
Comp. Appl. Math. (2016) 35:423–438

DOI 10.1007/s40314-014-0198-8

Implementation of linear minimum area enclosing

triangle algorithm

Application note

Ovidiu Pârvu · David Gilbert

Received: 22 February 2014 / Revised: 18 September 2014 / Accepted: 15 October 2014 /

Published online: 15 November 2014

© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract An algorithm which computes the minimum area triangle enclosing a convex

polygon in linear time already exists in the literature. The paper describing the algorithm

also proves that the provided solution is optimal and a lower complexity sequential algorithm

cannot exist. However, only a high-level description of the algorithm was provided, making

the implementation difficult to reproduce. The present note aims to contribute to the field by

providing a detailed description of the algorithm which is easy to implement and reproduce,

and a benchmark comprising 10,000 variable sized, randomly generated convex polygons

for illustrating the linearity of the algorithm.

Keywords Minimum area triangle · Benchmark · Convex polygon · Rotating caliper ·

Computational geometry

Mathematics Subject Classification 68Q25 · 68U05

1 Introduction

The problem addressed by this note is to find the triangle of minimum area enclosing a

convex polygon in the Euclidean plane E2. Similarly, the problem of finding the triangle of

minimum area enclosing a set P of points in the Euclidean plane E2 can be solved using the

Communicated by José Mario Martínez.

Electronic supplementary material The online version of this article (doi:10.1007/s40314-014-0198-8)

contains supplementary material, which is available to authorized users.

O. Pârvu (B) · D. Gilbert

Department of Computer Science, Brunel University, Uxbridge, Middlesex UB8 3PH, UK

e-mail: ovidiu.parvu@brunel.ac.uk

D. Gilbert

e-mail: david.gilbert@brunel.ac.uk

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-014-0198-8&domain=pdf
http://dx.doi.org/10.1007/s40314-014-0198-8

424 O. Pârvu, D. Gilbert

Fig. 1 a Set of points in the Euclidean plane E2, b enclosed by their convex hull and c by the minimum area

triangle

same algorithm by first computing the convex hull enclosing the set of points P using any

2D convex hull algorithm; see Fig. 1 for an example.

The algorithm described in Klee and Laskowski (1985) finds all minimum area trian-

gles enclosing a given convex polygon in O(n log2(n)). Inspired by Toussaint’s rotating

callipers procedure (Toussaint 1983) O’Rourke improved the algorithm reducing its com-

plexity to �(n) (O’Rourke et al. 1986). Similarly, the authors of Chandran and Mount (1992)

describe a method of parallelising Klee and Laskowski’s algorithm such that the minimum

area enclosing triangle can be found in O(log log(n)) using (n / log log(n)) processors.

The main contributions of this note are:

– A detailed and reproducible algorithm for computing the minimal area enclosing triangles

(Sects. 2 and 4);

– A step by step description of an execution of the algorithm implementation, including a

screencast (Sect. 3);

– A benchmark of 10,000 randomly generated convex polygons for assessing the efficiency

of the algorithm (Sect. 5);

– Publicly available C++ implementation of the algorithm released both as a standalone

software project and as a module of the Computer Vision library OpenCV (Bradski and

Kaehler 2008) (Sects. 6 and 7).

This scientific note is organised as follows: we introduce the main algorithm in Sect. 2

and provide a detailed step by step execution of its implementation in Sect. 3. The required

subalgorithms are described in Sect. 4, and results of executing the algorithm implementation

against a benchmark are discussed in Sect. 5. Methods for verifying the correctness of the

implementation are presented in Sect. 6. Finally, concluding remarks are provided in Sect. 7.

2 Main algorithm

Theorems and lemmas underlying the main algorithm can be found in Klee and Laskowski

(1985), O’Rourke et al. (1986) and will not be repeated here.

The following notations will be used throughout:

– a, b, c—indices pointing to the polygon vertices in a clockwise order;

– A, B, C—the sides of the current enclosing triangle;

– vertex A, vertex B, vertexC—the vertices of the current enclosing triangle;

– p + 1—polygon vertex succeeding p considering a clockwise order;

– p − 1—polygon vertex preceding p considering a clockwise order;

123

Implementation of linear minimum area enclosing triangle algorithm 425

– h(p)—distance of p from line determined by side C;

– validationFlag—used to record what validation conditions should be used.

