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Abstract

There is a large number of implementational choices to be made for the primal-dual interior
point method in the context of mixed semidefinite and second order cone optimization. This
paper presents such implementational issues in a unified framework, and compares the choices
made by different research groups. This is also the first paper to provide an elaborate discussion
of the implementation in SeDuMi.

Keywords: Semidefinite Programming, Second Order Cone Programming, Linear Program-
ming, Interior Point Method, Optimization.

AMS subject classification: 90C22, 90C20.

JEL code: C61.

1 Introduction and Overview

The study of modern interior point methods was initiated by Karmarkar [32] for linear program-
ming. A good overview of the developments in the first five years following the publication of [32]
is provided by Gonzaga [28]. The introduction of the primal-dual interior point method by Kojima
et al. [35, 34] had a huge impact on the research in this area after 1989. Their work removed the
need for barrier, center and potential functions. This freedom was used by Lustig, Marsten and
Shanno [43, 44, 46] to build highly effective interior point based solvers for linear programming. A
further landmark was the introduction of the self-dual embedding technique by Ye et al. [85, 84],
which provides a more elegant method for dealing with (in)feasibility issues than the infeasible
interior point framework of Lustig [42]. A more complete (and probably less biased) overview is
given by Freund and Mizuno [19]. A nice overview focusing on the implementational aspects is
provided by Andersen et al. [6].

∗Research supported by the Netherlands Organisation for Scientific Research, file 016.025.026.
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During the nineties, it was discovered by Alizadeh [2] and Nesterov and Nemirovsky [56] that
the interior point method was especially suited for solving semidefinite programming problems. The
possibility of efficiently solving semidefinite programming problems had a huge impact on research
in various application areas, see Boyd et al. [11, 79].

Initially, research papers gave the impression that extension of the interior point methodol-
ogy to semidefinite programming was rather straightforward. The current insight however is that
a substantial research effort on the interior point method for semidefinite programming is still
necessary. One of the first surprises came when several research groups each introduced quite dif-
ferent generalizations of the primal-dual interior point method to semidefinite programming. In
particular, Alizadeh et al. [5] introduced the AHO direction, Helmberg et al. [30] introduced the
HRVW/KSH/M direction, or more concisely the HKM direction, Nesterov and Todd [57, 58] in-
troduced the NT direction, and Kojima et al. [37] introduced a whole family of search directions,
including the HKM and NT directions. Sturm and Zhang [72, 73] extended the primal-dual frame-
work of Kojima et al. [34] to semidefinite programming, thus allowing for other search directions
than those dictated by barrier, potential and center functions; see e.g. [33, 66]. Monteiro and
Zhang [55, 86] introduced the so-called similarity symmetrization operator, which allows the study
of AHO, HKM and NT search directions in a unified fashion; see e.g. [75]. More recent approaches
include [52, 38].

In an attempt to extend the primal-dual approach beyond semidefinite programming, Nesterov
and Todd [57, 58] introduced the concept of self-scaled cones. The gain in generality appeared
to be rather limited when it later turned out that self-scaled cones are not more general than
symmetric cones, which can always been described as conic sections of the cone of positive semi-
definite (p.s.d.) matrices in a polynomially bounded dimension [14]. Nevertheless, [57, 58] can be
considered as the first papers dealing with mixed semidefinite and second order cone optimization
problems. However, the area was really brought to life by Alizadeh et al. [3] with the introduction
of SDPPack, a software package for solving optimization problems from this class. The practical
importance of second order cone programming was demonstrated by Lobo et al. [39] and many
later papers. From then on, it was no longer sufficient to treat second order cone programming as a
special case of semidefinite programming. Faybusovich [15, 17, 16, 18] demonstrated that the well
developed theory of Euclidean Jordan algebra provides an elegant approach to study semidefinite
and second order cone programming in a unified way.

There are other approaches to solve semidefinite programs than the primal-dual interior point
method. Such approaches include dual-only interior point methods, bundle methods, augmented
Lagrangian methods, non-smooth Newton methods, among others. Such approaches are not dis-
cussed in this paper. We refer to [81] for an elaborate discussion of results in semidefinite program-
ming.

This paper is organized as follows. Section 2 presents the standard form of the optimization
problems that we study in this paper. Rather intimidating notation is introduced to deal with
linear, semidefinite and second order cone constraints explicitly. Fortunately, it is often possible to
treat these constraints in a unified fashion. For this purpose, we introduce Jordan algebra notation
in Section 3. In Section 4, we give a brief outline of the generic primal-dual interior point method.
An important design parameter in the primal-dual interior point method is the scaling operator.
We discuss several scaling operators in Section 5.
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A computationally demanding part of the interior point method is the so-called Building Phase,
in which the system that defines the search direction is formed. This is in fact a system of normal
equations, and Section 6 presents sparsity exploiting techniques for this phase. The next step is
to factor this system, the so-called Factorization Phase. In this step, it is also crucial to exploit
sparsity, but numerical issues have to be addressed as well. The Factorization Phase is discussed in
Section 7. In order to improve sparsity in the normal equations system, it can be fruitful to handle
dense columns individually, as discussed in Section 8. In Section 9, we show how the structure of
simple upper bound and fixing constraints can be exploited to reduce the size of the matrix that
has to be factored.

In Section 10 we describe a method to update the scaling operator and the iterates in a product
form. This method avoids numerical problems in this Update Phase near the optimal solution
set. In Section 11, we describe the Mehrotra-type predictor-corrector approach to construct the
search direction (we call this the Step Phase of the algorithm). We show that there are different
ways to extend Mehrotra’s scheme from linear programming, leading to different second order
search directions, even if one sticks to a particular type of scaling. The issues of initialization and
detecting infeasibility are discussed in Section 12. We discuss both the infeasible interior point
approach and the self-dual embedding approach. In Section 13, we evaluate the computational
profile of SeDuMi 1.05 on a set of problems collected by [60]. It turns out that three of the four
distinguished computational phases in the algorithm can be viewed as critical. Hence, there is not
a single bottleneck. We conclude the paper in Section 14.

2 Primal and Dual Problems

We study so-called cone linear programming problems in the standard canonical form:

inf{cTx | Ax = b, x ∈ K}, (1)

where x ∈ ℜn is the vector of decision variables, K ⊆ ℜn is a pre-specified convex cone, and
b ∈ ℜm, c ∈ ℜn, A ∈ ℜm×n are given data. Basic properties of cone linear programs were derived
in Duffin [13], and more recently in [40, 56]. Despite its name, cone linear programs are non-linear,
since K need not be polyhedral.

Important subclasses of cone linear programming are linear programming, semidefinite pro-
gramming, second order cone programming, and a mixture of these. These subclasses arise by
letting K in (1) be the nonnegative orthant (K = ℜn

+), the cone of positive semidefinite matrices,
a Cartesian product of Lorentz cones, or a symmetric cone [14], respectively.

In order to comply with the canonical form (1), the cone of positive semi-definite matrices
should be considered as a set of vectors in ℜn, even if the natural definition is of course in terms of
ν × ν matrices. This issue is easily resolved by vectorization (‘column stacking’): we may let

Ks = { vec (X) | X ∈ ℜν×ν is symmetric positive semi-definite}.

In this case, Ks ⊂ ℜn with n = ν2. (The superscript ‘s’ stands for semidefinite.) Since the
vectorized matrices are symmetric, Ks is actually a cone in an (n + ν)/2 dimensional subspace of
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ℜn. (Alternatively, one may represent the symmetric positive semidefinite matrices as a cone in ℜn

with n = ν(ν + 1)/2 using the more economical symmetric vectorization [5].) We remark that if
X is a Hermitian matrix with complex, quaternion or octonion entries, then X can be vectorized
to ℜn with n = ν2, n = ν(2ν − 1) and n = ν(4ν − 3), respectively. The solvers SDPT3 (up to
Version 2.3) [76] and SeDuMi [67] do support complex values, but quaternion or octonion values
are not supported. Throughout this paper, we restrict ourselves to the real symmetric case.

The Lorentz cone in ℜn is defined as

Kq =







x ∈ ℜn

∣

∣

∣

∣

∣

∣

x1 ≥
√

√

√

√

n
∑

i=2

x2
i







. (2)

(The superscript ‘q’ stands for quadratic.) An example of a second order cone problem is

inf

{

x1 − x2

∣

∣

∣

∣

x1 ≥
√

1 + x2
2

}

,

which fits (1) with K = Kq and c =
[

1, −1, 0
]T

, A =
[

0, 0, 1
]

, and b = 1. In this example,

the objective value x1 − x2 can be arbitrarily close to zero, but the infimum (which is zero) cannot
be attained. Therefore, ‘inf’ cannot me replaced by ‘min’. Nevertheless, we call this a minimization
problem.

The above example has only one Lorentz cone constraint, but non-trivial second order cone
programs involve multiple Lorentz cone (second order cone) constraints. Similarly, linear programs
involve multiple non-negativity constraints. In these cases, the cone K is a Cartesian product
of so-called primitive symmetric cones, viz. Lorentz cones, or nonnegative real half-lines (ℜ+),
respectively. The cone of positive semidefinite matrices is also a primitive symmetric cone.

A mixed semidefinite and second order cone optimization problem can be formulated as a stan-
dard cone linear program (1) with the following structure:

minimize (cl)Txl + (cq)Txq + (cs)Txs

(P ) such that Alxl + Aqxq + Asxs = b

xl ∈ ℜκ(l)
+ , xq ∈ Kq, xs ∈ Ks.

In this formulation, κ(l) denotes the number of nonnegative variables, Kq = Kq
1 × · · · × Kq

κ(q) is

a Cartesian product of κ(q) Lorentz cones, and Ks = Ks
1 × · · · × Ks

κ(s) is a Cartesian product of

κ(s) cones of positive semidefinite matrices. We let κ = κ(l) + κ(q) + κ(s) denote the number of
primitive symmetric cone constraints. We partition the x-variables into sub-vectors accordingly, as

x =







xl

xq

xs






=













x[1]
x[2]

...
x[κ]













, xq =













xq[1]
xq[2]

...
xq[κ(q)]













, xs =













xs[1]
xs[2]

...
xs[κ(s)]













.

A similar convention will be used for other vectors in ℜn, such as c or the rows of A. We remark
that a non-negativity constraint can also be seen as a 1 × 1 positive semi-definiteness constraint.
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In principle, we can therefore remove Al, cl and xl from the formulation of (P), and treat the
non-negativity constraints as κ(l) scalar blocks in xs; indeed, non-negativity has been modeled
like this in SP [78]. However, for computational reasons it is advantageous to treat non-negativity
constraints separately. Observe also from (2), that the first component of each Lorentz cone is

always nonnegative, i.e. xq
1[k] ≥ 0, k = 1, . . . , κ(q). We let xq

1 ∈ ℜκ(q)
+ denote the vector of

these first components. The vector of the remaining components is denoted xq
2:, so that (xq

1, x
q
2:)

partitions the components of xq. We partition the columns of Aq into (Aq
1, A

q
2:) accordingly. With

this notation, we have
Aqxq = Aq

1x
q
1 + Aq

2:x
q
2:. (3)

To illustrate part of the above notation, consider the problem

inf











tr X

∣

∣

∣

∣

∣

∣

∣

x11 + x22 ≥ 1 + x13, x13 ≥ 0, X =







x11 x12 x13

x12 x22 x23

x13 x23 x33






is p.s.d.











.

