to easily manage persistent data.

� A Servlet Engine can run a Servlet in a restrictive Sandbox (just like an Applet

runs in a Web Browser's Sandbox), which allows secure use of untrusted and

potentially harmful Servlets.

6

3.4 The Basic Servlet Architecture

A Servlet, in its most general form, is an instance of a class, which implements

the javax.servlet. Servlet interface. Most Servlets, however, extend one of the standard

implementations of that interface, namely javax.servlet.GenericServlet and

javax.servlet.http.HttpServlet. The following paragraph will be discussing only HTTP

Servlets, which extend the javax.servlet.http.HttpServlet class.

In order to initialize a Servlet, a server application loads the Servlet class (and

probably other classes which are referenced by the Servlet) and creates an instance by

calli ng the default constructor. Then it calls the Servlet's init(ServletConfig config)

method. The Servlet should perform one-time setup procedures in this method and store

the ServletConfig object so that it can be retrieved later by calli ng the Servlet's

getServletConfig() method. GenericServlet handles this. Servlets which extend

GenericServlet (or its subclass HttpServlet) should call super.init(config) at the beginning

of the init method to make use of this feature. The ServletConfig object contains Servlet

parameters and a reference to the Servlet's ServletContext. The init method is guaranteed

to be called only once during the Servlet's li fecycle. It does not need to be thread-safe

because the service method will not be called until the call to init returns.

When the Servlet is initialized, its service(ServletRequest req, ServletResponse

res) method is called for every request to the Servlet. The method is called concurrently

(i.e. multiple threads may call this method at the same time) so it should be implemented

in a thread-safe manner.

When the Servlet needs to be unloaded (e.g. because a new version should be

loaded or the server is shutting down) the destroy() method is called. There may still be

threads that are executing the service method when destroy is called, so destroy has to be

thread-safe. All resources which were allocated in init should be released in destroy. This

method is guaranteed to be called only once during the Servlet's li fecycle.

A typical Servlet li fecycle

7

Figure 2: A servlet’s li fecycle

3.5 Reasons To Use Java Servlets

Java servlets are one of the most exciting new technologies. Servlets are eff icient,

persistent, portable, robust, extensible, secure, and they are receiving widespread

acceptance [3]. If it is used only to replace CGI, we will have saved a lot of time and

headache. Servlets solve many of the common problems we run into when using CGI,

and they prove to have a clear advantage over many of the other alternatives.

3.5.1 Efficient

A servlets initialization code is executed only the first time the Web server loads

it. After the servlet is loaded, handling new request is only a matter of calli ng a service

method. This is a much more efficient technique than loading a completely new

executable with every request.

3.5.2 Persistent

Servlets can maintain states between requests. When a servlet is loaded, it stays

resident in memory while serving incoming requests. A simple example of this would be

a Vector that holds a list of categories used in an online catalog. When the servlet is

initialized, it queries the database for a li st of categories and stores these categories in a

Vector. As it services requests, the servlets accesses the Vector that holds the categories

8

instead of querying the database again. Taking advantage of the persistent characteristics

of servlets can improve the performance of the application drastically.

3.5.3 Portable

Servlets are developed using Java; therefore, they are portable. This enables

servlets to be moved to a new operating system without changing the source. Codes

compiled on a Windows NT platform can easily moved to Solaris box without changing

anything.

3.5.4 Robust

Because servlets are developed with access to the entire JDK, they are very

powerful and robust solutions. Java provides a very well defined exception hierarchy for

error handling. It has a garbage collector to prevent problems with memory leaks. In

addition, it includes a very large class library that includes network support, file support,

database access, distributed object components, security, and many other classes.

3.5.5 Extensible

Another advantage servlets gain by being developed in an object-oriented

language like Java is they can be extended and polymorphed into new objects that better

suit our needs. A good example of this is an online catalog. We might want to display the

same catalog search tool at the top of every dynamic page throughout our Web site. We

definitely don’ t want to add this code to every one of our servlets. So, we implement a

base servlet that builds and initializes the search tool and then extend it to display

transaction-specific responses.

 3.5.6 Secure

Servlets run on the server side, inheriting the security provided by the Web server.

Servlets also can take advantages of the Java Security Manager.

3.5.7 Widespread Acceptance

9

Because of all there is to be gained from using Java servlets, they are being

widely accepted. Vendors are providing servlet support in two main forms. The first is

servers that have built -in support for servlets, and the second is by using third-party add-

ons.