The algorithm for finding minimum area enclosing triangles is based on an elegant geo-

metric characterisation initially introduced in Klee and Laskowski (1985). The algorithm

iterates over each edge of the convex polygon setting side C of the enclosing triangle to

be flush with this edge. A side S is said to be flush with edge E if S ⊇ E . The authors

of O’Rourke et al. (1986) prove that for each fixed flush side C a local minimum enclosing

triangle exists. Moreover, the authors have shown that:

– The midpoints of the enclosing triangle’s sides must touch the polygon.

– There exists a local minimum enclosing triangle with at least two sides flush with edges

of the polygon. The third side of the triangle can be either flush with an edge or tangent

to the polygon.

Thus, for each flush side C the algorithm will find the second flush side and set the third

side either flush/tangent to the polygon.

The main algorithm is described in O’Rourke et al. (1986) using abstract, high-level

descriptions. In contrast, we will describe both the main algorithm and all required subalgo-

rithms in great depth and in an intuitive manner.

First of all, the Main Algorithm 1 contains a loop which iterates over each edge of the

convex polygon and sets the side C of the triangle flush with the selected edge. A necessary

condition for finding a minimum enclosing triangle is that b is on the right chain and a on the

left. The first step inside the loop is therefore to move the index b on the right chain using the

AdvanceBToRightChain() subalgorithm. The initialisation of a was made in such a manner

that it is on the left chain already.

The next condition which must be fulfilled is that a and b must be critical or high. The

MoveAIfLowAndBIfHigh() subalgorithm advances a and b until this condition is fulfilled.

Next b will be advanced until [gamma(a) b] is tangent to the convex polygon via the

SearchForBTangency() subalgorithm.

Afterwards the subalgorithm UpdateSidesCA() computes the vertices defining sides A

and C of the enclosing triangle.

If the tangency was not reached in the previous step (see IsNotBTangency()) then sides A

and B are updated (see UpdateSidesBA()). Otherwise only side B needs to be updated (see

UpdateSideB()).

Finally, if the found enclosing triangle is minimal (see IsLocalMinimalTriangle()) and

its area is less than the area of the optimal enclosing triangle found so far then the optimal

enclosing triangle is updated (see UpdateMinimumAreaEnclosingTriangle()).

The main algorithm and subalgorithms/functions AdvanceBToRightChain(), MoveAI-

fLowAndBIfHigh(), SearchForBTangency(), IsNotBTangency(), UpdateSidesBA(), Update

SideB() and UpdateMinimumAreaEnclosingTriangle() are partially described in O’Rourke

et al. (1986) as well. However, they are merged into a single algorithm, some steps are

not explicitly described and all remaining subalgorithms/functions are not given. This note

complements O’Rourke et al. (1986) by explicitly describing all subalgorithms required to

implement the main algorithm.

123

426 O. Pârvu, D. Gilbert

Algorithm 1 Algorithm for computing the minimum area enclosing triangle

Require: polygon is convex and contains more than three vertices;

Ensure: min AreaT riangle is a set of three vertices defining the minimum area enclosing triangle; min Area

is the area of the minimum area enclosing triangle;

Global variables:

polygon

a, b, c

A, B, C

vertex A, vertex B, vertexC

validationFlag

1: procedure MinAreaTriangle(polygon, min AreaT riangle, min Area)

2: a ← 2;

3: b ← 3;

4: for c ← 1, nr. of polygon vertices do ⊲ Side C is flush with edge [c, c − 1]

5: AdvanceBToRightChain();

6: MoveAIfLowAndBIfHigh();

7: SearchForBTangency();

8:

9: UpdateSidesCA();

10:

11: if IsNotBTangency() then

12: UpdateSidesBA();

13: else

14: UpdateSideB();

15: end if

16:

17: if IsLocalMinimalTriangle() then

18: UpdateMinimumAreaEnclosingTriangle(minAreaTriangle, minArea);

19: end if

20: end for

21: end procedure

3 Simple usage example

A simple usage example was chosen to illustrate the way in which minimum enclosing

triangles of convex polygons are computed. The considered convex polygon was defined by

the following set of points:

– P(300, 700);

– Q(400, 480);

– R(643, 200);

– S(800, 1100);

– T (1202, 1005).