We can model this in the form of (P) by introducing slack variables xl ∈ ℜ2
+ and vectorizing X, as

xl =

[

x[1]
x[2]

]

=

[

x11 + x22 − x13 − 1
x13

]

, xs = xs[1] = x[3] = vec













x11 x12 x13

x12 x22 x23

x13 x23 x33












,

and by defining the data

c =







c[1]
c[2]
c[3]






=







0
0

vec(I)






, Al =

[

−1 0
0 −1

]

,

and

As =






vec













1 0 −1/2
0 1 0

−1/2 0 0












, vec













0 0 1/2
0 0 0

1/2 0 0



















T

with κ(l) = 2, κ(q) = 0 and κ(s) = 1. This example has three decision variables, viz. x[1], x[2] and
x[3]. The first two decision variables are scalar, but x[3] is multi-dimensional (a matrix variable).
In a more elaborate example, there can be many of such multi-dimensional variables, each restricted
to a Lorentz cone or a cone of positive semidefinite matrices. Without such variables, we would
simply have a linear programming problem.

It is clear that notations in this setting can easily become quite cumbersome. Fortunately, we
can discuss mixed semidefinite and second order cone programs in a unified way, using Jordan
algebra operations. The use of Jordan algebra in the context of cone linear programming was
advocated by Faybusovich [15, 17, 16, 18]; we give a short introduction to the the basic Jordan
algebra operations in Section 3.

Associated with (1) is a dual problem, viz.

sup{bTy | ATy + z = c, z ∈ K∗}, (4)
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where y ∈ ℜm and z ∈ ℜn are the decision variables, and

K∗ := {z ∈ ℜn | zTx ≥ 0 for all x ∈ K} (5)

is the dual cone to K. For mixed semidefinite and second order cone optimization, the dual problem
has the following structure:

maximize bTy
such that (Al)Ty + zl = cl

(D) (Aq)Ty + zq = cq

(As)Ty + zs = cs

zl ∈ ℜκ(l)
+ , zq ∈ Kq, zs ∈ (Ks)∗.

Here, we have (Ks)∗ = (Ks
1)

∗×· · ·× (Ks
κ(s))

∗. Furthermore, (Ks)∗ = Ks if we restrict z in definition

(5) to a proper lower dimensional Euclidean space to take care of symmetry, viz.

Ks
i = {z = vec (Z) | Z = ZT, zTx ≥ 0 for all x ∈ Ks

i }.

This requires that c and the rows of A are also in this lower dimensional Euclidean space. Stated
differently, the cs[k] and as

i [k] blocks must be vectorizations of symmetric matrices. For convenience,
we assume without loss of generality that this is indeed the case, so that K is self-dual.

3 The Jordan Algebra Operations

We summarize in this section some properties of symmetric cones that are relevant for this paper.
Concise overviews on this subject in the context of optimization were also given by Tunçel [77],
Güler and Tunçel [29], Faybusovich [15, 17, 16, 18], and Sturm [69]. A detailed treatment of
symmetric cones can be found in [14].

An important quantity is the order of a symmetric cone, denoted by ν(K). Any Lorentz cone
has order ν(Kq

i ) = 2. For a Cartesian product of symmetric cones K1 and K2, it holds that

ν(K1 ×K2) = ν(K1) + ν(K2), (6)

so that in particular ν(Kq) = 2κ(q). The order of the cone of ν × ν positive semi-definite matrices

is ν. In particular, we have ν(ℜ+) = 1 and ν(Ks) =
∑κ(s)

i=1 νi(s). Since a symmetric cone K can
be decomposed as the Cartesian product of primitives (Proposition III.4.5 in [14]), the above rules
suffice to compute the order ν(K) of an arbitrary symmetric cone K. The worst case iteration
bound of interior point algorithms depends on ν(K), which is the barrier parameter in Nesterov
and Todd [57]. The worst case iteration bound for SeDuMi is a multiple of

√

ν(K), see [66].

Associated with a primitive symmetric cone K ⊂ ℜn of order ν = ν(K) is a set of Jordan frames,
which are also known as complete systems of idempotents. A Jordan frame is a matrix F ∈ ℜn×ν ,
such that

FTF = I, Fℜn
+ = Img (F ) ∩ K, (7)

i.e. the columns f1, f2, . . . , fν of F form an orthonormal basis of an ν–dimensional linear subspace
of ℜn, viz. Img (F ) = {Fy|y ∈ ℜν}, and the nonnegative orthant on this subspace, i.e. Fℜν

+ =
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{Fy | y ≥ 0} is precisely the intersection of this subspace with the cone K. For instance, for the
cone of positive semi-definite matrices, the usual basis of the subspace of diagonal matrices, i.e.

vec (e1e
T
1 ), vec (e2e

T
2 ), . . . , vec (eνe

T
ν ),

is a Jordan frame.

Any vector x ∈ ℜn has a spectral decomposition x = F (x)λ(x) with respect to K, where F (x) is
a Jordan frame. The vector λ(x) ∈ ℜν is unique up to permutations. Thus,

x ∈ K ⇐⇒ λ(x) ≥ 0. (8)

The components λ1(x), . . . , λν(x) of the vector λ(x) are called the spectral values of x. If λ(x) is
the all–one vector e, then x is the identity solution, denoted by ι. The identity solution is the same
for all Jordan frames associated with K, i.e.

Fe = ι for any Jordan frame F. (9)

For the Lorentz cone we have ι =
√

2e1, where e1 denotes the first column of the identity matrix
I. For the positive semidefinite cone we have ι = vec (I). The spectral decomposition associated
with the Lorentz cone decomposes a vector x = (x1, x2:) ∈ ℜ × ℜn−1 as x = Fλ with

F =

√
2

2‖x2:‖

[

‖x2:‖ ‖x2:‖
−x2: x2:

]

, λ =

√
2

2

[

x1 − ‖x2:‖
x1 + ‖x2:‖

]

.

The spectral decomposition associated with the cone of positive semidefinite matrices corresponds
to the usual symmetric eigenvalue decomposition.

The concepts of spectral decomposition and identity solution extend to non-primitive symmetric
cones by means of direct summation. Namely, we let

F (x) = F (x[1]) ⊕ F (x[2]) ⊕ · · · ⊕ F (x[κ]), λ(x) =







λ(x[1])
...

λ(x[κ])






.

As usual, M1 ⊕ M2 denotes the direct sum of two matrices M1 and M2:

M1 ⊕ M2 =

[

M1 0
0 M2

]

.

Given the spectral decomposition x = F (x)λ(x), the trace and determinant are defined as tr x =
∑ν

i=1 λi(x), det(x) =
∏ν

i=1 λi(x).

Associated with x ∈ ℜn are n × n matrices L(x) and P (x), which are known as the Jordan
product representation and the quadratic representation, respectively. For the Lorentz cone,

J := ιιT − I, L(x) = (ιxT + xιT − ( tr x)J)/2, P (x) = xxT − det(x)J ;

due to its nonzero pattern, L(x) is also known as the arrow matrix in second order cone program-
ming [26]. For the cone of positive semidefinite matrices,

L( vec (X)) = (I ⊗ X + X ⊗ I)/2, P ( vec (X)) = X ⊗ X,
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where ‘⊗’ denotes the standard Kronecker product [31]. The definitions of L(x) and P (x) extend
to non-primitive symmetric cones by means of a direct sum. Namely, we let

L(x) = L(x[1]) ⊕ L(x[2]) ⊕ · · · ⊕ L(x[κ]), P (x) = P (x[1]) ⊕ P (x[2]) ⊕ · · · ⊕ P (x[κ]).

Since ℜ+ = PSD(1), we have for linear programming that L(x) and P (x) are the diagonal ma-
trices with entries x1, x2, . . . , xn and x2

1, x
2
2, . . . , x

2
n on their respective diagonals. (In the linear

programming literature, one usually denotes L(x) and P (x) by X and X2.)

4 Primal-Dual Interior Point Method

Consider the primal-dual pair (P), (D) of mixed semidefinite and second order cone programming.
We discuss the feasible interior point method for solving (P) and (D); the feasible method applies to
possibly infeasible problems using the technique of self-dual embedding, as discussed in Section 12.
A main iteration of the interior point method consists of computing a search direction that is added
to the current feasible iterative solution (x, y, z) with a certain step length t > 0, yielding the next
feasible solution (x+, y+, z+), i.e.

(x+, y+, z+) = (x, y, z) + t(∆x,∆y, ∆z). (10)

A special class of interior point methods are path-following methods. A first-order path-following
direction solves the linearized central path equations. The central path can be defined as

central path = {(x(µ), y(µ), z(µ)) ∈ F|λ(P (x(µ)1/2)z(µ)) = µe, µ > 0}, (11)

where
F = {(x, y, z) ∈ K × ℜm ×K|Ax = b, ATy + z = c}

is the feasible solution set and e is the all-one vector in ℜν(K). The central path exists only if
both the primal and the dual programs have interior feasible solutions. In Section 12 we discuss
techniques to overcome this problem. There are other ways to characterize the central path, such
as

central path = {(x(µ), y(µ), z(µ)) ∈ F|L(x(µ))z(µ) = µι, µ > 0}, (12)

or
central path = {(x(µ), y(µ), z(µ)) ∈ F|z(µ) = µx(µ)−1, µ > 0}, (13)

among others. Different characterizations have different linearizations and hence lead to different
search directions. Furthermore, linearization of (11) leads to an under-determined system.

Generally speaking, the search direction (∆x,∆y, ∆z) is implicitly defined by a system of equa-
tions, as follows:

∆x + Π∆z = r (14)

A∆x = 0 (15)

AT∆y + ∆z = 0. (16)
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The system depends on an invertible n × n block diagonal matrix ‘Π’ and a vector r ∈ ℜn, which
depend not only on the iterate, but also on the specific algorithmic choices of the interior point
method. E.g. setting r = −x corresponds to the so-called predictor (or: primal-dual affine scaling)
direction. In all usual approaches, including AHO [4], HKM [30] and NT [57], the invertible matrix
Π is such that

ΠTz = x. (17)

The diagonal blocks Πs[k], k = 1, 2, . . . , κ(s), should also map the ν(Ks
i )× (ν(Ks

i )+1)/2 Euclidean
space of symmetric matrices onto itself, in order to maintain symmetry of the primal matrix vari-
ables xs[k]. (In the literature on semidefinite programming where K = Ks, κ = 1, x = vec (X),
z = vec (Z), several researchers have considered Π = Z−1 ⊗X which does not satisfy this symme-
try preservation rule [30, 37, 38].) The choices of Π that we consider in Section 5 also satisfy the
relations

Πz = ΠTz, Πx−1 = z−1. (18)

Interestingly, the rate of change in the duality gap along the direction (∆x,∆y, ∆z) does not
depend on the specific choice of Π, as long as this choice obeys (17). Namely, pre-multiplying (14)
with zT yields

zTr = zT∆x + zTΠ∆z
(17)
= zT∆x + xT∆z. (19)

Since (∆z)T∆x = −(∆y)TA∆x = 0, see (15)–(16), we have from (10) that

(x+)Tz+ = xTz + t(zT∆x + xT∆z)
(19)
= xTz + t(zTr). (20)

In particular, the predictor choice ‘r = −x’ yields that (x+)Tz+ = (1−t)xTz. A well studied choice
for r is the first order path-following direction r = σz−1−x, for which (x+)Tz+ = xTz+t(νσ−xTz),
yielding a descent direction for σ < xTz/ν. We remark that if Π satisfies (18) then

∆x + Π∆z = σz−1 − x ⇐⇒ Π−1∆x + ∆z = σx−1 − z,

revealing the primal-dual symmetry of the search direction.

Instead of dealing with (14)-(16) directly, one often concentrates on the so-called reduced system
(21). The reduced system is derived by pre-multiplying (16) with AΠ yielding

0 = AΠ(AT∆y + ∆z)
(14)
= AΠAT∆y + A(r − ∆x)

(15)
= AΠAT∆y + Ar.