4. Database Access with JDBC
JDBC technology is a Java API that lets us access virtually any tabular data

source from the Java programming language. It provides cross-DBMS connectivity to a

wide range of SQL databases, and now, with the new JDBC API, it also provides access

to other tabular data sources, such as spreadsheets or flat files [9].

 The JDBC API allows developers to take advantage of the Java platform's "Write

Once, Run Anywhere" capabiliti es for industrial strength, cross-platform applications that

require access to enterprise data. With a JDBC technology-enabled driver, a developer

can easily connect all corporate data even in a heterogeneous environment.

The "Write Once, Run Anywhere" Java 2 Platform is a safe, flexible, and

complete cross-platform solution for developing robust Java applications for the Internet

and corporate intranets. The open and extensible Java Platform APIs are a set of essential

interfaces that enable developers to build their Java applications and applets. The Java 2

Platform provides uniform, industry-standard, seamless connectivity and interoperabili ty

with enterprise information assets [6].

4.1 JDBC API Overview

The JDBC API makes it possible to do three things:

• Establish a connection with a database or access any tabular data source

• Send SQL statements

• Process the results

4.2 JDBC Architecture

The JDBC API contains two major sets of interfaces: the first is the JDBC API for

application writers, and the second is the lower-level JDBC driver API for driver writers.

10

JDBC technology drivers fit into one of four categories. Applications and applets can

access databases via the JDBC API using pure Java JDBC technology-based drivers, as

shown in the following figure:

Type 4

Type 3

Figure 3: Pure Java JDBC Technology based drivers

Type 4: Direct-to-Database Pure Java Driver: This style of driver converts JDBC calls

into the network protocol used directly by DBMSs, allowing a direct call from the client

machine to the DBMS server and providing a practical solution for intranet access.

Type 3: Pure Java Driver for Database Middleware: This style of driver translates JDBC

calls into the middleware vendor's protocol, which is then translated to a DBMS protocol

by a middleware server. The middleware provides connectivity to many different

databases

The graphic below ill ustrates JDBC connectivity using ODBC drivers and

existing database client libraries.

11

Type 1 Type 2

Figure 4: JDBC-ODBC drivers

Type 1: JDBC-ODBC Bridge plus ODBC Driver: This combination provides JDBC

access via ODBC drivers. ODBC binary code--and in many cases, database client code--

must be loaded on each client machine that uses a JDBC-ODBC Bridge. Sun provides a

JDBC-ODBC Bridge driver, which is appropriate for experimental use and for situations

in which no other driver is available.

Type 2: A native-API partly Java technology-enabled driver: This type of driver converts

JDBC calls into calls on the client API for Oracle, Sybase, Informix, DB2, or other

DBMS. Note that, li ke the bridge driver, this style of driver requires that some binary

code be loaded on each client machine.

4.3 Two-tier and Three-tier Models
The JDBC API supports both two-tier and three-tier models for database access.

In the two-tier model, a Java applet or application talks directly to the database. This

requires a JDBC driver that can communicate with the particular database management

system being accessed. A user's SQL statements are delivered to the database, and the

results of those statements are sent back to the user. The database may be located on

another machine to which the user is connected via a network. This is referred to as a

12

client/server configuration, with the user's machine as the client, and the machine

housing the database as the server. The network can be an intranet, which, for example,

connects employees within a corporation, or it can be the Internet.

Figure 5. JDBC two-tier model

In the three-tier model, commands are sent to a "middle tier" of services, which

then send SQL statements to the database. The database processes the SQL statements

and sends the results back to the middle tier, which then sends them to the user. MIS

directors find the three-tier model very attractive because the middle tier makes it

possible to maintain control over access and the kinds of updates that can be made to

corporate data. Another advantage is that when there is a middle tier, the user can employ

an easy-to-use higher-level API which is translated by the middle tier into the appropriate

low-level calls. Finally, in many cases the three-tier architecture can provide performance

advantages.

13

Figure 6. JDBC three-tier model

Until now the middle tier has typically been written in languages such as C or

C++, which offer fast performance. However, with the introduction of optimizing

compilers that translate Java byte code into eff icient machine-specific code, it is

becoming practical to implement the middle tier in Java [8]. This is a big plus, making it

possible to take advantage of Java's robustness, multithreading, and security features.

JDBC is important to allow database access from a Java middle tier.

5. Project Overview
The number of online users increases day by day. One of the powerful aspects of

the Web is information sharing. We can hardly find someone going online and not

browsing the net. One of the fast growing areas of the Web is distance education (or

distance learning). The reason distance education on the Web is getting popular is

because it has advantages over other types of distance education programs. It gives much

more flexibili ty to the users. The users can take the courses they registered for at any

computer connected to the Internet. They usually have a more flexible time frame to take

their classes and their tests.

