
International Journal of Computer Applications (0975 – 8887)

Volume 102– No.12, September 2014

16

Implementation of Model-View-Controller Architecture

Pattern for Business Intelligence Architecture

Medha Kalelkar

Vidyalankar Institute of
Technology, University of

Mumbai,
Mumbai, India

Prathamesh Churi
Lecturer, Department of Information

Technology, Vidyavardhini’s College of
Engineering and Technology,

University of Mumbai,
Mumbai, India

Deepa Kalelkar
Sardar Patel Institute of

Technology,
University of Mumbai,

Mumbai, India

ABSTRACT
This paper presents a new approach to develop the strategy of

Model–View–Controller architecture pattern in Business

Intelligence (BI) architecture. The Business Intelligence

architecture consists of the ETL tools and processes, the data

warehouse, the technical infrastructure, and the user-interface

tools. The major issue related to Business Intelligence

architecture is to store the data from heterogeneous sources.

The heterogeneous sources might lead to inconsistencies in

storage and retrieval of data. Another issue related to Business

Intelligence architecture is to provide multiple and

synchronized views. The Business information must be

presentable in various formats with ‘look and feel’ approach.

Model-View-Controller provides independent approach to the

components of Business Intelligence architecture. Model

provides guideline for storing the heterogeneous data in one

format and implements core functionality of the system. View

provides multiple and synchronized views so that information

can be available in presentable format. Controller handles

user’s input. All the three independent components are tightly

coupled which ensures consistent and flexible Business

Intelligence architecture.

General Terms

Software architecture, Business Intelligence

Keywords

Business Intelligence, Model-View-Controller, Metadata,

Data warehouse, View, MVC, BI

1. INTRODUCTION
Any application is represented in its structured format using

architecture pattern. The data flow, data storage, control flow

is properly governed by architectural pattern. These

architecture patterns are classified into four major categories,

viz., from mud to structure, distributed system, interactive

system and adaptable system [1]

Interactive systems focuses on user interaction [1] and thus

they have proper user interface to justify the concept. To

extend the usability of any software system we have high

degree of user interaction. When specifying the architecture of

such systems, the aim is to keep the core task independent of

the user interface. The core of interactive systems is based on

the functional requirements for the system, and usually

remains stable. User interfaces, however, are often subject to

change and adaptation. Modification of data must reflect the

intent of other view which is associated with the other

software system. Model-View-Controller architecture pattern

divides task into three major components. Model handles core

functionality of the system which is independent of user

interface. View displays the information to the user in read-

only mode. Controller implements event handling function

that handles the user input.

Stackowiak et al. (2007) define Business Intelligence as the

process of taking large amounts of data, analyzing that data,

and presenting a high-level set of reports that condense the

essence of that data into the basis of business actions,

enabling management to make fundamental daily business

decisions [2]. The basic Business Intelligence components are

raw data, data warehouse, and metadata and end user tools.

The major issue related to typical Business Intelligence

architecture is to maintain the independency between core

database operation and end user interface. Seperatabilty of

these tasks is difficult in Business Intelligence architecture.

Another issue of Business Intelligence architecture is to

present the information in different formats when there is a

requirement of multiple views associated with the same

architecture.

However, Model-View-Controller solves the issue up to a

great extent. Seperatability of component is the major

characteristic of Model-View-Controller. Model component

handles collection of raw data from heterogeneous data

sources, handles Extract-Transform-Load process, and

maintains metadata. View components displays the

information stored in data warehouse in the form of graphical

and textual view. Controller will handle the user input which

is restricted to read-only mode i.e. user can only view the data

in data warehouse. Any updation or addition of new data is

restricted.

2. RELATED WORK
Architectural patterns [1] provide structural notations for any

software system. They define each component with proper

responsibility. They also provide some rules, axioms and

relationships between them. They also encompass core data

and functionality in the system. However, Model-View-

Controller architectural pattern divides the software system

into three subsystems, viz., model, view and controller.

Business Intelligence architecture has basic components, viz.,

ETL tools and processes, the data warehouse, the technical

infrastructure, and the user-interface tools. It is used by

stakeholders such as analysts to view the business data in

different formats as per the requirement. Business Intelligence

architecture is a type of interactive software system.

2.1 Model-View-Controller Architectural

Pattern
The Model-View-Controller Architectural Pattern (MVC) is

basically applied for interactive software systems [3]. The

Model component contains the core functionality and data, the

View component gives information to the user and the

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.12, September 2014

17

Controller component handles user input using validation.

View and Controller together comprise the user interface. A

change-propagation mechanism [1] ensures consistency

between the user interface and the model.

Fig 1: Model-View-Controller Architecture Pattern

The Class-Responsibility-Collaborator Cards diagram [4] for

Model-View-Component is given below:

2.1.1 Model:
Model component of MVC encapsulates data and

functionality. It is independent of its input and output

behavior of the interactive system.