Re-arranging terms, we have
AΠAT ∆y = −Ar. (21)

Notice that for the predictor direction with r = −x that −Ar = b, and (21) can be further simplified
to

AΠAT ∆y = b. (22)

Once the ∆y direction is known, the ∆z and ∆x directions then follow easily as

∆z = −AT∆y, ∆x = r − Π∆z. (23)
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The main computational effort in the interior point method lies therefore in solving a system of
the form (21) or (22).

The algorithm below outlines the now well-known basic scheme of a primal-dual interior point
method. Due to the notation from Jordan algebra, the analogy to the linear programming case is
clear. The algorithm determines its step length based on a neighborhood N ⊂ ℜν

+.

Algorithm 1 (Interior Point Method)

Step 0 Initial solution (x, y, z) ∈ K×ℜm×K with Ax = b and ATy+z = c such that λ(P (x)1/2z) ∈
N .

Step 1 If xTz ≤ ǫ then STOP.

Step 2 Choose Π and r according to the algorithmic settings. Compute the search direction
(∆x,∆y, ∆z) from (14)–(16). Then determine a ‘large enough’ step length t > 0 such that
λ(P (x + t∆x)1/2(z + t∆z)) ∈ N .

Step 3 Update
(x, y, z) ← (x + t∆x, y + t∆y, z + t∆z),

and return to Step 1.

We remark that λ(P (x)1/2z) = λ(P (z)1/2x) by similarity, see Sturm [69]. The above algorithm
is thus symmetric in duality.

The choice of N in Algorithm 1 is important, since it determines the step length strategy. A
well studied neighborhood is the N2-neighborhood, defined as

N2(β) :=

{

w ∈ ℜν

∣

∣

∣

∣

∣

‖w − µe‖2 ≤ βµ, µ =
ν

∑

i=1

wi/ν

}

,

which is based on the ℓ2-norm. Notice that for large ν, this neighborhood is a rather narrow cone
in ℜn

+ around the central path, resulting in a conservative step length. The N−
∞-neighborhood,

defined as

N−
∞(θ) :=

{

w ∈ ℜν

∣

∣

∣

∣

∣

wj ≥ θµ for all j = 1, . . . , ν, µ =
ν

∑

i=1

wi/ν, µ ≥ 0

}

,

is therefore considered more suitable for practical purposes. The individual benefits of these two
neighborhoods are combined in the wide region neighborhood Nwr,

Nwr(θ, β) :=

{

w ∈ ℜν
+

∣

∣

∣

∣

∣

dist(w,N−
∞(θ)) ≤ βθµ, µ =

ν
∑

i=1

wi/ν

}

.

The distance function has to be in accordance with the centering component of the search direction.
Sturm and Zhang [71] used

dist(w,N−
∞(θ)) = min

{

ν
∑

i=1

(
√

wi −
√

ŵi)
2

∣

∣

∣

∣

∣

ŵ ∈ N−
∞(θ)

}

.

10



The wide region neighborhood is used in SeDuMi, and discussed in [71, 66].

Another important algorithmic choice is the definition of Π and r in (14)–(15), since this de-
termines the actual search direction. We discuss this in Section 5 and Section 11, respectively.

Finally, we need to quantify what we mean by ‘large enough’ in Step 2 of Algorithm 1. In
SeDuMi, a simple bisection search is used to approximate the step length t∗ to the boundary of
Nwr. Assuming that zTr = −xTz, the bisection procedure terminates with a t satisfying

t∗

2
≤ t ≤ t∗, 1 − t ≤ 2(1 − t∗).

The former condition is used to guarantee global polynomial convergence, whereas the latter con-
dition allows for superlinear convergence. Superlinear convergence cannot always be achieved.

5 The Scaling Operation

One of the most fascinating issues in semidefinite and second order cone programming concerns the
method of scaling. We review the first introduced and still the most popular primal-dual scaling
techniques, namely AHO, NT and HKM scaling. We discuss the main benefits of these different
scaling techniques. The issue of computing and updating the scaling operation is the subject of
Section 10.

In order to be more specific, we start with a brief definition of the three scaling operators that
we discuss.

The AHO-scaling technique was introduced for semidefinite programming by Alizadeh, Haeberly
and Overton [4, 5]. Its generalization to the symmetric cone setting is straightforward, namely

Π = L(z)−1L(x). (24)

The HKM-scaling was introduced for semidefinite programming independently by Helmberg et
al. [30] and Kojima et al. [37], and derived differently later by Monteiro [50]. The scaling in its
primal form can be generalized to the symmetric cone setting as

Π = P (z)−1/2L(P (z)1/2x)P (z)−1/2, (25)

which reduces to Π = (X ⊗ Z−1 + Z−1 ⊗ X)/2 for the semidefinite programming (where K = Ks,
κ = 1 and x = vec (X), z = vec (Z)). In an analogous way, one defines the dual variant of HKM
scaling as

Π = P (x)1/2L(P (x)1/2z)−1P (x)1/2, (26)

which reduces to Π−1 = (Z ⊗ X−1 + X−1 ⊗ Z)/2 for semidefinite programming.

The NT-scaling was introduced for semidefinite programming by Nesterov and Todd [57, 58],
and derived differently later by Sturm and Zhang [72]. Its generalization to the symmetric cone
setting is straightforward, namely

Π = P (z)−1/2P (P (z)1/2x)1/2P (z)−1/2, (27)
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or equivalently
Π = P (d),

where d ∈ K is implicitly defined by the equation ‘P (d)z = x’, see (17). An explicit formula for d
is

d = P (x1/2)(P (x1/2)z)−1/2. (28)

It is easily verified that ΠTz = x for all these choices of Π. One can also show that (18) is
satisfied. There are many other possible choices of Π satisfying these relationships, see e.g. Todd.
However, such choices are not known to have substantial benefits over the ‘classical’ choices (AHO,
HKM and NT).

In the case of AHO-scaling, Π is invertible but non-symmetric, so that the rank of AΠAT can
be smaller than the rank of A. This means that the AHO-direction is not well defined for general
x, z ∈ int K. However, with a suitable choice of the neighborhood N , the AHO-direction is always
well defined in the interior point algorithm [64, 53]. The predictor direction with AHO scaling is
the tangent direction of an analytic curve to the optimal solution set [62], allowing for quadratic
convergence under strict complementarity conditions [36]. In Section 11 we give two equivalent
characterizations of this curve. The AHO scaling has been implemented as default in SDPPack [3]
and as an option in SDPA [20] and SDPT3 [76]. An important practical drawback of the AHO
scaling is that it does not allow for sparsity exploiting techniques for building the normal equations,
such as discussed in Section 6.1 for NT-scaling.

The main advantage of HKM scaling is its simplicity for semidefinite programming. Unlike AHO
and NT scaling, this scaling operator can be computed by merely basic linear algebra operations.
In particular, no symmetric eigenvalue decomposition is needed. However, it is not symmetric in
duality, leading to two versions of this scaling: a primal version and a dual version. The HKM
scaling has been implemented in SDPA [20], CSDP [10] and SDPT3 [76].

An appealing property of NT scaling is its scale invariance. In particular, it holds that ΠK =
ΠkK = K for any power k ∈ ℜ. This means among others that we may locally scale the data (A, b, c)
to (AΠ1/2, b, Π1/2c) so that the current primal solution x and dual solution z are mapped onto the
same vector v = Π1/2z = Π−1/2x. The cone K remains invariant under this transformation. This
makes it possible to extend the primal-dual framework of Kojima et al. [34] from linear programming
to semidefinite or symmetric cone programming, see [72] and also Sections 10 and 11 later in this
paper. The NT scaling has been implemented as default scaling in SeDuMi [67] and MOSEK [7, 8],
and as an option in SDPA [20] and SDPT3 [76].

6 Building the Normal Equations

There are several approaches to solving a system of the form ‘AΠAT∆y = b’ as in (22) when Π
is symmetric positive definite. Given a factor Φ such that Π = ΦΦT, one can solve the system
based on a QR-factorization of the matrix ΦTAT. For numerical reasons, this is the preferred
method for small to medium sized normal equations [12], and it was considered in the context of
semidefinite programming by [75]. However, for most practical cone linear optimization problems,
A is a large sparse matrix with considerably more columns than rows. (A matrix is said to be sparse
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if a considerable number of its entries are zero; the zero entries are not stored in memory, and are
skipped during additions and multiplications.) In this situation, it is impractical even to build the
matrix ΦTAT, especially in terms of memory requirements. However, the matrix Φ is diagonal for
linear programs, resulting in a matrix ΦTAT that has the same sparsity structure as AT. In this
case, one may indeed efficiently apply sparse QR-factorization techniques to ΦTAT, producing only
the R matrix. According to Saunders [63], this approach is nevertheless outperformed in terms of
computational time by the Cholesky approach, which we discuss below.

The most efficient approach in terms of memory is the conjugate gradient method, which was
already used in Karmarkar’s implementation of the interior point method [32]. However, exper-
imental results indicate that this approach requires specific tailoring of a pre-conditioner, which
limits its use for a general purpose solver. Nevertheless, effective preconditioners for special classes
exist [61].

The usual approach in general purpose interior point codes [43, 6] is very straightforward: build
the matrix AΠAT and compute its Cholesky factorization. In this section, we address the issue of
computing the matrix AΠAT in the case of NT-scaling, where Π = P (d). A similar approach is
possible for HKM-scaling; see Fujisawa et al. [21]. The case of AHO-scaling is quite different, see
[75] for some details.

6.1 Exploiting Sparsity

On the ith column and jth row in the matrix AΠAT is the entry aT
i Πaj . Due to the block diagonal

structure of Π, we see that this entry is zero whenever the constraints ‘aT
i x = bi’ and ‘aT

j x = bj ’ do
not have any decision variable in common, i.e.

κ
∑

k=1

‖ai[k]‖‖aj [k]‖ = 0 =⇒ aT
i Πaj = 0. (29)

If there is only one decision variable, i.e. if κ = 1, then AΠAT is dense; this case is treated in
Fujisawa et al. [21]. For models where κ > 1, each individual constraint typically involves only a
small number of decision variables, so that AΠAT is likely to be sparse.

Consider now the case of NT scaling. Thus, Π = P (d), where d is uniquely defined by the
relation x = P (d)z. We have

AP (d)AT = AlP (dl)(Al)T + AqP (dq)(Aq)T + AsP (ds)(As)T.

The κ(l) × κ(l) matrix P (dl) is a diagonal matrix, viz.

P (dl) = P (dl[1]) ⊕ · · · ⊕ P (dl[κ(l)]) = dl
1 ⊕ · · · ⊕ dl

κ(l).

Furthermore, it follows from (17) that

P (dl
i) = (dl

i)
2 =

xl
i

zl
i

for i = 1, 2, . . . , κ(l).
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(All scalings obeying (17) are identical for the cone ℜ+.) In the linear programming literature, one
often writes Π = XZ−1, where X and Z are diagonal matrices with x and z on their diagonals,
respectively. The efficient computation of AlP (dl)(Al)T with sparse Al is rather straightforward.
We refer to [43, 6] for implementational issues in the setting of linear programming.

The matrix P (dq) consists of κ(q) diagonal blocks P (dq[k]), k = 1, . . . , κ(q). Each diagonal
block is the sum of a diagonal matrix and a rank-1 matrix, viz.

P (dq[k]) = dq[k](dq[k])T − det(dq[k])J.

For each Lorentz cone Kq
k ⊂ ℜn[k], k = 1, 2, . . . , κ(q), we define

H[k] = det(dq[k])I ∈ ℜ(n[k]−1)×(n[k]−1) (30)

and










Dq = dq[1] ⊕ dq[2] ⊕ · · · ⊕ dq[κ(q)]
Det(dq) = det(dq[1]) ⊕ det(dq[2]) ⊕ · · · ⊕ det(dq[κ(q)])
H = H[1] ⊕ H[2] ⊕ · · · ⊕ H[κ(q)].