In terms of programming of these sites developers had until recently to use

14

limited range of technology to choose from. These technologies usually involved

Common Gateway Interface (CGI) programming, Javascript, and Microsoft’s Active

Server Pages. This paper demonstrates that Java servlets and JDBC can be used

programming for these sites.

This paper discusses how Java Servlets technology can be used to develop a

dynamic web page. The goal is not to develop an ‘Online Course’ . We rather prefer to

implement some features of online education. In the Computer Science Department at

UNR, we have about 90 students in every semester for CS202. And it is becoming very

time consuming for the TA to grade the assignment and quiz in every week. If we can

take advantage of some features of online education, we can save a lot of time.

5. 1 Description of the Project

The web site is available only for the student, TA and the instructor of the course.

Any of the above users can login to the secure site. If the user has the administrative

privileges, he can do some administrative tasks such as add a user, view the list of users,

build a quiz, grade a quiz, grade the assignment etc. Students can only submit quiz

question, take a quiz, view quiz grade, submit assignment, change password etc. To

implement all these features we have some servlets programs and a database program.

The servlet generates the web page, gets information from the user, if necessary

communicate with the database server via the database class. The database class is the

middle tier between the servlet and database server. The following table tells the name of

the servlet I am running for this project.

Servlet Name File Name

Welcome Welcome.java

AddUser AddUser.java

15

AddUserProcess AddUserProcess.java

ChangePassword ChangePassword.java

ChangePasswordProcess ChangePasswordProcess.java

DeleteUser DeleteUser.java

DeleteUserProcess DeleteUserProcess.java

UserList UserList.java

BuildQuiz BuildQuiz.java

BuildQuizProcess BuildQuizProcess.java

BuildMCPart BuildMCPart.java

BuildTFPart BuildTFPart.java

BuildTXPart BuildTXPart.java

GradeQuiz GradeQuiz.java

GradeQuizProcess GradeQuizProcess.java

InsertGrade InsertGrade

InsertQue InsertQue.java

InsertQueProcess InsertQueProcess.java

InsertMCQue InsertMCQue.java

InsertTFQue InsertTFQue.java

InsertTXQue InsertTXQue.java

Quiz Quiz.java

16

QuizProcess QuizProcess.java

Answer Answer.java

FormUpload FormUpload.java

UploadServlet UploadServlet.java

Table 1: List of servlets

From the above list, we will t alk about some of the important servlets. We will

skip some servlets are used to generate only for HTML Forms.

Welcome.java: This servlet that gets the username and password from a HTML

Form. It calls loginCheck() method of database class, and matches them with the

username and password in the database. If the user is valid, then it calls adminCheck()

method of the database to see if the user has the admin privileges. Then it directs the user

to a different page according to the user type. Also, it generates a unique session object,

which contains the username and passes it to the next servlet.

17

Figure 7: The login screen that connects to Welcome.java

18

Figure 8: Options for TA/Instructor generated by Welcome.java

19

Figure 9: Options for Students generated by Welcome.java

20

AddUserProcess.java: This servlet gets the user information from the form

generated by AddUser.java. Then it calls newEntry() to add the user in the database.

Figure 10: Adding an user

21

ChangePasswordProcess.java: This servlet gets the password information from

the ChangePasswd.java. The user has to type the new password twice. Ihe new password

has to match before it calls the changePassword() method of the database class.

Figure 11: Changing password

22

DeleteUserProcess.java: This servlet gets the user information from the form

generated by DeleteUser.java. We have drop down list from where we can select which

user will be deleted. It gets the user name and calls deleteUser() method of the database

class to delete the user.

Figure 12: Deleting an user

23

UserList.java: This servlet calls a method displayUser() of the database class and

show the users on the screen.

Figure 13: List of the users

24

BuildQuizProcess.java: This servlet gets the quiz information from the previous

servlet. The quiz question could be three types such as multiple choice, true/false, and

text type. This servlet will display the entire quiz question we have in the database for

this particular quiz. The instructor can build any part of the quiz at a time. It calls

displayMC(), displayTF(), displayTX(), chapterCheckMC(), chapterCheckTX(),

chapterCheckTF() methods of the database class.