Table 1. Class-Responsibility-Collaborator Card for

Model component

Class :

Model

Collaborators :

 View

 Controller Responsibilities :

 Provides core data and

functionality.

 Informs the components

about data modification.

2.1.2 View:
As the name suggests, the View component always displays

the information to the user. There can be multiple views

associated with single MVC architecture. However, designing

such multiple views is the major aim of our paper. Multiple

views are highly synchronized with each other. Views must

also be dynamic in nature. Each view has an associated

controller component.

Table 2. Class-Responsibility-Collaborator Card for View

component

Class :

View

Collaborators :

 Model

 Controller Responsibilities :

 Displays information to

the user.

 Retrieves the data from

the model.

 Implementation of data

update procedure.

2.1.3 Controller:
Controller always follows the change-propagation

mechanism. In future, if the user changes the controller of one

view, all the views that are associated with it should reflect

the same change; this property explains its dynamic behavior.

Table 3. Class-Responsibility-Collaborator Card for

Controller component

Class :

Controller
Collaborators :

 Model

 View Responsibilities :

 Accepts user handling.

 Translates user events to

request for the model.

 Maintain dynamic

behavior of

synchronized views

2.2 Business Intelligence Architecture
Business Intelligence (BI) systems are software applications

that enable better understanding of organizational data and

provide the information required by organizations to make

accurate decisions. [5]

Fig 2: A Five-layered Business Intelligence Architecture

Metadata

Layer

End user layer

Data warehouse Layer

ETL Processing Layer

(Extract Transform and

Load)

External and External

data

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.12, September 2014

18

Business Intelligence Architecture is divided into five layers.

The five layers are Data source layer, ETL layer, Data

warehouse layer, End user layer and Metadata layer. [6] The

description of five layers is described below:

2.2.1 Data Source Layer:
Data source layer includes both structured as well as

unstructured data [7]. Internal data source [8] refers to data

that is captured and maintained by operational systems inside

an organization such as Customer Relationship Management

[9] and Enterprise Resource Planning systems [10]. External

data source [8] refers to those that originate outside an

organization. This type of data can be collected from external

sources such as business partners, syndicate data suppliers,

internet, and government and market research organizations.

2.2.2 ETL (Extract-Transform-Load):
This layer mainly consists of three processes, viz., Extract,

Transform and Load. Extraction process collects and

identifies the relevant data from raw data sources. This layer

also removes some noisy data [11] from multiple data sources.

It is necessary to select relevant data for decision making with

the help of extraction process.

On the other hand, transformation process is responsible for

converting the data according to predefined business rules

[12]. Data transformation process also includes defining

business logic for data mapping and standardizing data

definitions in order to ensure consistency across an

organization.

The data staging [13] area is used to temporarily store the data

before transformation process. This is done to avoid the need

of extracting data again in case any problem occurs.

Loading is the last phase of ETL process in which the

transformed data is loaded into target repository.

2.2.3 Data Warehouse Layer:
Data warehouse is subject oriented, integrated, time variant

and non-volatile collection of data that supports

management’s decision processes [14].

Subject oriented data refers to the data from various sources

that is organized into groups based on common subject areas

that an organization would like to focus on, such as

customers, sales, and products.

Integrated data refers to collection of consistent data in data

warehouse in terms of naming conventions, formats, and other

related characteristics.

Time variant data refers to storage of data along with its time

dimension to keep track of the changes or trends on the data.

Non-volatile data refers to store the data in Read-Only mode.

Users are not allowed to modify or re-write the data in data

warehouse.

2.2.4 Metadata Layer:
Metadata [14] gives details of data. It describes the location

where the data is stored, the purpose for which the data is

used, information about source data and other useful

information about data. Metadata repository is used to store

technical and business information about data as well as

business rules and data definitions.

2.2.5 End User layer:
End user tools are the programs that display information to

end users. End user tools can provide multiple views of same

information for different types of users. From implementation

point of view it might be difficult to create multiple views of

same Business Intelligence model. However, we must create

synchronization among these views.

The implementation of predefined architectural pattern

Model-View-Controller in basic architecture can avail

following benefits which are tabulated below. (Benefits are

tabulated using Non-functional properties of software

architecture [15]).

Table 4. Benefits of MVC architecture in typical BI

architecture

Benefit Description

Efficiency Business Intelligence

systems using Model-View-

Controller are highly

efficient in terms of storing

the heterogeneous data in

data warehouse,

synchronization of views.

Complexity Dividing the task into

independent components,

viz., Model, View, and

Controller reduces

complexity of Business

Intelligence architecture.

Scalability The business applications

becomes highly scalable so

that new components of

business applications can be

added or removed without

affecting the functionality of

the Business Intelligence

system.