In order to capture the execution of each step of the main algorithm a screencast was

recorded. The screen was split up in two halves as shown in Fig. 2. The left half of the screen

shows the current active line of code. Conversely, the right half of the screen illustrates the

current progress of the algorithm as an image. For all execution steps this image contains the

convex polygon and the points a, b and c. At particular execution steps the points γa , γb or

the minimum enclosing triangle are displayed as well.

The initial position of the points a, b and c, and the minimum enclosing triangles computed

after each iteration of the for loop in the main algorithm are depicted in Fig. 3.

123

Implementation of linear minimum area enclosing triangle algorithm 427

Fig. 2 Step by step execution of the minimum enclosing triangle algorithm implementation. The left side of

the image shows the currently executed step of the main algorithm. The right side of the image illustrates the

polygon and the points a, b and c

Fig. 3 a Initial position of the points a, b and c. b–f The minimum enclosing triangle computed at each

iteration of the for loop in the main algorithm

The screencast embedded with detailed audio explanations is available as a video at http://

people.brunel.ac.uk/~cspgoop/data/notes/2014/min_enclosing_triangle.

4 Subalgorithms

The semantics of the AdvanceBToRightChain(), MoveAIfLowAndBIfHigh(), SearchForB-

Tangency(), UpdateSidesCA(), IsNotBTangency(), UpdateSidesBA(), UpdateSideB(), IsLo-

123

http://people.brunel.ac.uk/~cspgoop/data/notes/2014/min_enclosing_triangle
http://people.brunel.ac.uk/~cspgoop/data/notes/2014/min_enclosing_triangle

428 O. Pârvu, D. Gilbert

calMinimalTriangle() and UpdateMinimumAreaEnclosingTriangle() subalgorithms/

functions was given in Sect. 2 and is not restated here.

Algorithm 2 Algorithm for advancing b to the right chain

1: procedure AdvanceBToRightChain

2: while h(b + 1) ≥ h(b) do

3: b ← b + 1;

4: end while

5: end procedure

Algorithm 3 Algorithm for advancing a if the edge [a, a − 1] is low, and advancing b if the

edge [b, b − 1] is high

1: procedure MoveAIfLowAndBIfHigh

2: while h(b) > h(a) do

3: if Gamma(a, gammaO f A) AND IntersectsBelow(gammaO f A, b) then

4: b ← b + 1;

5: else

6: a ← a + 1;

7: end if

8: end while

9: end procedure

Algorithm 4 Search for the tangency of side B

1: procedure SearchForBTangency

2: while (Gamma(b, gammaO f B) AND IntersectsBelow(gammaO f B, b)) AND

3: (h(b) ≥ h(a − 1)) do

4: b ← b + 1;

5: end while

6: end procedure

Algorithm 5 Update the sides C and A

1: procedure UpdateSidesCA

2: C.StartV ertex ← polygon[c − 1];

3: C.EndV ertex ← polygon[c];

4:

5: A.StartV ertex ← polygon[a − 1];

6: A.EndV ertex ← polygon[a];

7: end procedure

123

Implementation of linear minimum area enclosing triangle algorithm 429

Algorithm 6 Check if the B side tangency has not been achieved

1: function IsNotBTangency

2: if (Gamma(b, gammaO f B) AND IntersectsAbove(gammaO f B, b)) OR

3: (h(b) < h(a − 1)) then

4: return true;

5: else

6: return false;

7: end if

8: end function

Algorithm 7 Update the sides B and A

1: procedure UpdateSidesBA

2: B.StartV ertex ← polygon[b − 1];

3: B.EndV ertex ← polygon[b];

4:

5: if MiddlePointOfSideB(sideB MiddlePoint) AND

6: (h(sideB MiddlePoint) < h(a − 1)) then

7: A.StartV ertex ← polygon[a − 1];

8: A.EndV ertex ← FindVertexCOnSideB();

9:

10: validationFlag ← SIDE_A_TANGENT; ⊲ Constant

11: else

12: validationFlag ← SIDES_FLUSH; ⊲ Constant

13: end if

14: end procedure

Algorithm 8 Update the side B

1: procedure UpdateSideB

2: Gamma(b, B.StartV ertex);

3: B.EndV ertex ← polygon[b];

4:

5: validationFlag ← SIDE_B_TANGENT; ⊲ Constant

6: end procedure

In order to validate every enclosing triangle Algorithm 9 checks if the sides A, B and C

determined by Algorithm 1 intersect and if their midpoints touch the polygon.