(31)

Partitioning the columns of Aq as in (3), we have

AqP (dq)(Aq)T = (AqDq)(AqDq)T + Aq
2:H(Aq

2:)
T − Aq

1Det(dq)(Aq
1)

T. (32)

Since H and Det(dq) are diagonal matrices, the construction is completely analogous to the linear
programming case, except for the low rank update (AqDq)(AqDq)T.We have

nnz(AqDq) ≤ nnz(Aq),

where ‘nnz’ stands for number of nonzeros. However, the density of nonzeros in AqDq can be much
higher than in Aq, since AqDq has merely κ(q) columns. We will see in Section 8 that it can be
wise to omit some columns of AqDq at this stage, in order to promote sparsity in the remaining
part of AΠAT.

The problem of efficiently computing AsP (ds)(As)T was first addressed by Fujisawa et al. [21].
A different approach was implemented in SeDuMi [67], which we will describe here.

Since AsP (ds)(As)T is symmetric, it suffices to compute for each j = 1, . . . , m the quantities

(as
i )

TP (ds)as
j for i = 1, 2, . . . , j.

For given j, we will compute only those entries in the vector P (ds)as
j that are needed to evaluate

the above j quantities. In particular, if l is such that as
il = 0 for all i = 1, 2, . . . , j, then the lth

entry in P (ds)as
j is not evaluated. Thus, for each semidefinite block k = 1, . . . , κ(s), we only need

to evaluate certain entries in

P (ds[k])as
j [k] = vec (Ds[k]As

j [k]Ds[k]).

(The matrices Ds[k] and As
j [k] are implicitly defined by the relations ds[k] = vec (Ds[k]) and

as
j [k] = vec (As

j [k]).) Since the matrix Ds[k]As
j [k]Ds[k] is symmetric, we can reduce the list of

entries to be computed in P (ds)as
j even further. Moreover, we order (permute) the constraints

a1, · · · , am according to the following principle:
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1. as
1 is as sparse as possible, i.e. nnz(as

1) = min{nnz(as
i ) | i = 1, 2, . . . , m}.

2. For each i > 1, there cannot exist j > i such that the number of all-zero rows in the matrix
[

As
1:i−1, as

j

]

exceeds the number of all-zero rows in the matrix As
1:i, where

As
1:i :=

[

as
1, as

2, . . . , as
i

]

.

(Otherwise, we exchange the constraints ai and aj .)

The advantage of this ordering is that the number of entries to be computed in P (ds)(As)T is as
small as possible (given the restriction that the ordering is the same for all semidefinite blocks). We
remark that Fujisawa et al. [21] order the restrictions such that nnz(a1) ≥ nnz(a2) ≥ · · · ≥ nnz(am).

Consider the kth semidefinite block in the jth constraint, As
j [k]. To simplify notations, let

Â and D̂ denote As
j [k] and Ds[k], respectively. We consider the problem of evaluating a limited

number of entries in the matrix D̂ÂD̂, where Â is sparse, and D̂ is dense. We let T be an upper
triangular matrix such that T + TT = Â. We obviously have nnz(T ) ≤ nnz(A). Let m̃ denote
the number of columns in T that contain nonzeros, and let T̃ denote the νs

k × m̃ sparse matrix
consisting of those columns in T that have nonzeros. We select the same set of columns (i.e. where
T has nonzeros) from D̂, yielding the νs

k × m̃ dense matrix D̃. Observe that

D̂ÂD̂ = (D̂T̃ )D̃T + D̃(D̂T̃ )T. (33)

Thus, we first use sparse computations to obtain the νs
k × m̃ dense matrix D̂T̃ . Given this matrix,

each desired off-diagonal (diagonal) entry of D̂ÂD̂ can be computed using merely two (one) dot-
product(s) of length m̃, as can be seen from (33). In the models that we encountered, m̃ is typically
very small.

7 Solving the Normal Equations

After building the matrix AΠAT as discussed above, it remains to solve ∆y from the normal
equations AΠAT∆y = −Ar or more specifically AΠAT∆y = b; see (21) and (22). We assume that
Π is positive definite, as is the case with HKM and NT scaling. The basic approach is to compute
the LΘLT Cholesky factorization of AΠAT. In other words, we compute a lower triangular matrix
L with all-1 diagonal entries lii = 1, i = 1, 2, . . . ,m, and a positive (semi-)definite diagonal matrix
Θ such that AΠAT = LΘLT. In the initialization phase of the interior point method, the rows
of the A-matrix are ordered using the minimum degree heuristic, as implemented in SPARSPAK-
A [22]; the minimum degree ordering promotes sparsity in the lower triangular factor L. The
ordering is determined only once, but a new numerical factorization is computed in each main
iteration of the interior point method. The numerical block sparse Cholesky factorization combines
sparse and dense techniques based on the super-nodal structure. This is the usual approach in the
interior point method for linear programming [6]. Some primal-dual interior point based solvers
for semidefinite programming, including CSDP [10] and SDPA [20], do not exploit sparsity in
factorizing the normal equations. The reason is that semidefinite programming models arising
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in combinatorial optimization typically reference the same matrix variable in all rows of A, thus
leading to a completely dense matrix AΠAT.

After the Cholesky factors L and Θ have been computed, one obtains L−1b, Θ−1(L−1b) and
∆y = L−T(Θ−1L−1b) by a forward solve, element-wise division, and backward solve, respectively.
(This does assume that A has full row rank, so that Θ−1 exists.)

The forward and backward solve procedures may lead to serious loss of numerical accuracy if
maxi,j |lij | is large, say more than 1000. Causes of large entries in L are poor scaling of the problem,
and, more importantly, ill-conditioning in AΠAT when the optimum is approached.

In principle, it is always possible to order the rows in A such that maxi,j |lij | ≤ 1, but such an
ordering is not practical since it ignores the sparsity structure of AΠAT. A compromise is to achieve
maxi,j |lij | ≤ maxl where maxl ≥ 1 is a user defined parameter; such an L-factor can be obtained by
delaying pivots from the minimum degree ordering when necessary. However, this approach leads
to excessive memory requirements when the number of delayed pivots increases. A pivot delaying
technique was implemented in SeDuMi 1.04, but it has been removed in later versions.

Instead of delaying pivots, one may also obtain an L matrix with maxi,j |lij | ≤ maxl by skipping
pivots as in S.J. Wright [83], or by adding a low rank diagonal matrix to AΠAT as in Gill, Murray
and M.H. Wright [23] and Algorithm A5.5.2 in Dennis and Schnabel [12]. Both approaches avoid
fill-in of nonzeros into the L-matrix.

Let LΘLT denote the modified Cholesky factorization that is obtained by either skipping pivots
or by adding quantities on a few diagonal entries. In the former case, LΘLT differs from AΠAT only
in the rows and columns that correspond to the skipped pivots, and hence rank(AΠAT−LΘLT) ≤
2 × nskip, where nskip denotes the number of skipped pivots. In the latter case, where we add
quantities to nadd diagonal entries, we have that AΠAT−LΘLT is a diagonal matrix of rank nadd.
Observe in any case that the matrix

(LΘ1/2)−1(AΠAT)(LΘ1/2)−T = I + (LΘ1/2)−1(AΠAT − LΘLT)(LΘ1/2)−T

has at most 1 + rank(AΠAT − LΘLT) distinct eigenvalues. In theory, we can therefore solve (22)
using the pre-conditioned conjugate gradient (P-CG) method in at most 1+2×nskip iterations in
the case of skipping pivots, or 1 + nadd iterations in the case of adding quantities on the diagonal;
see Theorem 5.4 in [59]. In practice however, it is not recommended to proceed the conjugate
gradient process for more than say 25 iterations. If many many pivots had to be modified, it is
therefore crucial that the modified Cholesky factor results in a good conditioning and clustering of
the eigenvalues of the pre-conditioned system.

Pre-conditioning in the P-CG method with the modified Cholesky factor LΘ1/2 is of course
analogous to the popular incomplete Cholesky pre-conditioning. We note though that in our setting,
L has the same sparsity structure as the exact Cholesky factor, but it has better numerical properties
as AΠAT gets ill-conditioned; the aim is to improve numerical accuracy. On the other hand, the
traditional incomplete Cholesky approach aims at a sparser Cholesky factor, possibly sacrificing
numerical accuracy.

We remark that other Cholesky based interior point codes also modify the Cholesky factor, in
most cases by skipping pivots but some codes also add small quantities on the diagonal. However,
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these interior point codes combine the modified Cholesky merely with one step of residual correction
(iterative refinement). We have replaced the residual correction procedure by the P-CG method.

Unlike the nature of the residual correction step, the residual in (22) may actually increase
during a P-CG iteration. However, the convergence of the P-CG method is (conceptually) monotone
in a forward error sense. Namely, let ∆y be the exact solution to (22). If we denote the iterative
solutions in the P-CG method to (22) by ∆ŷ1, ∆ŷ2, . . ., then we have

‖ΦTAT∆ŷk − ΦTAT∆y‖ ≥ ‖ΦTAT∆ŷk+1 − ΦTAT∆y‖,

with equality if and only if ∆ŷk = ∆y. Indeed, we observed that the P-CG method is capable
of approximating ΦTAT∆y = ΦTAT(AΠAT)−1b very accurately, even if AΠAT is extremely ill-
conditioned. The P-CG method may be the ‘spare engine’ that Saunders was hoping for in [63].

8 Dense Columns

Recall from (29) that if two primal constraints i and j do not have any variable in common then
(AΠAT)ij = 0. Put another way, if there is a variable that occurs in all primal constraints, then
the nonzero pattern of AΠAT will generally be fully dense. This situation arises for instance in
certain standard SDP relaxations of combinatorial problems, where there is merely one variable:
a large ν × ν matrix variable. However, even in the more favorable case where there is a large
number of variables which are all of low dimensionality, a few variables occurring in a large number
of constraints can account for most of the nonzeros in AΠAT. The latter situation is our concern
in this section.

In order to simplify notations, let Ā = AΦ with ΦΦT = Π, so that (22) becomes

find ∆y such that ĀĀT ∆y = b. (34)

Partitioning Ā in columns as

Ā =
[

ā1, ā2, · · · , ān

]

, (35)

we may write

ĀĀT =
n

∑

i=1

āiā
T
i . (36)

We see that a column āi with nnz(āi) nonzeros implies nnz(āiā
T
i ) = nnz(āi)

2 nonzeros in ĀĀT. A
dense column is a column āi where nnz(āi) is relatively large. Relatively large could for instance
mean more than ten times the number of nonzeros in āj for 75% of the columns āj of Ā. As observed
in [25], the number of nonzeros in a dense column can be much smaller than the dimension m, and
hence sparsity should be exploited in dense columns as well.

The basic idea of dense column handling is to first remove the dense columns from (36) in order
to promote sparsity in the remaining part of ĀĀT. We will then factor the resulting simplified
and sparse system before incorporating the dense columns by means of iterative methods [1] or low
rank updates [43].
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Reorder the columns of Ā such that the first k columns of Ā are sparse, whereas the remaining
n − k columns are dense. We can then start by factoring the contribution of the sparse part of Ā,

Ā1:kĀ1:k =
k

∑

i=i

āiā
T
i = LkΘkL

T
k (37)

by means of a (block) sparse Cholesky factorization, yielding a sparse unit diagonal lower triangular
matrix Lk and a diagonal matrix Θk. Obviously, the entries in Θk are nonnegative. Andersen and
Andersen [7] provide a recent survey of block sparse Cholesky techniques in the context of interior
point methods.