Heterogeneity Business Intelligence

systems are heterogeneous so

that they can run on different

computing environments [16]

Maintainability Business Intelligence

systems maintain

synchronized views,

consistency in data when

they are implemented using

Model-View-Controller

architectural pattern.

3. METHODOLOGY
The implementation of Model-View-Controller in Business

Intelligence architecture might be tedious task. The approach

of above problem is briefly described below:

3.1 Context
Design Interactive Business Intelligence applications with

multiple and synchronized views. Software system should

also produce flexible Human computer interface so that

different types of stake holders [17] can view interactive

applications.

3.2 Problem
The problem of typical Business Intelligence architecture is

that the amount of data is vast. The data processing capability

can also be varied from one business organization to another

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.12, September 2014

19

business organization. The operational systems [18] provide

the basic data that feed the data warehouse either in real-time

or on a periodic basis. The underlying foundation of a BI

architecture is complex. The implementation can either

facilitate Business Intelligence or become so monolithic and

inflexible that it becomes a technical data wasteland.

Another problem associated with Business Intelligence

architecture is the maintainability of synchronized views.

Building a Business Intelligence system with the required

flexible views is expensive and error-prone when the user

interface is tightly interwoven with the functional core.

Different types of stake-holder may demand to represent the

data in different forms such as bar-charts, tables, histogram

etc.

The problem is formulated with the help of following points:

 The same business information must be presentable in

different format.

 Changes applied to user interface must be flexible and

easy.

 Business Intelligence architecture must support ‘look and

feel’ approach to their views to show business

information.

3.3 Solution
The obvious solution of above problem is to divide the

business application into three basic parts viz. input,

processing and output. Each part is independent of each other

in their respective functionality but must have a tight

synchronization.

Model-View-Controller is the solution of above problem.

Model contains core data and functionality, i.e., it contains

source data, metadata and the data present in data warehouse.

The model is completely independent of specific output

representation of input data.

View is responsible for displaying the output of data ware

house to the user. There can be multiple views of same

information. For example, bar-charts, dashboards etc.

Controller handles user input. Each view has individual

component associated with it. Event handling technique can

be used to handle the user input.

3.4 Structure
The structure of three individual components viz. Model,

View, Controller can be shown with the help of Class-

Responsibility-Collaborator Cards below:

Table 5. Class-Responsibility-Collaborator Card for

Model component with respect to Business Intelligence

Architecture

Class :

Model

Collaborators :

 View

 Controller Responsibilities :

 Provides core data and

functionality to business

application.

 Maintains data in

consistent state in data

warehouse.

 Handles Extract-

Transform-Load

process.

 Informs the components

about the data

modification.

Table 6. Class-Responsibility-Collaborator Card for View

component with respect to Business Intelligence

Architecture

Class :

View

Collaborators :

 Model

 Controller Responsibilities :

 Displays information of

data warehouse to the

analyst.

 Provides user flexibility

to display the

information in different

formats.

Table 7. Class-Responsibility-Collaborator Card for

Controller component with respect to Business

Intelligence Architecture

Class :

Controller

Collaborators :

 Model

 View Responsibilities :

 Accepts user input

(event handling).

 Translates user events to

requests for the model.

4. CONSEQUENCES
The benefits of Model-View-Controller implementation in

Business Intelligence architecture includes following points:

1. Implementation of Multiple views for the same

Business Intelligence model.

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.12, September 2014

20

As the Model-View-Controller architecture separates the

model from the view, multiple views can be created for a

single model. While implementing Business Intelligence

architecture for any organization, there is a requirement of

multiple views for representing data in a desired form (such as

graphs, pie charts etc.). Different type of stakeholders

(managers, analysts, developers) may require different views

of data in different formats. Model-View-Controller

architecture helps to create multiple views by keeping the

model and controller intact.

2. Maintainability of synchronized views:

The change-propagation mechanism of the model ensures that

all related observers are notified of changes to the

application's data at the same time. This synchronizes all the

dependent views and controllers. Synchronized view ensures

simplicity in Business Intelligence architecture.

3. 'Pluggable' views and controllers.

The conceptual separation of Model-View-Controller allows

you to exchange the view and controller objects of a model.

User interface objects can even be substituted at run-time for

different types of stakeholders.

4. 'Look and feel' approach in User interface. [1]

Look and feel approach refers to the creation of different

types of views in the user’s perspective. While viewing the

interface of Business Intelligence, any stakeholder may find

simplicity of handling objects. Look and feel approach

however increases the understanding of user interface of any

business model.

Liabilities of Model-View-Controller are as follows:

1. Complexity:

Complexity is the degree at which software model and its

construction is difficult to understand [1]. For any interactive

application Model-View-Controller is not always a good

option. For the Business Intelligence architecture it may be

suitable as we can create multiple views of same pattern.