Algorithm 9 Check if the obtained enclosing triangle is a local minimum

1: function IsLocalMinimalTriangle

2: if (A and B do not intersect) OR (A and C do not intersect) OR

3: (B and C do not intersect) then

4: return false;

5: else

6: vertex A ← intersection of B and C ;

7: vertex B ← intersection of A and C ;

8: vertexC ← intersection of A and B;

9:

10: return IsValidMinimalTriangle();

11: end if

12: end function

123

430 O. Pârvu, D. Gilbert

Algorithm 10 Check if the obtained enclosing triangle is a valid local minimum

1: function IsValidMinimalTriangle

2: midpoint A = middle point between vertex B and vertexC ;

3: midpoint B = middle point between vertex A and vertexC ;

4: midpointC = middle point between vertex A and vertex B;

5:

6: if validationFlag == SIDE_A_TANGENT then

7: valid A ← (midpoint A == polygon[a − 1]);

8: else

9: valid A ← (midpoint A ∈ line segment [A.StartV ertex, A.EndV ertex]);

10: end if

11:

12: if validationFlag == SIDE_B_TANGENT then

13: valid B ← (midpoint B == polygon[b]);

14: else

15: valid B ← (midpoint B ∈ line segment [B.StartV ertex, B.EndV ertex]);

16: end if

17:

18: validC ← (midpointC ∈ line segment [C.StartV ertex, C.EndV ertex]);

19:

20: return (valid A AND valid B AND validC);

21: end function

Algorithm 11 Check if the middle point of side B exists and find it if it does

1: function MiddlePointOfSideB(middlePoint)

2: if (B and C do not intersect) OR (B and A do not intersect) then

3: return false;

4: end if

5:

6: vertex A ← intersection of B and C ;

7: vertexC ← intersection of A and B;

8:

9: middlePoint ← middle point of vertex A and vertexC ;

10:

11: return true;

12: end function

Definition 1 The line L determined by gamma Point and polygon[index] intersects the

polygon below polygon[index] if the following conditions hold:

1. The ray [polygon[index] gamma Point ′) intersects the polygon, where gamma Point ′

is a point on L such that polygon[index] is the middle point of the line segment

[gamma Point gamma Point ′]. Let us denote the intersection point of the ray with

the polygon, if it exists, as intersection Point ;

2. h(intersection Point) < h(polygon[index]).

Erroneous triangles will be obtained if the line (polygon[index] gamma Point ′) instead

of the ray [polygon[index] gamma Point ′) is considered when computing the intersection

with the polygon; see Klee and Laskowski (1985) for more details why the ray and not the

line is considered.

Definition 2 The line L determined by gamma Point and polygon[index] intersects the

polygon above polygon[index] if the following conditions hold:

123

Implementation of linear minimum area enclosing triangle algorithm 431

1. The ray [polygon[index] gamma Point) intersects the polygon. Let us denote this point,

if it exists, as intersection Point ;

2. h(intersection Point) > h(polygon[index]).

According to condition 1 in Definitions 1 and 2, the intersection of the ray with the polygon

has to be computed. However, this would lead to an increase in the overall complexity of the

main algorithm. Thus an alternative constant complexity solution which considers only the

angle (the slope could be considered as well) of the ray determined by gamma Point and

polygon[index] is employed. In this case the point gamma Point ′ is no longer required

because the angle of the ray [polygon[index] gamma Point ′) is equal to the angle of the

ray [gamma Point polygon[index]).

Both IntersectsAbove and IntersectsBelow functions call the function Intersects which

checks if the line intersects the polygon ABOVE/BELOW the point polygon[index], or is

CRITICAL. The only difference between IntersectsAbove and IntersectsBelow is the way in

which they compute the angle of the line determined by gamma Point and polygon[index]

as can be seen in Algorithms 12 and 13. The angle is computed differently because the rays

considered in condition 1 (Definitions 1 and 2) differ.

Having received the angle of the line determined by gamma Point and the point

polygon[index] the function I ntersects checks using angle comparison (slope compar-

ison could be employed as well) if the line intersects the polygon ABOVE/BELOW the point

polygon[index] or is CRITICAL; see Algorithm 14 for more details.