Unfortunately, the removal of dense columns typically leaves LkΘkL
T
k rank deficient, so that

some diagonal entries of Θk can be zero. This means that we cannot introduce the contribution
of the dense columns to (ĀĀT)−1 by simply applying the low rank update formula of Sherman,
Morrison and Woodbury. As a remedy to this problem, Andersen [9] has proposed to add artificial
quantities on the diagonal of LkΘkL

T
k in order to make this matrix full rank. The subsequent

Sherman-Morrison-Woodbury update will then both add the dense columns and remove the artificial
columns. Another option is to use the modified full rank Cholesky factor as a preconditioner in the
conjugate gradient method, as in Adler et al. [1]. Both approaches suffer from numerical problems.
Higher numerical stability is achieved with the product form Cholesky technique which was recently
advocated by Goldfarb and Scheinberg [25] and subsequently implemented in SeDuMi [67].

After factoring Ā1:kĀ1:k using a block sparse Cholesky factorization, as in (37), the product
form Cholesky technique proceeds with incorporating the contribution of the rank-1 matrix ā(k +

1)ā(k + 1)T into the factorization. We have

LkΘkL
T
k + āk+1ā

T
k+1 = Lk(Θk + ãk+1ã

T
k+1)L

T
k

= LkL(ãk+1, βk+1)Θk+1L(ãk+1, βk+1)
TLT

k , (38)

where
ãk+1 := L−1

k āk+1 (39)

and L(p, q) − I is the below-diagonal part of the rank-1 matrix pqT. More precisely,

L(p, q)i, j =











0 for i = 1, 2, . . . , j − 1
1 for i = j
piqj for i = j + 1, j + 2, . . . , m,

(40)

for all j = 1, 2, . . . , m. Thus, the rank-1 update of the Cholesky factorization corresponds to solving
βk+1 ∈ ℜm and the order m diagonal matrix Θk+1 from

Θk + ãk+1ã
T
k+1 = L(ãk+1, βk+1)Θk+1L(ãk+1, βk+1)

T,

which can be done in linear time [12, 25]. After computing βk+1 we proceed by setting

Lk+1 = LkL(ãk+1, βk+1).

Then we satisfy (37) with k = k+1. We continue the process of incorporating rank-1 contributions
into the factorization until no dense columns are left, i.e. k = n.
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Recall from Section 5 that Π is a block diagonal matrix with block Π[i] matching the size of
x[i]. In linear programming, all variables are scalar so that Π is diagonal and Ā has exactly the
same sparsity structure as A. In this case, the dense columns of Ā correspond directly with the
dense columns of A.

Since P (dq) is not diagonal but merely block diagonal, this correspondence is lost in the setting
of second order cone programming. However, Goldfarb et al. [26] observed that a slight change in
the definition of Ā re-establishes the correspondence to a large extent. Namely, we have from (32)
that

AqP (dq)(Aq)T = (AqDq)(AqDq)T + Aq
2:H(Aq

2:)
T − Aq

1Det(dq)(Aq
1)

T,

where H and Det(dq) are diagonal matrices (as in the linear programming case). We let

Ā =
[

AlP (dl)1/2, AqDq, Aq
2:H

1/2, AsP (ds)1/2
]

, (41)

so that
AP (d)AT = ĀĀT − Aq

1Det(dq)(Aq
1)

T.

Let γ > 0 be a threshold such that āi is treated as a dense column if and only if nnz(āi) > γ. We
partition Ā as (ĀS , Ā¬S), where

S = {i | nnz(āi) ≤ γ}
is the set of sparse columns and ¬S = {1, 2, . . . , n} \ S is the set of dense columns. Similarly, we
let

S(q) = {k | nnz(Aq[k]dq[k]) ≤ γ},
where nnz(Aq[k]dq[k]) is evaluated symbolically (independent of the numerical value of dq). It is
clear that if Aq[k]dq[k] ∈ ℜm is sparse then all columns of Aq[k] are sparse. The matrix

M = ĀSĀT
S −

∑

k∈S(q)

det(dq[k])aq
1[k](aq

1[k])T

is positive semidefinite. We will now factor the sparse matrix M using a block sparse Cholesky
factorization, and then update the factorization as in (38), until the matrix AP (d)AT has been
factored completely. See [26] for a numerical analysis of this approach. In this section, we have
focused on NT scaling, but the product form Cholesky technique can be extended to HKM and
AHO scaling, albeit with some complications. Most notably, the Cholesky factorization has to be
replaced by an LU -factorization in the case of AHO scaling.

9 Upper-Bounds and Fixing Constraints

A bound (or box) constraint is a constraint of the form 0 ≤ xl[i] ≤ ub[i] where ub[i] is a given scalar
upper bound on the nonnegative decision variable xl[i]. A fixing constraint is a constraint of the
form xi[k] = fxi[k], which fixes the ith component of decision variable x[k] to a given scalar quantity
fxi[k]. Such constraints impose hardly any computational cost per iteration if their structure is
exploited. Upper bound constraints have been treated in such a way since the very beginning of
primal-dual interior point methods, probably because it was customary to do so in the simplex

19



method as well [43]. The special handling of fixing constraints in second order cone programming
has been developed by Andersen et al. [8].

In the standard form (1), an upper-bound constraint on xl[i] is modeled with a slack variable,
say xl[j], which does not occur in any other constraint. The upper-bound constraint therefore takes
the following form in (1):

xl[i] + xl[j] = ub[i]. (42)

We order the nonnegative variables such that the first m[ub] of them are upper-bounded vari-
ables, and the last m[ub] are the corresponding slack variables. The collection of all upper-bound
constraints in a given model can now be written as

[

I, 0, I
]

xl = ub, (43)

where I is the m[ub] × m[ub] identity matrix.

For nonnegative scalar variables, a fixing constraint fixes the entire variable x[k] which can
therefore be eliminated from the problem. However, such an elimination in impossible for Lorentz
cone variables and semidefinite cone variables which are only fixed in some components. (In fact,
all constraints in the famous semidefinite relaxation of the MAX-CUT problem [24] are fixing
constraints!)

In this section, we consider only those fixing constraints which affect Lorentz cone variables.
We remark that if two components of a Lorentz cone variable are fixed, we can eliminate one of
them. For instance, a Lorentz cone constraint in ℜn[k] with two fixed entries, say

x1[k] ≥

√

√

√

√

√

n[k]
∑

i=2

xi[k]2, x1[k] = 5, xn[k][k] = 4

is equivalent to a Lorentz cone constraint in ℜn[k]−1 with one fixed entry, viz.

x1[k] ≥

√

√

√

√

√

n[k]−1
∑

i=2

xi[k]2, x1[k] = 3 =
√

52 − 42.

Thus, we may assume that an individual fixing constraint has the following form:

xq
σ(k)[k] = fx[k], (44)

where σ(k) ∈ {1, 2, . . . , nq[k]} denotes the given index of the fixed component in xq[k]. We order
the Lorentz cone variables in such a way that fixing constraints exist for the first m[fx] variables.
The collection of all such fixing constraints in a given model can now be written as

[

F̃ q 0
]

xq = fx, F̃ q =
(

eσ(1) ⊕ eσ(2) ⊕ · · · ⊕ eσ(m[fx])

)T
, (45)

where ei denotes the ith column of the identity matrix.
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In order to treat (43) and (45) explicitly, we partition the data as follows:

Al =







I 0 I
0 0 0

Ãl
1 Ãl

2 0






, Aq =







I 0

F̃ q 0

Ãq
1 Ãq

2






, As =







0
0

Ãs






, b =







ub

fx

b̃






. (46)

We may assume without loss of generality that

Ãq
1(F̃

q)T = 0. (47)

Namely, one may otherwise replace b̃ by b̃− Ãq
1(F̃

q)Tfx, and remove all nonzeros from the columns
in Ãq corresponding to fixed components of xq.

Since we like to treat upper-bounds and fixing constraints in a unified fashion, we also partition
A as

A =

[

F

Ã

]

, F ∈ ℜ(m[ub]+m[fx])×n. (48)

Using the Schur-complement (or 2 × 2 block Cholesky) technique, we have

AΠAT =

[

FΠFT FΠÃT

ÃΠFT ÃΠÃT

]

=

[

I 0
L21 I

] [

FΠFT 0

0 ÃΠ̃ÃT

] [

I LT
21

0 I

]

,

where
L21 := ÃΠFT(FΠFT)−1,

and Π̃ is a matrix satisfying

ÃΠ̃ÃT = ÃΠÃT − ÃΠFT(FΠFT)−1FΠÃT = ÃΠÃT − L21(FΠFT)LT
21. (49)

It is obvious that such Π̃ exists. Below, we show the less obvious fact that we can choose Π̃ with the
same structure as Π = P (d) in the case of NT scaling. This means that we have essentially reduced
the original normal equations system to a smaller normal equations system, without causing any
fill-in of nonzeros.

It is clear from (29) that FΠFT is a diagonal matrix. In fact, if we let

s(i) := i + κ(l) − m[ub] for i = 1, 2, . . . ,m[ub]

denote the index of the slack variable in the ith upper-bound constraint, we have

FΠFT =

(

(
x1

z1
+

xs(1)

zs(1)
) ⊕ · · · ⊕ (

xm[ub]

zm[ub]
+

xs(m[ub])

zs(m[ub])
)

)

⊕
(

πq
σ(1),σ(1)[1] ⊕ · · · ⊕ πq

σ(m[fx]),σ(m[fx])[m[fx]]
)

, (50)

where πq
i,i[k] denotes the ith diagonal entry of Πq[k].
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We have
L21ei =

xizs(i)

xizs(i) + xs(i)zi
ãl

i for i = 1, 2, . . . , m[ub], (51)

and

L21em[ub]+i =
1

πq
σ(i),σ(i)[i]

Ãq[i]Πq[i]eσ(i) for i = 1, 2, . . . ,m[fx]. (52)

For NT-scaling, one has

Πq[i] = P (dq[i]) = dq[i](dq[i])T − det(dq[i])J.

Using (47), one can simplify (52) to

L21em[ub]+i =
dq

i [i]

πq
σ(i),σ(i)[i]

Ãq[i]dq[i] for i = 1, 2, . . . , m[fx]. (53)

From (49)–(53) we have

ÃΠ̃ÃT = ÃΠÃT −
m[ub]
∑

i=1

xi

zi
· xizs(i)

xizs(i) + xs(i)zi
ãl

i(ã
l
i)

T

−
m[fx]
∑

i=1

dq
i [i]

2

πq
σ(i),σ(i)[i]

Ãq[i]dq[i](Ãq[i]dq[i])T.

This shows that we may set Π̃[k] = Π[k] for all blocks, except the first m[ub] diagonal blocks in Πl

and the first m[fx] diagonal blocks in Πq. The modified blocks are given by the formulas

π̃l[i] =
xi

zi

(

1 − xizs[i]

xizs(i) + xs(i)zi

)

= 1/

(

zi

xi
+

zs(i)

xs(i)

)

for i = 1, 2, . . . ,m[fx] (54)

and
Π̃q[i] = αid

q[i](dq[i])T − det(dq[i])J for i = 1, 2, . . . , m[fx], (55)

where

αi = 1 − dq
i [i]

2

πq
σ(i),σ(i)[i]

=

{

−2 det(dq[i])/‖d‖2 if σ(i) = 1
det(dq[i])/(det(dq[i]) + (dq

σ(i)[i])
2) if σ(i) > 1.

(56)

One may have concerns about the lack of positive definiteness of Π̃q. However, one could recover
positive definiteness by either adding something to the σ(i)th diagonal entry of Π̃q[i] or by removing
the σ(i)th row and column from Π̃q[i]. Such modifications do not affect the actual computation,
since Ãq is all-zero in the columns corresponding to fixed components, see (47).