Designing the code which includes core data and functionality

for controller and model might be complex.

2. Controlling excessive number of updates:

 If a single analyst’s action in user interface results in many

updates, the Model component should skip unnecessary

changed notifications. The Business Intelligence Architecture,

may require controlling of the unnecessary updates.

3. Tight coupling of views and controllers to a model:

 Both view and controller components make direct calls to the

model. This implies that changes to the model's interface are

likely to break the code of both view and controller. This

problem is magnified if the system uses a multitude of views

and controllers.

5. FUTURE SCOPE
Future scope of this paper may be the alternative solution to

Model-View-Controller architectural style. As we know it is

difficult to implement multiple views of same model with

proper synchronization, we can implement other architectural

interactive system pattern such as Presentation-Abstraction-

Control (PAC) [1]. PAC uses hierarchy of interactive agents.

It completely separates human interaction facility from

interactive agents.

Another modification that we can do in Business Intelligence

architecture is to implement Document view [1]. We can

integrate the responsibilities of the view and the controller

from MVC in a single component by sacrificing

exchangeability of controllers.

6. CONCLUSION
Model-View-Controller ensures the separation of core data

processing and functionality, consistencies among different

views, synchronization of views, ‘look and feel’ approach of

user interface, flexibility in handling different views, and

representation of an information in different form. However,

the objective of interactive system is to provide high usability

to the business application. Using Model-View-Controller

(which is an interactive system) we can have multiple views

as per the requirements of our Business Intelligence system.

7. AUTHORS
First Author – Medha D. Kalelkar is currently pursuing

Master’s program (M.S.) in Management Information System

from Syracuse university school of Information Studies,

United States. She has completed her Graduate program in

Computer Engineering from Vidyalankar Institute of

Technology affiliated to University of Mumbai, India.

Second Author – Prathamesh P. Churi is currently working

as a lecturer in Vidyavardhini college of Engineering and

Technology affiliated to University of Mumbai, India. He is

also pursuing Master’s degree (M.E) in Information

Technology from Shah and Anchor Kutchhi Engineering

College affiliated to University of Mumbai, India. He has

completed his Graduate program in Computer Engineering

from Vidyalankar Institute of Technology affiliated to

University of Mumbai, India.

Third Author – Deepa D. Kalelkar has completed her

Graduate program in Electronics Engineering from Sardar

Patel Institute of Technology affiliated to University of

Mumbai, India. .

 E-mail: deepakalelkar7@gmail.com

8. REFERENCES
[1] The format for defining Business Intelligence

Architecture in terms of Model-View-Controller

architecture pattern we have reference book : Frank

Buschmann, Regine Meunier ,Hans Rohnert ,Peter

Sornmerlad , Michael Stal, Pattern Oriented Software

architecture, volume 1, February 2001.

[2] Business Decisions:

http://ijircce.com/upload/2013/june/26_BUSINESS.pdf.

[3] About Model-View-Controller

http://en.wikipedia.org/wiki/Model-view-controller

[4] Concept of Class responsibility collaboration card:

http://en.wikipedia.org/wiki/Class-responsibility-

collaboration_card

[5] http://www.b-eye-network.com/view/7105

[6] Five layered Business Intelligence architecture:

http://www.ibimapublishing.com/journals/CIBIMA/2011

/695619/695619.pdf.

[7] concept of structured and unstructured data:

http://www.brightplanet.com/2012/06/structured-vs-

unstructured-data/

[8] Concept of internal and external data:

http://chdexpert.wordpress.com/2012/03/30/database-

fundamentals-internal-and-external-data-sources/.

International Journal of Computer Applications (0975 – 8887)

Volume 102– No.12, September 2014

21

[9] Concept of Customer Relationship Management:

http://en.wikipedia.org/wiki/Customer_relationship_man

agement

[10] Concept of Enterprise Resource planning:

http://en.wikipedia.org/wiki/Enterprise_resource_plannin

g

[11] Concept of data noisy data:

http://www.mimuw.edu.pl/~son/datamining/DM/4-

preprocess.pdf

[12] http://en.wikipedia.org/wiki/Business_rules_approach

[13] concept of data staging:

http://data-warehouses.net/architecture/staging.html

[14] for data warehousing fundamentals and characteristics:

Data Warehousing 2.0 by Inmon

[15] Non-functional properties of software architecture:

Software Architecture: Foundations, Theory, and

Practice by Richard N. Taylor.

[16] http://www.garlic.com/~lynn/secure.htm

[17] concept of stakeholders:

http://en.wikipedia.org/wiki/Stakeholder

[18] operational system in data warehouse :

http://data-warehouses.net/architecture/operational.html

IJCATM : www.ijcaonline.org