Algorithm 12 Check if the line determined by gamma Point and polygon[index] intersects

the polygon below polygon[index]

1: function IntersectsBelow(gamma Point , index)

2: // The order of the points is reversed compared to the IntersectsAbove function

3: angle ← AngleOfLine(polygon[index], gamma Point);

4:

5: return (Intersects(angle, index) == BELOW);

6: end function

Algorithm 13 Check if the line determined by gamma Point and polygon[index] intersects

the polygon above polygon[index]

1: function IntersectsAbove(gamma Point , index)

2: // The order of the points is reversed compared to the IntersectsBelow function

3: angle ← AngleOfLine(gamma Point , polygon[index]);

4:

5: return (Intersects(angle, index) == ABOVE);

6: end function

123

432 O. Pârvu, D. Gilbert

Algorithm 14 Check if the line determined by gamma Point and polygon[index] intersects

the polygon below/above polygon[index] or is critical

1: function Intersects(angle, index) ⊲ Time complexity: O(1)

2: anglePred ← AngleOfLine(polygon[index − 1], polygon[index]);

3: angleSucc ← AngleOfLine(polygon[index + 1], polygon[index]);

4: angleC ← AngleOfLine(polygon[c − 1], polygon[c]);

5:

6: if IsAngleBtwPredAndSucc(angleC , anglePred, angleSucc) then

7: if IsAngleBtwNonReflex(angle, anglePred, angleC) OR

8: 1.5em (angle == anglePred) then

9: return IntersectsAboveOrBelow(index − 1, index);

10: else if IsAngleBtwNonReflex(angle, angleSucc, angleC) OR

11: (angle == angleSucc) then

12: return IntersectsAboveOrBelow(index + 1, index);

13: end if

14: else

15: if IsAngleBtwNonReflex(angle, anglePred, angleSucc) OR

16: 1.5em ((angle == anglePred) AND (angle != angleC)) OR

17: 1.5em ((angle == angleSucc) AND (angle != angleC)) then

18: return BELOW;

19: end if

20: end if

21:

22: return CRITICAL;

23: end function

Algorithm 15 Check if the line intersects the polygon below/above considering succes-

sor/predecessor

1: function IntersectsAboveOrBelow(succOr Pred I ndex , index)

2: if h(succOr Pred I ndex) > h(index) then

3: return ABOVE;

4: else

5: return BELOW;

6: end if

7: end function

Algorithm 16 Compute the angle of the line determined by points a and b wrt. Ox axis

1: function AngleOfLine(a, b)

2: y ← b.y − a.y;

3: x ← b.x − a.x ;

4:

5: angle ← arctangent(y, x) * 180 / π ;

6:

7: if angle < 0 then

8: return (angle + 360);

9: else

10: return angle;

11: end if

12: end function

123

Implementation of linear minimum area enclosing triangle algorithm 433

Algorithm 17 Check if the given angle is between successor or predecessor

1: function IsAngleBtwPredAndSucc(angle, anglePred, angleSucc)

2: if IsAngleBtwNonReflex(angle, anglePred, angleSucc) then

3: return true;

4: else if IsOppositeAngleBtwNonReflex(angle, anglePred, angleSucc) then

5: angle ← OppositeAngle(angle);

6:

7: return true;

8: end if

9:

10: return false;

11: end function

Algorithm 18 Check if the given angle is between the non-reflex angle (i.e. < 180 degrees)

determined by angles 1 and 2

1: function IsAngleBtwNonReflex(angle, angle1, angle2) ⊲ Angles expressed in degrees

2: if |angle1 - angle2| > 180 then

3: if angle1 > angle2 then

4: return ((angle1 < angle) AND (angle ≤ 360)) OR

5: ((0 ≤ angle) AND (angle < angle2));

6: else

7: return ((angle2 < angle) AND (angle ≤ 360)) OR

8: ((0 ≤ angle) AND (angle < angle1));

9: end if

10: else

11: if ((angle1 - angle2) mod 180) > 0 then

12: return (angle2 < angle) AND (angle < angle1);

13: else

14: return (angle1 < angle) AND (angle < angle2);

15: end if

16: end if

17: end function

Algorithm 19 Check if the opposite angle is between the non-reflex angle (i.e. < 180 degrees)

determined by angles 1 and 2

1: function IsOppositeAngleBtwNonReflex(angle, angle1, angle2) ⊲ Angles expressed in degrees

2: opposi teAngle ← OppositeAngle(angle);

3:

4: return IsAngleBtwNonReflex(opposi teAngle, angle1, angle2);

5: end function

Algorithm 20 Return the opposite of an angle

1: function OppositeAngle(angle) ⊲ Angle expressed in degrees

2: if angle > 180 then

3: return (angle - 180);

4: else

5: return (angle + 180);

6: end if

7: end function

The point γ (p) (Gamma) is the point on the line [a, a −1] such that h(γ (p)) = 2 × h(p).