The computational savings of handling bounds and fixing constraints in the above explained
manner can be substantial. First, applying a general sparse ordering heuristic to AΠAT directly may
cause more fill-in in the resulting Cholesky factor than an ordering with the upper-bound and fixing
constraints up front. Second, and more importantly, we do not need to calculate L21FΠFTLT

21 in
(49) explicitly, as a general Cholesky factorization of AΠAT does. Instead, we form ÃΠ̃ÃT directly
using the technique described in Section 6.
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10 Iterates in Product Form

Referring to Section 5, we observe that the matrix Π involves L(z)−1 in the case of AHO scaling,
and P (z)−1/2 in the case of HKM or NT scaling. The matrices L(z)−1 and P (z)−1/2 have the same
spectral radius, viz. 1/λmin(z); see [14, 69]. When the optimum is approached, the z-iterates ap-
proach the boundary of the cone K, i.e. λmin(z) and det(z) approach zero. For linear programming,
we simply have that the ‘non-basic’ entries in z approach zero, so that computing Π does not pose
any numerical problems. However, for the semi-definite and Lorentz cone variables, the boundary
of the cone can be approached without any of the entries in z getting small. Computing λmin(z) or
det(z) from the floating point representation of z will therefore result in severe numerical cancella-
tion when the optimum is approached. Hence, it is impossible to compute L(z)−1, P (z)−1/2, or Π
accurately, if the computations are based on the floating point representation of a near optimal z.
To resolve this problem, we may store and update the z-solutions in a product form, where small
spectral values of z correspond to small entries in the factors of this product form. This approach
has been proposed in [70].

In the setting of NT-scaling, it is natural to use the v-space product form [72, 70]. Recall that
the NT-scaling operator is

Π = P (d) = P (dl) ⊕ P (dq) ⊕ P (ds).

We let
Φ = Φl ⊕ Φq ⊕ Φs, Φl = P (dl)1/2, Φq = P (dq)1/2,

and Φs is the lower triangular Cholesky factor of P (ds). We have

Π = P (d) = ΦΦT, ΦTK = ΦK = Φ−1K = K.

Letting v = ΦTz, we have
x = Πz = ΦΦTz = Φv, (57)

so that also v = Φ−1x. The factors Φ and v thus determine x and z in the product form x = Φv
and z = Φ−Tv. We see that ‖v‖2 = (ΦTz)TΦ−1x = zTx is the duality gap, and hence all entries in

v approach zero as the optimum is approached. In fact, it holds that λi(v) =
√

λi(P (x)1/2z) for all

i = 1, 2, . . . , ν, see [69]. Due to the neighborhood (N2, N−
∞ or Nwr) in the interior point algorithm,

the matrices L(v) and P (v) remain well conditioned throughout the process, whereas the condition
numbers of L(z) and P (z) tend to infinity as the optimum is approached.

Letting ∆x := Φ−1∆x and ∆z := ΦT∆z, we have x+ = x + t∆x = Φ(v + t∆x), and ΦTz+ =
ΦT(z + t∆z) = v + t∆z. Since v is well conditioned, we can in principle control the step length t in
such a way that z̄+ := v + t∆z is also well conditioned. However, in practice we will give priority
to fast convergence when the rate of linear convergence is close to zero; see also [70]. Below, we
shall work out the approach for the Lorentz cone and semidefinite cone variables, respectively.

For the Lorentz cone, we have Πq[k] = P (dq[k]) = dq[k](dq[k])T − det(dq[k])J . In SeDuMi,
we maintain both dq[k] and det(dq[k]), k = 1, . . . , κ(q). In principle, one could also compute
det(dq[k]) from dq[k] directly, but this can lead to severe numerical cancellation when the optimum
is approached. This situation arises when xq[k]Tzq[k] → 0 but ‖xq[k]‖‖zq[k]‖ 6→ 0, so that d will
have one spectral value approaching zero, whereas the other approaches infinity [70].
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Apart from maintaining dq and det(dq), we also maintain the scaled iterate vq. In this way, we
can always recover the unscaled iterates xq and zq by applying relation (57). After computing the
scaled step

(x̄+, y+, z̄+) = (v, y, v) + t(∆x,∆y, ∆z), (58)

we update the factors dq, det(dq) and vq into (dq)+, det((dq)+) and (vq)+. Obviously, the update
formulas are basically the same for each Lorentz block k = 1, 2, . . . , κ(q). To avoid unnecessarily
complicated formulas, we therefore temporarily act as if the cone K is just a single Lorentz cone
so that we can write d, v, etc. instead of the cumbersome dq[k], vq[k], etc. in the update formula
below. Furthermore, the formula uses some auxiliary quantities α, γ, χ, ψ, which have only a local
meaning.

1. Let
{

det(v+) =
√

det(x̄+) det(z̄+)

tr v+ =
√

(x̄+)Tz̄+ + 2 det(v+).

2. Let

χ =
1

tr v+
(x̄+ + det(v+)(z̄+)−1), det(χ) =

det(v+)

det(z̄+)
,

and compute
d+ = P (d1/2)χ, det(d+) = det(d) det(χ).

3. Let

ψ = x̄+ − det(v+)(z̄+)−1, α =
dTψ

( tr (d+)1/2)2
,

φ =
1

2
√

det(χ)
(ψ − αχ), γ =

α + tr φ

( tr d1/2)2
,

and compute
{

v+
1 = tr v+/

√
2

v+
i = φi + γdi for i = 2, 3, . . . , n.

Since the above formulas are based on the scaled iterates x̄ and z̄, they do not suffer from the
increasing ill-conditioning of the iterates in the interior point method. We refer to [70] for details.

For the semidefinite cone, we have Πs[k] = P (ds[k]) = Ds[k]⊗Ds[k], where the positive definite
matrix Ds[k] is implicitly defined by the relation ds[k] = vec (Ds[k]). Let U s

d [k] denote the upper
triangular Cholesky factor of Ds[k]. We have

(Φs[k])T = U s
d [k] ⊗ U s

d [k].

Analogous to the Lorentz cone case, we also maintain the scaled iterate vs[k] = vec (V s[k]). In
this way, we can always recover the unscaled iterates xq and zq by applying relation (57). More
specifically, we have

Xs[k] = (U s
d [k])TV s[k]U s

d [k], Zs[k] = (U s
d [k])−1V s[k](U s

d [k])−T for k = 1, 2, . . . , κ(s).
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In order to avoid problems with the inherent ill-conditioning of Xs[k] and Zs[k] near the optimum,
we update U s

d [k] and V s[k] based on the scaled iterates

(x̄s[k])+ = vec (X̄s[k])+, (z̄s[k])+ = vec (Z̄s[k])+,

where x̄+ and z̄+ are defined in (58). To avoid unnecessarily complicated formulas, we temporarily
act as if the cone K is just a single positive semidefinite cone so that we can dispense with the
block indicators s and k in the update formula below. The formula uses some auxiliary matrices
Ū+

x ,W,Qw, T, Q+
v and R, which have only a local meaning.

1. Compute an upper triangular matrix Ū+
x as the Cholesky factorization of X̄+, i.e.

X̄+ = (Ū+
x )TŪ+

x .

2. Let W := Ū+
x Z̄+(Ū+

x )T; compute an orthogonal matrix Qw and a diagonal matrix Λ+
v as the

symmetric eigenvalue decomposition of W 1/2, i.e.

W = Qw(Λ+
v )2QT

w.

3. Let T := (Λ+
v )−1/2QT

w; compute an orthogonal matrix Q+
v and an upper triangular matrix R

as the QR-factorization of T , i.e.
T = (Q+

v )TR.

4. Compute
U+

d = RŪ+
x Ud,

V + = Q+
v Λ+

v (Q+
v )T.

Again, we refer to [70] for details.

11 Correcting the Search Direction

The technique of adaptively correcting the search direction has proved to be quite successful in
practice. The underlying idea of this technique is that once the factorization of the reduced nor-
mal equations system (21) has been computed, it is computationally inexpensive to solve (21) for
different choices of r.

The most famous correction technique is due to Mehrotra [46]. Mehrotra’s scheme combines
ideas of Monteiro et al. [51] on power series extension and Sonnevend et al. [65] and Mizuno et
al. [49] on adaptive step predictor-corrector algorithms.
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11.1 Continuous Affine Scaling Trajectory

As in Monteiro et al. [51], we consider the continuous affine scaling trajectories through the current
solution (x, y, z). The continuous affine scaling trajectory is obtained by taking infinitesimal steps
along the predictor (or primal-dual affine scaling) direction, while re-evaluating this direction con-
tinuously. In other words, this is the smooth curve through (x, y, z) where the tangent direction
always equals the predictor direction. More formally, the trajectory is defined as follows:











x(0) = x, y(0) = y, z(0) = z
(1 − t)(ẋ(t) + Π(t)ż(t)) = −x(t) for t < 1
Aẋ(t) = 0, ATẏ(t) + ż(t) = 0, for t < 1,

(59)

with Π(t)Tz(t) = x(t). Here, we use the standard notation

ẋ(t) =
dx(t)

dt
, ẍ(t) =

d2x(t)

dt2
.

Observe from (14)–(16) that (1 − t)(ẋ(t), ẏ(t), ż(t)) is exactly the predictor direction evaluated at
(x(t), y(t), z(t)). The factor 1− t ensures that optimality is approached when t → 1. In particular,
it is easily verified that x(t)Tz(t) = (1 − t)xTz. For t = 0, we have

ẋ(0) + Πż(0) = −x. (60)

Differentiating (59), we obtain that

{

ẍ(0) + Πz̈(0) = (Π − Π̇(0))ż(0)
Aẍ(0) = 0, ATÿ(0) + z̈(0) = 0.

(61)

As we observed before, (ẋ(0), ẏ(0), ż(0)) is simply the predictor direction at the current solution
(x, y, z). How Π̇(0) can be computed depends on the choice of Π. Since the reduced normal
equations have already been factored to compute the predictor direction from (21) with r = −x,
it is computationally inexpensive to solve (21) with r = (Π − Π̇(0))ż(0) in order to compute the
second order derivative.

Recall that NT-scaling is implicitly defined by the relations

Π(t) = P (d(t)), x(t) = P (d(t))z(t).

Choose Φ and define v as in Section 10, i.e.

P (d) = ΦΦT, ΦK = K, v = ΦTz = Φ−1x.

It can be shown [66, 68] that

Π(t) = P (d(t)) =⇒ Π̇(0) = ΦL(u)ΦT with u := L(v)−1(Φ−1ẋ(0) − ΦTż(0)). (62)

Thus, one has

Π − Π̇(0) = Φ(I − L(u))ΦT = ΦL(L(v)−1v − u)ΦT = ΦL(L(v)−1Φ−1ẋ(0))ΦT,
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where we used that

v = Φ−1x = −Φ−1(ẋ(0) + Πż(0)) = −(Φ−1ẋ(0) + ΦTż(0)).

To summarize, the second order derivative of the continuous affine scaling trajectory with NT-
scaling is characterized by

{

ẍ(0) + P (d)z̈(0) = ΦL(L(v)−1Φ−1ẋ(0))ΦTż(0)
Aẍ(0) = 0, ATÿ(0) + z̈(0) = 0.

(63)

For linear programming, one simply has

ẍi(0) +
xi

zi
z̈(0) =

ẋi(0)żi(0)

zi
for i = 1, 2, . . . , κ(l),

irrespective of the method of scaling.

We mention that the AHO continuous affine scaling trajectory (x(t), y(t), z(t)) satisfies (and is
in fact characterized by)

L(x(t))z(t) = L(z(t))x(t) = (1 − t)L(x)z for t < 1.