Figure 14: Building a new quiz

BuildMCPart.java/ BuildTFPart.java/ BuildTXPart.java: This servlet gets the

selected question, point for each question from the previous servlet and checks if the

25

question exists in the database for this particular quiz by calli ng q_check() method of the

database. It either displays an error message when the question is in the database or

inserts the question by calli ng newQuiz() method of the database class.

Figure 15: Selecting multiple choice questions for a new quiz

26

Figure 16: Selecting true/false questions for a new quiz

27

Figure 17: Selecting text questions for a new quiz

GradeProcess.java: This servlet gets the information from the GradeQuiz.java

and calls displayAnswer() method of the database class to show the answer of the quiz

28

submitted by the student. It has a text box for TA/Instructor to insert the grade and then it

connects to InsertGrade.java that will i nsert the grade in the grade table by calli ng

insertGrade(). Before insertion it checks if the student was graded before.

Figure 18: Grading a quiz

InsertQueProcess.java: This servlet will pop up different type form depending on

the question type. It can connect to any of the servlet i.e. InsertMCQue.java,

InsertTFQue.java, InsertTXQue.java. One of the above servlets will i nsert the question in

29

the database by calli ng newMCEntry(), or newTFEntry(), or newTXEntry() method

of the database class.

Figure 19: Quiz question Submission

QuizProcess.java: This servlet will l et the student to take the quiz. It gets

the quiz information from the Quiz.java servlet. It calls displayMC(), displayTF(),

displayTX() methods of the database class to display the quiz on the screen. It also

generates a clock to monitor the time, a student spending to take the quiz. After

30

student takes the quiz, it connects to the Answer.java to insert the student’s

answers.

Figure 20: Student taking the quiz

UploadServlet.java: This servlet gets the file information from the

FormUpload.java and uploads the file in the

/home/mislam/cs202/username/assignment# directory.

31

Fig21: File Upload

6. Conclusion

Servlets are a powerful embodiment of Java Philosophy, which are only now

gaining attention. Servlets have some unique features: platform independence, ease of

32

implementation, performance, threading, session control, and HTTP specific

characteristics that will grow to displace CGI-Bin over time.

This study implements some features of online course design. It shows how Servlet

technology could be used for automatic quiz generation, session tracking, file submission,

grading assignment and quiz etc. A tree tier database model was implemented to store the

information.

Servlets are very useful for providing dynamic content to users. The solidification

of XML and the demand forever more sophisticated content will drive the advance and

acceptance of Servlet technology.

7. Future Developments

This project provides the basic structure for an online courseware application.

Future additions can easily be added to it to expand its functionali ty and operation. The

additions we have planned for it include the following:

• Online assignment grading.

• Improved security and authentication scheme.

The more complex of these additions is the online assignment grading. This will i nclude

execution of a student’s assignment through the use of a server side script, and automatic

return of the output of the assignment in HTML. The grader will t hen be able to view

both the source code and the output from the script at the same time. The grader will also

be provided with a way to logically attach comments to the source code by referencing

the line numbers. The comments will be kept in a text file available to the student for

review.

The security and authentication scheme could be improved rather easily through the use

of a more advanced encryption algorithm and a secure connection to the server. Since

there is no ultra-sensitive information, i.e. social security numbers or credit card numbers,

being transferred the secure connection is probably not as important as improving the

encryption algorithm.

These short-term improvements could be made fairly easily, but there is also a question

of long-term improvements. For instance, at the moment this application is not very

33

portable to other fields of study besides Computer Science. A truly useful online

courseware application would be portable or at least extendable to other areas of study.

Improvements on this scale would require an almost complete rewrite of the application.

References:

[1] Dustin R. Callaway. Inside Servlets: Server-Side Programming for the JavaTM

Platform. Addison Wesley Longman, Inc., Redaing, Massachusetts, 1999.

[2] David Flanagan. Java In A Nutshell, second edition. O'Reil ly and Associates, Inc.,
Sebastopol, CA, 1997.

[3] James Goodwill . Developing Java Servlets. Sams Publishing, Indianapolis, IN, 1999.

[4] Jason Hunter and Wil liam Crawford. Java Servlet Programming. O'Reil ly and
Associates, Inc., Sebastopol, CA, 1998.

[5] William E. Weinman. The CGI Book. New Riders Publication, Indianapolis, IN,
1996.

[6] URL: http://java.sun.com/products/jdbc/datasheet.html current as of August 24, 2000.

[7] URL: http://www.online.edu current as of August 24, 2000.

[8] URL: http://java.sun.com/products/jdbc/datasheet.html current as of August 24, 2000.

[9] URL: http://www.webadvisor.com/jdbc.html current as of August 24, 2000.