In order to find γ (p) we consider the intersection between lines L1, L2 and L3, where:

– L1: The line [a, a − 1];

– L2, L3: The lines parallel to and at a distance of (2 × h(p)) from [c, c − 1];

123

434 O. Pârvu, D. Gilbert

If L1 is parallel to L2 and L3, then L1 and L2 or L1 and L3 are either identical or they do not

intersect. In the former case γ (p) is equal to polygon[a − 1]. In the latter case γ (p) does

not exist.

Conversely, if L1 is not parallel to L2 and L3, then two intersection points exist, P1= L1

∩ L2 and P2 = L1 ∩ L3. As stated in Klee and Laskowski (1985) only the points which are

on the same side of the line [c, c − 1] as the polygon will be considered. Therefore, γ (p)

will be equal to the intersection point which is on the same side of the line [c, c − 1] as the

point polygon[c + 1].

Algorithm 21 Check if gamma of the point exists and compute it when possible

1: function Gamma(index , gamma Point)

2: if (!FindGammaIntersectionPoints(index , polygon[a], polygon[a − 1],

3: polygon[c], polygon[c − 1], intersection Point1, intersection Point2)) then

4: return false;

5: end if

6:

7: if intersection Point1 and polygon[c + 1] are on the same side

8: of line [c, c − 1] then

9: gamma Point ← intersection Point1;

10: else

11: gamma Point ← intersection Point2;

12: end if

13:

14: return true;

15: end function

Finding vertexC on side B is similar to computing gamma of a point.

Algorithm 22 Find vertexC on side B with the property that h(vertexC) = 2 × h(a − 1)

1: function FindVertexCOnSideB

2: if (!FindGammaIntersectionPoints(polygon[a − 1], B.StartV ertex ,

3: B.EndV ertex , C.StartV ertex , C.EndV ertex , intersection Point1,

4: intersection Point2)) then

5: Write “There is an error in the implementation of the algorithm!”;

6: end if

7:

8: if intersection Point1 and polygon[c + 1] are on the same side

9: of line [c, c − 1] then

10: return intersection Point1;

11: else

12: return intersection Point2;

13: end if

14:

15: return true;

16: end function

123

Implementation of linear minimum area enclosing triangle algorithm 435

Algorithm 23 Find intersection points for determining gamma

1: function FindGammaIntersectionPoints(index , line1StartV ertex , line1EndV ertex ,

line2StartV ertex , line2EndV ertex , intersection Point1, intersection Point2)

2: L1 ← line determined by line1StartV ertex and line1EndV ertex ;

3: L2, L3 ← lines parallel to and at a distance of (2 x h(index)) from the

4: line determined by line2StartV ertex , line2EndV ertex ;

5:

6: if L1, L2, L3 are parallel then

7: if (L1 identical to L2) OR (L1 identical to L3) then

8: intersection Point1 ← line1StartV ertex ;

9: intersection Point2 ← line1EndV ertex ;

10: else

11: return false;

12: end if

13: else

14: intersection Point1 ← intersection of L1 and L2;

15: intersection Point2 ← intersection of L1 and L3;

16: end if

17:

18: return true;

19: end function

5 Results

The overall complexity of the algorithm is �(n) where n represents the number of vertices

defining the convex polygon.

A benchmark was set up to check the linearity of a C++ implementation of the algorithm.

The variable of interest n represents the number of points defining the convex polygon. The

considered values for n were chosen from the range 100 to 10,000 with a step size of 100.

For each value of n 100 random convex n-gons were generated using the Computational

Geometry Algorithms Library (CGAL) (CGAL 2013). Thus, the total number of convex

polygons in the benchmark is 10,000. Illustrative randomly generated 100-gons and their

corresponding minimal area enclosing triangles are depicted in Fig. 4.

The advantage of creating such a data set is that it could potentially be employed for

testing the efficiency of other similar applications; see http://people.brunel.ac.uk/~cspgoop/

data/notes/2014/min_enclosing_triangle for more details.