However, the three different continuous affine scaling trajectories that are associated with NT
scaling and both versions of HKM scaling satisfy the relation

λ(P (x(t))1/2z(t)) = λ(P (z(t))1/2x(t)) = (1 − t)λ(P (x)1/2z). (64)

The continuous affine scaling trajectory technique with NT scaling leads to the second order direc-
tion of Sturm [66, 68]. A different second order direction with NT scaling was introduced by Todd
et al. [75]; their derivation is based on MZ-trajectories which we discuss below. With AHO-scaling,
the two approaches are equivalent.

11.2 Continuous MZ-trajectory

MZ-trajectories are defined using the similarity symmetrization operator of Zhang [86] and Monteiro
and Zhang [55]. The similarity symmetrization operator, parameterized by an n×n invertible matrix
Ψ with ΨK = K, is defined as

LΨ(x) := L(Ψ−1x)ΨT. (65)

Since L(x)z = L(z)x for any x and z, one also has that

LΨ(x)z = LΨ−T(z)x for all x, z, (66)

which is a key relation in the MZ approach. The MZ-trajectory through (x, y, z) associated with
Ψ is the analytic curve satisfying

LΨ(x(t))z(t) = (1 − t)LΨ(x)z for t < 1. (67)

Differentiating the above relation yields

LΨ(ẋ(t))z(t) + LΨ(x(t))ż(t) = −LΨ(x)z. (68)
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Differentiating once more, we obtain that

LΨ(ẍ(t))z(t) + LΨ(x(t))z̈(t) = −2LΨ(ẋ(t))ż(t). (69)

Let
Π = LΨ−T(z)−1LΨ(x). (70)

Using (65) and (66), we see that
x = ΠTz = Πz.

so that Π satisfies indeed (17). (Using the fact that ΨK = K, one can also show that Πx−1 = z−1.)

With the above choice of Π and using (66), we can reformulate (68) for t = 0 as

ẋ(0) + Πż(0) = −x. (71)

Similarly, we reformulate (69) for t = 0 as

ẍ(0) + Πz̈(0) = −2LΨ−T(z)−1LΨ(ẋ(0))ż(0) (72)

= −2ΨL(ΨTz)−1L(Ψ−1ẋ(0))ΨTż(0). (73)

Clearly, Ψ = I yields the AHO-scaling Π in (24). Similarly, Ψ = P (z)−1/2 and Ψ = P (x)1/2

yield the HKM-variants in (25) and (26) respectively. The NT-scaling is obtained by setting Ψ = Φ
with ΦΦT = P (d) and P (d)z = x, see (27).

Obviously, (71) coincides with (60), but (61) and (73) are in general not equivalent. In partic-
ular, for the NT-scaling, (61) reduces to (63) whereas (73) reduces to

ẍ(0) + P (d)z̈(0) = ΦL(v)−1L(Φ−1ẋ(0))ΦTż(0). (74)

Such MZ-trajectory based second order NT-directions have been implemented in SDPT3 [76, 75]
and MOSEK [7, 8].

We remark that Monteiro and Zanjácomo [54] have defined several different trajectories through
(x, y, z) leading to an optimal solution. One of these trajectories has an NT-flavor; it is defined as

LP (d(t))1/2(x(t))z(t) = (1 − t)LP (d)1/2(x)z for t < 1,

which differs from (67) in the sense that Ψ(t) = P (d(t))1/2 changes continuously in t. Even
though this trajectory does satisfy (64), it does not lead to the NT-based continuous affine scaling
trajectory. In fact, the tangent along such a trajectory is the so-called V -direction in Todd [74].

11.3 Mehrotra Direction and its Variations

By truncating the power series of x(t) and z(t) to first order approximations x(t) ≈ x(0) + tẋ(0),
z(t) ≈ z(0) + tż(0), one arrives at the principle underlying the Newton direction, viz. linearizing
the x(t) and z(t) curves. However, one can also work with the second order approximations

x(t) ≈ x(0) + tẋ(0) +
t2

2
ẍ(0), z(t) ≈ z(0) + tż(0) +

t2

2
z̈(0).

28



Since (x(t), z(t)) approaches optimality when t → 1, it makes sense to use ∆x = ẋ(0) + ẍ(0)/2
and ∆z = ż(0) + z̈(0)/2 as a search direction. With this approach, super-quadratically convergent
algorithms can be designed for linear programming [82].

The Mehrotra direction [46, 44] is built in two phases, viz. the predictor phase and the corrector
phase. In the predictor phase, (ẋ(0), ż(0)) is computed. The maximal feasible step length along
this search direction is denoted t∗p, i.e.

t∗p := max{t|x + tẋ(0) ≥ 0, z + tż(0) ≥ 0}.

Then, a prediction is made on the new duality gap that can be achieved with a second order
correction. This prediction is:

µ = (1 − t∗p)
3xTz. (75)

The Mehrotra direction is now solved from
{

∆x + Π∆z = µ
ν(K)z

−1 + ẋ(0) + 1
2 ẍ(0) + Π(ż(0) + 1

2 z̈(0))

A∆x = 0, AT∆y + ∆z = 0.
(76)

Thus, the Mehrotra direction adds a µ-centering component to the second order direction. The
value of µ is based on the predictor step length t∗P . This scheme is similar to the predictor-corrector
scheme in [65, 49].

Sturm [66, 68] has proposed a variation of Mehrotra’s search direction with an O(
√

ν(K)| log ǫ|)
worst case iteration bound. This polynomial time algorithm has been implemented in SeDuMi [67].

Another extension of Mehrotra’s search direction is the centrality correction scheme of Gondzio [6,
27]. For linear programming, the Gondzio correctors have proved their value in practice.

12 Initialization, Infeasibility and Embedding

The interior point method is normally initialized from a cold start, which means that no initial
starting point is known. In this setting, the interior point method is initialized from a somewhat
arbitrarily chosen vector in the interior of the cone K, which may or may not satisfy the linear
feasibility constraints. The interior point method should then generate either an approximate
primal-dual optimal solution pair, or an approximate Farkas-type dual solution to certify that no
(reasonably sized) feasible solution pair exists. In this section, we discuss two alternative approaches
to deal with the cold start situation: the infeasible interior point method of Lustig [42, 43] and the
self-dual embedding technique of Ye, Todd and Mizuno [85].

We remark that there are situations in which an interior feasible solution is known a priori.
Such a solution could be used as an initial solution for a feasible interior point method. However,
one typically knows such a solution only for the primal (or only for the dual), and the solution may
not be well centered. The known feasible solution may therefore turn out to be of little or no use.

It is more common that a complementary but infeasible solution pair is known a priori. Such a
solution pair can provide useful information to a warm started interior point method. At the time
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of writing, no satisfactory warm started interior point method is known yet. Hence, this subject is
not treated in this paper.

Before describing the cold start approaches, we recall that the optimality conditions for (1) and
(4) are

b − Ax = 0 (77)

ATy + z − c = 0 (78)

cTx − bTy ≤ 0, (79)

and
x ∈ K, y ∈ ℜm, z ∈ K∗. (80)

The Farkas-type conditions to certify that there cannot exist (x, y, z) satisfying (77), (78) and (80)
jointly are

Ax = 0 (81)

ATy + z = 0 (82)

cTx − bTy + 1 = 0, (83)

together with (80). See e.g. [56, 40, 66] for recent surveys on conic duality.

In fact, we are now in a position to define what we mean by numerically solving (1). It means
that we should produce an approximate solution to either (77)–(80), or (80)–(83).

The cold started interior point method is initialized from a triple (x(0), y(0), z(0)) satisfying
λ(P (x(0))1/2z(0)) ∈ N . For instance, one may set x(0) = z(0) = ι and y(0) = 0. One also defines

y
(0)
0 =

ν(K) + 1

ν(K)
; (84)

the role of y
(0)
0 will be clarified later in this section. Given (x(0), y

(0)
0 , y(0), z(0)), the initial primal

and dual residuals are defined as

rp :=
1

y
(0)
0

(b − Ax(0)), rd :=
1

y
(0)
0

(ATy(0) + z(0) − c). (85)

After this initialization, we can proceed either with the infeasible interior point approach or the
self-dual embedding approach.

12.1 Infeasible Interior Point Method

In the infeasible interior point method of Lustig [42, 43], one sets ∆y0 = −y0 and replaces (15)–(16)
by

A∆x = −∆y0rp (86)

AT∆y + ∆z = ∆y0rd. (87)
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Let y0(t) = y0 + t∆y0 = (1 − t)y0. Solving (14),(86)–(87) yields a search direction with

Ax(t) + y0(t)rp = b, ATy(t) + z(t) = c + y0(t)rd

and
x(t)Tz(t) = xTz + tzTr + t2∆xT∆z.

For the predictor choice ‘r = −x’ one has that x(t)Tz(t) = (1 − t)xTz + O(t2), so that the duality
gap reduces locally at the same rate as the infeasibility measure y0(t). However, the coefficient of
the second order term, i.e. ∆xT∆z, is in general nonzero in the infeasible interior point method;
in particular, this quantity could be negative. If the duality gap decreases too quickly then the
method could conceivably converge to (or get stalled near) an infeasible complementary solution
pair. However, by incorporating a centering term in r and by using an appropriate neighborhood
or step lengths rule, one can maintain y0 = O(xTz). In this way, an approximate solution to (77)–
(79) is obtained when xTz gets close to zero. However, y0 = O(xTz) implies that xTz is bounded
from below by a positive quantity when (77)–(79) is strictly infeasible. Therefore, one also defines
approximate solutions to (81)–(83) as follows:

(x̃, ỹ, z̃) :=
(x, y, z)

1 + |bTy − cTx| . (88)

If bTy − cTx → ∞, an approximate Farkas-type certificate of infeasibility is obtained. We refer to
Mizuno [48] for a survey on infeasible interior point methods.

The infeasible interior point technique is widely used in practice, among others in SDPPack [3],
SDPA [20] and SDPT3 [76].

12.2 Self-Dual Embedding Technique

In the self-dual embedding technique of Ye et al. [85], a slack variable z0 is added to (79), and
initialized at

z
(0)
0 =

(x(0))Tz(0)

ν(K)
. (89)

Furthermore, one computes

rg =
cTx(0) − bTy(0) + z

(0)
0

y
(0)
0

, x
(0)
0 = 1.

The primal and dual problems (1) and (4) are embedded into a self-dual optimization problem

min{y0|(x0, x, y0, y, z0, z) satisfies (91), (92), (93)}, (90)

with decision variables x0, x, y0, y, z0 and z, and constraints (91)–(93):







0 −A b
AT 0 −c
−bT cT 0













y
x
x0






+







0
z
z0






= y0







rp

rd

rg






, (91)

31



rT
p y + rT

d x + rgx0 = 1, (92)

(x0, x) ∈ ℜ+ ×K, (y0, y) ∈ ℜ1+m, (z0, z) ∈ ℜ+ ×K∗. (93)

Pre-multiplying both sides of (91) with
[

yT, xT, x0

]

yields the identity

xTz + x0z0 = y0(r
T
p y + rT

d x + rgx0) = y0. (94)

It is easily verified that (x
(0)
0 , x(0), y

(0)
0 , y(0), z

(0)
0 , z(0)) satisfies (91)–(93). Therefore, we can use this

as an initial starting point to solve (90) using a feasible interior point method.

Given an interior feasible solution to (91)–(93), we define the normalized solution

(x̂, ŷ, ẑ) :=
(x, y, z)

x0
, (95)

as an approximate solution to (77)–(80). Namely, we have










b − Ax̂ = (y0/x0)rb

ATŷ + ẑ − c = (y0/x0)rc

cTx̂ − bTŷ < (y0/x0)rg.

When y0/x0 approaches zero, the residual to (77)–(79) approaches zero as well.