The execution time was measured in microseconds (μs). Since the algorithm is linear

the execution times were relatively short. Execution times differences at small scales (e.g.

Fig. 4 Randomly generated 100-gons and their corresponding minimal area enclosing triangles.Polygons are

depicted in green and the enclosing triangles in red. Coordinates of the 2D points defining the polygons and

their enclosing triangles are provided in Online Resource 1

123

http://people.brunel.ac.uk/~cspgoop/data/notes/2014/min_enclosing_triangle
http://people.brunel.ac.uk/~cspgoop/data/notes/2014/min_enclosing_triangle

436 O. Pârvu, D. Gilbert

Fig. 5 Average results of 100 executions of the benchmark (i.e. 100 × 10,000 executions). Black points

represent the mean of the execution times for a fixed value of n (number of points defining the convex polygon).

The red and blue lines are the lines fitted to the obtained set of execution times using the formulae y ∼ log(x),

respectively y ∼ x

microseconds) can be influenced among others by processes running in the background and

the operating system. In order to overcome this issue the benchmark was run 100 times and

only the mean of the execution times for each distinct value of n was considered.

All tests have been performed on a regular computer (Intel(R) Core(TM) i7-4700MQ CPU

@ 2.40 GHz, 16.0 GB DDR3 RAM, Windows 8 x64) in a sequential manner. The obtained

results are depicted in Fig. 5.

The black points represent the mean of the execution times for a fixed value of n; the

red and blue lines are the lines fitted to the obtained set of execution times using the for-

mulae y ∼ log(x), respectively y ∼ x . According to the obtained results the execution

time increases linearly for polygons defined by approximately 0–2,500 points, respectively

logarithmically for polygons defined by approximately 2,500–10,000 points, with respect to

n. In brief the implementation of the algorithm scales well with respect to the value of n.

However, considering that the complexity of the algorithm is �(n) our expectation was that

the algorithm implementation would scale linearly, and not logarithmically, with respect to

n. Explaining the cause of this behaviour could be a potentially interesting research question,

which is however not pursued here as it goes beyond the scope of this note.

6 Correctness

The executions described in Sect. 5 verified empirically that the algorithm implementation

scales (sub-)linearly with respect to n. However, they did not assess the correctness of the

computed minimal area enclosing triangle. In order to address this challenge three verification

approaches were employed. Let us denote the expected optimal minimal area enclosing

triangle by OT , and the minimal enclosing triangle computed by the linear algorithm by

CT .

123

Implementation of linear minimum area enclosing triangle algorithm 437

The first verification approach relies on generating regular convex n-gons, n = 3k (in

our case k = 1, 3334), for which the minimal enclosing triangle is known to be equilateral.

Given the coordinates of the 2D points defining the n-gon, OT can be automatically computed

in O(1). If the minimal enclosing triangle CT computed by the algorithm implementation

matches OT the algorithm implementation is considered valid. Otherwise it is invalid.

The second verification approach builds on the first one by applying affine transformations

AT to each generated regular convex n-gon, and thus obtaining a new convex polygon; in

our case AT = {scaling by a factor of 1.5 with respect to both Ox and Oy, counterclockwise

rotation by π/4}. According to Klee and Laskowski (1985) the optimal enclosing triangle OT

of a transformed polygon can be determined by applying the same affine transformations AT

to the optimal enclosing triangle computed for the initial non-transformed regular polygon.

Similarly, to the first verification approach OT can be determined in O(1). Moreover, the

algorithm implementation is validated by checking if OT matches CT .

The main advantage of the first two verification approaches is that the optimal minimal

enclosing triangle OT can be determined in O(1). Conversely their main disadvantage is that

only polygons with specific properties are considered, while the linear algorithm is general

purpose and should work for any convex polygon.

In order to address this limitation the third verification approach checks if the results of

a brute-force algorithm (computing minimal enclosing triangles in O(n3), checking their

validity in O(n)), which is guaranteed to check all possible minimal enclosing triangles,

matches the results of the linear algorithm described in this note. The main advantage of this

approach is that any convex polygon can be considered. Conversely its main disadvantage

is that the brute-force algorithm implementation does not scale well with n. Therefore the

value of n was limited to the range [3, 200] during our tests. Moreover, only ten polygons

were randomly generated for each value of n.

All verification approaches described above have been implemented in C++ and were

employed to validate the linear minimal area enclosing algorithm implementation; the execu-

tion of all tests ended successfully empirically confirming that the algorithm implementation

is valid. For reproducibility purposes the implementation of all algorithms and verification

approaches (including generated datasets) are made freely available at https://github.com/

IceRage/minimal-area-triangle.

7 Conclusions

The steps which were not described in the original paper (O’Rourke et al. 1986) have been

presented in detail here such that the implementation is easy to reproduce. A step by step

execution of a simple example was described in Sect. 3 in order to illustrate how the min-

imum enclosing triangles are found. The results of the benchmark execution indicate that

the algorithm is linear and scales well with respect to the number of points defining the

convex polygon. Moreover, three different verification approaches were used to assess the

correctness of the algorithm implementation.

The algorithm was implemented and tested in C++. A version of the algorithm was

implemented and added to the imgproc module of the OpenCV library. It takes a 2D

point set as input and computes its convex hull before finding the minimum enclos-

ing triangle; see https://github.com/Itseez/opencv/blob/master/modules/imgproc/src/min_

enclosing_triangle.cpp for more details. A usage example, documentation of the new func-

tionality and unit tests have been added to the OpenCV library as well.

123

https://github.com/IceRage/minimal-area-triangle
https://github.com/IceRage/minimal-area-triangle
https://github.com/Itseez/opencv/blob/master/modules/imgproc/src/min_enclosing_triangle.cpp
https://github.com/Itseez/opencv/blob/master/modules/imgproc/src/min_enclosing_triangle.cpp

438 O. Pârvu, D. Gilbert

Finally, errors might occur when comparing real numbers due to the finite floating point

precision of computers. Depending on the configuration of the system, the compiler and the

representation of 2D points a different tolerance value for comparing real numbers should

be used; see Dawson (2012) and Goldberg (1991) for more details.

Acknowledgments The authors gratefully acknowledge the insightful comments provided by Joseph

O’Rourke which helped improve the quality of the manuscript. Ovidiu Pârvu is supported by a scholarship

from Brunel University.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which

permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source

are credited.

References

Bradski G, Kaehler A (2008) Learning OpenCV. In: Computer vision with the OpenCV library. O’Reilly,

New York

CGAL (2013) Computational geometry algorithms library. http://www.cgal.org

Chandran Mount DM (1992) A parallel algorithm for enclosed and enclosing triangles. Int J Comput Geom

Appl 2(2):191–214. doi:10.1142/S0218195992000123

Dawson B (2012) Comparing floating point numbers, 2012 edn. http://randomascii.wordpress.com/2012/02/

25/comparing-floating-point-numbers-2012-edition/

Goldberg D (1991) What every computer scientist should know about floating point arithmetic. ACM Comput

Surv 23(1):5–48

Klee V, Laskowski MC (1985) Finding the smallest triangles containing a given convex polygon. J Algorithms

6(3):359–375. doi:10.1016/0196-6774(85)90005-7. http://www.sciencedirect.com/science/article/pii/

0196677485900057

O’Rourke J, Aggarwal A, Maddila S, Baldwin M (1986) An optimal algorithm for finding minimal enclosing

triangles. J Algorithms 7(2):258–269. doi:10.1016/0196-6774(86)90007-6. http://www.sciencedirect.

com/science/article/pii/0196677486900076

Toussaint GT (1983) Solving geometric problems with the rotating calipers. In: Proceedings of the IEEE

Melecon, vol 83, p A10. http://web.cs.swarthmore.edu/adanner/cs97/s08/pdf/calipers.pdf

123

http://www.cgal.org
http://dx.doi.org/10.1142/S0218195992000123
http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
http://dx.doi.org/10.1016/0196-6774(85)90005-7
http://www.sciencedirect.com/science/article/pii/0196677485900057
http://www.sciencedirect.com/science/article/pii/0196677485900057
http://dx.doi.org/10.1016/0196-6774(86)90007-6
http://www.sciencedirect.com/science/article/pii/0196677486900076
http://www.sciencedirect.com/science/article/pii/0196677486900076
http://web.cs.swarthmore.edu/adanner/cs97/s08/pdf/calipers.pdf

	Implementation of linear minimum area enclosing triangle algorithm
	Application note
	Abstract
	1 Introduction
	2 Main algorithm
	3 Simple usage example
	4 Subalgorithms
	5 Results
	6 Correctness
	7 Conclusions
	Acknowledgments
	References