However, this is not always possible, since the original problem pair (1) and (4) can be infeasible.
Therefore, we also define a normalized solution

(x̃, ỹ, z̃) :=
(x, y, z)

z0
, (96)

as an approximate solution to (80)–(83). Namely, we have










−Ax̃ = (y0rb − x0b)/z0

ATỹ + z̃ = (y0rc + x0c)/z0

cTx̃ − bTỹ + 1 = y0rg/z0.

If, after the final iterations of the interior point method, the residual of (x̃, ỹ, z̃) with respect to
(81)–(83) is smaller than the residual of (x̂, ŷ, ẑ) with respect to (77)–(79), we report the original
problem as infeasible, providing x̃ and ỹ as a certificate.

During the interior point process, we can predict whether the original problem pair is infeasible
based on the (x0, z0) component of the first order predictor direction. Namely, we let

feas :=
ẋ0(0)

x0
− ż0(0)

z0
.

One can show that if a complementary solution exists then ẋ0(0)/x0 → 0 and ż0(0)/z0 → −1, so
that feas → 1. Conversely, if the problem is strictly infeasible one can show that feas → −1. For
problems without a complementary solution which are not strictly infeasible, this indicator is less
valuable. We refer to Luo, Sturm and Zhang [41] for details.

The self-dual embedding technique is used in MOSEK [7] and SeDuMi [67], among others.
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problem T(build) T(factor) T(step) T(update) Type
filter48 socp 4% 44% 50% 2% DENSE, MIX
minphase 7% 22% 64% 6% PSD
truss5 23% 24% 45% 7% PSD
truss8 17% 63% 17% 3% PSD
copo14 4% 91% 4% 0% PSD
copo23 0% 99% 1% 0% PSD
nql30new 9% 32% 55% 3% SOC
nql60new 12% 36% 48% 4% SOC
nql180new 5% 46% 48% 1% SOC
qssp30new 14% 34% 47% 6% SOC
qssp60new 11% 37% 47% 5% SOC
qssp180new 9% 57% 33% 1% SOC
nb 59% 13% 27% 1% SOC
nb L1 52% 19% 28% 1% SOC
nb L2 46% 18% 36% 0% SOC
nb L2 bessel 51% 16% 33% 1% SOC
sched 50 50 scaled 12% 31% 55% 2% DENSE, SOC
sched 100 50 scaled 16% 33% 49% 2% DENSE, SOC
sched 100 100 scaled 17% 31% 50% 2% DENSE, SOC
sched 200 100 scaled 26% 30% 43% 2% DENSE, SOC
min–max 0%–59 % 13%–99% 1%–64% 0%–7%

Figure 1: Profile of SeDuMi 1.05 on DIMACS problems. DENSE=dense columns handled, PSD =
semidefinite program, SOC = second order cone program, MIX = mixed program.

13 Computational Profile

In linear programming, the primal-dual interior point method has a single bottleneck operation,
namely the (numerical) factorization of the normal equations, which has to be repeated in each
main iteration. In the implementation phase, one therefore concentrates mainly on ways to speed
up the Factorization Phase, including the techniques discussed in Sections 7–9; see also [7, 6, 43, 44].

In the literature on semidefinite programming, it has been stated that the real bottleneck may
not be the Factorization Phase, but the Building Phase, i.e. the computations to form AΠAT as
discussed in Section 6; see also [21]. Some researchers have also claimed that the NT-scaling cannot
be competitive with HKM scaling, since the former requires the computation of a symmetric eigen-
value decomposition for each of the κ(s) positive semidefinite blocks, as in discussed in Section 10.
This reasoning implicitly assumes that the bottleneck operation is the Update Phase, in which the
scaling operator Π is updated.

Another phase in each main iteration of the interior point method is the Step Phase, in which the
search direction (∆x,∆y, ∆z) and the step length t are determined. In this phase, we also compute
the residual of the computed search direction with respect to the defining equations (14)–(16), and
improve the search direction with conjugate gradient steps if needed; such need arises only near
the optimal solution set. Most of the operations have to be performed a couple of times, since we
use a predictor-corrector scheme to build the search direction; see Section 11. However, since the
normal equations have already been factored before we enter the Step Phase, the computations in
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this phase are often believed to have a minor impact on the total solution time.

Figure 1 shows the computational profile of SeDuMi 1.05 on some problems which were collected
for for the Seventh Dimacs Challenge [60]. For each of the four computational phases described
above, the percentage of the total computational time spent in this phase is listed. The last row
shows the minimum and maximum proportions on this problem set. Most of the problems are pure
semidefinite or second order cone problems, denoted by ‘PSD’ resp. ‘SOC’ in the last column in
Figure 1, but the set also has one mixed semidefinite and second order cone programming prob-
lem, namely filter48 socp. In some problems, dense columns were detected and handled as in
Section 8. These problems are marked by the keyword ‘DENSE’ in Figure 1. The techniques of
Section 9 are not implemented in SeDuMi 1.05. The computations were performed under MAT-
LAB 5.3 on a Pentium-III based system. Details on the actual computational time and the achieved
accuracy can be found in [70].

We see that for the problems copo14 and copo23, the Factorization Phase is the real bottleneck.
However, for most of the problems, the Building Phase and the Step Phase also account for a
substantial proportion of the computational time. Unfortunately, this means that one has to
achieve computational savings in all phases of the implemented interior point algorithm in order to
improve the computational time considerably. The computational time spent in the factorization,
step and update phases can be reduced by using fast linear algebra routines that can be tuned
for the specific platform on which the software is installed; this technique is used in CSDP [10].
However, the building step consists entirely of sparse operations. For a numerical comparison of
several solvers for semidefinite and second order cone programming, we refer to Mittelmann [47].

14 Concluding Remarks

In the past years, considerable progress has been made in the implementation of the primal-dual
interior point method for solving mixed semidefinite and second order cone optimization problems.
A detailed and up-to-date account of implementational issues has been given in this paper. Nev-
ertheless, some issues have been omitted from our discussion so-far. We will briefly mention such
issues below, and we also provide recommendations for future research.

In this paper, we have concentrated on models that are formulated in the standard form (P)
as discussed in Section 2. Unfortunately, this is rarely the most natural form to model a given
optimization problem in practice. In particular, practical models may include free variables and
rotated second order cone variables. In SeDuMi 1.05, such models are internally transformed in
order to comply with the standard form (P). However, it is usually more efficient to avoid such
transformations. A nice discussion of handling free variables directly is given in Chapter 19 of
Vanderbei [80]. Techniques for handling rotated second order cone variables directly are discussed
in Andersen et al. [8].

From a computational point of view, it may also be advantageous to dualize a problem, because
the resulting A-matrix has a better structure. Dualization is often considered in the pre-solve
phase of solvers for linear programming. Current solvers for mixed semidefinite and second order
cone optimization still do not make use of pre-solve techniques. It seems wise to investigate the
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possibilities for presolve techniques in this area in the future.

We have restricted to equal step lengths on the primal and dual side of the optimization problem.
However, most implementations are these step lengths to be unequal.

We have also not discussed heuristics for generating the initial (x, y, z) in the cold-started
framework of Section 12. In fact, SeDuMi 1.05 simply starts from the identity solution (ι, 0, iota),
but other heuristics have been proposed in the literature [7, 6, 43, 45, 76]. Methods for initializing
the interior point process from a warm start have not been discussed in this paper either, since the
existing approaches are not so satisfactory.

We have made an attempt to compare the implications of different types of primal-dual scaling
in the implementation. We have concentrated on AHO, NT and the two forms of HKM scaling.
The main disadvantage of AHO scaling is that it can not benefit from sparsity in the Building
Phase of the algorithm. However, the continuous affine scaling trajectories have a nice analyticity
property that allows for fast local convergence near the optimal solution set [62]. SeDuMi also seems
to achieve fast local convergence on many problems with the NT scaling. It can be interesting to
study the asymptotic behavior of continuous affine scaling trajectories with different types of scaling
more elaborately.
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[54] R.D.C. Monteiro and P.R. Zanjácomo. General interior-point maps and existence of weighted
paths for nonlinear semidefinite complementarity problems. Mathematics of Operations Re-
search, 25:381–399, 2000.

[55] R.D.C. Monteiro and Y. Zhang. A unified analysis for a class of path–following primal–dual
interior point algorithms for semidefinite programming. Mathematical Programming, 81:281–
299, 1998.

[56] Y. Nesterov and A. Nemirovsky. Interior point polynomial methods in convex programming,
volume 13 of Studies in Applied Mathematics. SIAM, Philadelphia, 1994.

[57] Y. Nesterov and M.J. Todd. Self–scaled barriers and interior–point methods for convex pro-
gramming. Mathematics of Operations Research, 22(1):1–42, 1997.

[58] Y. Nesterov and M.J. Todd. Primal–dual interior–point methods for self–scaled cones. SIAM
Journal on Optimization, 8:324–364, 1998.

[59] J. Nocedal and S.J. Wright. Numerical Optimization. Springer-Verlag, New York, 1999.

[60] G. Pataki and S. Schmieta. The DIMACS library of semidefinite-quadratic-linear programs.
Technical report, Computational Optimization Research Center, Columbia University, New
York, NY, USA, 1999. http://dimacs.rutgers.edu/Challenges/Seventh/Instances/.

[61] L. Portugal, F. Bastos, J. Judice, J. Paxiao, and T. Terlaky. An investigation of interior point
algorithms for the linear transportation problem. SIAM Journal on Scientific Computing,
17(5):1202–1223, 1996.

[62] M. Preiß and J. Stoer. Analysis of infesible interior point paths arising with semidefinite
linear complementarity problems. Technical report, Institut für Angewandte Mathematik und
Statistik, Universität Würzburg, Würzburg, Germany, 2002.

[63] M.A. Saunders. Major cholesky would feel proud. ORSA Journal on Computing, 6(1):23–27,
1994.

[64] M. Shida, S. Shindoh, and M. Kojima. Existence and uniqueness of search directions in
interior–point algorithms for the SDP and the monotone SDLCP. SIAM Journal on Opti-
mization, 8(2):387–396, 1998.

[65] G. Sonnevend, J. Stoer, and G. Zhao. On the complexity of following the central path for
linear programs by linear extrapolation. Methods of Operations Research, 63:19–31, 1989.

[66] J.F. Sturm. Primal–Dual Interior Point Approach to Semidefinite Programming, volume 156
of Tinbergen Institute Research Series. Thesis Publishers, Amsterdam, The Netherlands, 1997.

39



[67] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11–12:625–653, 1999. Special issue on Interior Point
Methods (CD supplement with software).

[68] J.F. Sturm. Central region method. In J.B.G. Frenk, C. Roos, T. Terlaky, and S. Zhang,
editors, High Performance Optimization, pages 157–194. Kluwer Academic Publishers, 2000.

[69] J.F. Sturm. Similarity and other spectral relations for symmetric cones. Linear Algebra and
its Applications, 312:135–154, 2000.

[70] J.F. Sturm. Avoiding numerical cancellation in the interior point method for solving semidef-
inite programs. Technical Report 2001-27, CentER, P.O.Box 90153, 5000LE Tilburg, The
Netherlands, 2001. To appear in Mathematical Programming.

[71] J.F. Sturm and S. Zhang. On a wide region of centers and primal–dual interior point algorithms
for linear programming. Mathematics of Operations Research, 22(2):408–431, 1997.

[72] J.F. Sturm and S. Zhang. Symmetric primal–dual path following algorithms for semidefinite
programming. Applied Numerical Mathematics, 29:301–315, 1999.

[73] J.F. Sturm and S. Zhang. On weighted centers for semidefinite programming. European Journal
of Operational Research, 126:391–407, 2000.

[74] M.J. Todd. A study of search directions in interior–point methods for semidefinite program-
ming. Optimization Methods and Software, 11–12:1–46, 1999.
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