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Implementation of multilayer perceptron network
with highly uniform passive memristive crossbar
circuits
F. Merrikh Bayat1, M. Prezioso1, B. Chakrabarti1, H. Nili1, I. Kataeva2 & D. Strukov1

The progress in the field of neural computation hinges on the use of hardware more efficient

than the conventional microprocessors. Recent works have shown that mixed-signal inte-

grated memristive circuits, especially their passive (0T1R) variety, may increase the neuro-

morphic network performance dramatically, leaving far behind their digital counterparts. The

major obstacle, however, is immature memristor technology so that only limited functionality

has been reported. Here we demonstrate operation of one-hidden layer perceptron classifier

entirely in the mixed-signal integrated hardware, comprised of two passive 20 × 20 metal-

oxide memristive crossbar arrays, board-integrated with discrete conventional components.

The demonstrated network, whose hardware complexity is almost 10× higher as compared to

previously reported functional classifier circuits based on passive memristive crossbars,

achieves classification fidelity within 3% of that obtained in simulations, when using ex-situ

training. The successful demonstration was facilitated by improvements in fabrication

technology of memristors, specifically by lowering variations in their I–V characteristics.
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S
tarted more than half a century ago, the field of neural
computation has known its ups and downs, but since 2012,
it exhibits an unprecedented boom triggered by the dra-

matic breakthrough in the development of deep convolutional
neuromorphic networks1,2. The breakthrough3 was enabled not by
any significant algorithm advance, but rather by the use of high
performance graphics processors4, and the further progress is being
fueled now by the development of even more powerful graphics
processors and custom integrated circuits5–7. Nevertheless, the
energy efficiency of these implementations of convolutional net-
works (and other neuromorphic systems8–11) remains well below
that of their biological prototypes12,13, even when the most
advanced CMOS technology is used. The main reason for this
efficiency gap is that the use of digital operations for mimicking
biological neural networks, with their high redundancy and
intrinsic noise, is inherently unnatural. On the other hand, recent
works have shown11–16 that analog and mixed-signal integrated
circuits, especially using nanoscale devices, may increase the neu-
romorphic network performance dramatically, leaving far behind
both their digital counterparts and biological prototypes and
approaching the energy efficiency of the brain. The background for
these advantages is that in such circuits the key operation per-
formed by any neuromorphic network, the vector-by-matrix mul-
tiplication, is implemented on the physical level by utilization of the
fundamental Ohm and Kirchhoff laws. The key component of this
circuit is a nanodevice with adjustable conductance G—essentially
an analog nonvolatile memory cell—used at each crosspoint of a
crossbar array, and mimicking the biological synapse.

Though potential advantages of specialized hardware for neu-
romorphic computing had been recognized several decades
ago17,18, up until recently, adjustable conductance devices were
mostly implemented using the standard CMOS technology13.
This approach was used to implement several sophisticated,
efficient systems—see, e.g., refs.14,15. However, these devices have
relatively large areas leading to higher interconnect capacitance
and hence larger time delays. Fortunately, in the last decade,
another revolution has taken place in the field of nanoelectronic
memory devices. Various types of emerging nonvolatile memories
are now being actively investigated for their use in fast and
energy-efficient neuromorphic networks19–41. Of particular
importance, is the development of the technology for program-
mable, nonvolatile two-terminal devices called ReRAM or
memristors42,43. The low-voltage conductance G of these devices
may be continuously adjusted by the application of short voltage
pulses of higher, typically >1 V amplitude42. These devices were
used to demonstrate first neuromorphic network providing pat-
tern classification21,26,28,30,32,40. The memristors can have a very

low chip footprint, which is determined only by the overlap area
of the metallic electrodes, and may be scaled down below 10 nm
without sacrificing their endurance, retention, and tuning accu-
racy, with some of the properties (such as the ON/OFF con-
ductance ratio) being actually improved44.

Much of the previous very impressive demonstrations of neu-
romorphic networks based on resistive switching memory devices,
including pioneering work by IBM25,34, were based on the so-called
1T1R technology, in which every memory cell is coupled to a select
transistor22,27–31. The reports of neuromorphic functionality based
on passive 0T1R or 1D1R circuits (in which acronyms stand for 0
Transistor or 1 Diode +1 Resistive switching device per memory
cell, respectively) have been so far very limited26,39, in part due to
much stricter requirement for memristors’ I–V uniformity for
successful operation. The main result of this paper is the experi-
mental demonstration of a fully functional, board-integrated,
mixed-signal neuromorphic network based on passively integrated
metal-oxide memristive devices. Our focus on 0T1R memristive
crossbar circuits is specifically due to their better performance and
energy-efficiency prospects, which can be further improved by
three-dimensional monolithical integration45–47. Due to the extre-
mely high effective integration density, three-dimensional mem-
ristive circuits will be instrumental in keeping all the synaptic
weights of a large-scale artificial neural networks locally, thus cut-
ting dramatically the energy and latency overheads of the off-chip
communications. The demonstrated network is comprised of
almost an order of magnitude higher number of devices as com-
pared to the previously reported neuromorphic classifiers based on
passive crossbar circuits26. The inference, the most common
operation in applications of deep learning, is performed directly in a
hardware, which is different from many previous works that relied
on post-processing the experimental data with external computer to
emulate the functionality of the whole system25–27,34,39,40.

Results
Integrated memristors. The passive 20 × 20 crossbar arrays with
Pt/Al2O3/TiO2−x/Ti/Pt memristor at each crosspoint were fabri-
cated using a technique similar to that reported in ref. 26 (Fig. 1).
Specifically, the bilayer binary oxide stack was deposited using
low temperature reactive sputtering method. The crossbar elec-
trodes were evaporated using oblique angle physical vapor
deposition (PVD) and patterned by lift-off technique using
lithographical masks with 200-nm lines separated by 400-nm
gaps. Each crossbar electrode is contacted to a thicker (Ni/Cr/Au
400 nm) metal line/bonding pad, which are formed at the last step
of the fabrication process. As evident from Fig. 1a, b, due to the
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Fig. 1 Passive memristive crossbar circuit. a A top-view SEM and b cross-section TEM images of 20 × 20 Pt/Al2O3/TiO2−x/Ti/Pt crossbar circuit; c A

typical I–V switching curve
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utilized undercut in the photoresist layer and tilted PVD sput-
tering in the lift-off process, the metal electrodes have roughly
triangular shape with ~250 nm width. Such shape of the bottom
electrodes ensured better step coverage for the following pro-
cessing layers and, in particular, helped to reduce the top elec-
trode resistance. The externally measured (pad-to-pad) crossbar
line resistance for the bonded chip is around 800Ω. It is similar to
that of smaller crossbar circuit reported in ref.26 due to the
dominant contribution of the contact between crossbar electrode
and thicker bonding lines.

Majority of the devices required an electroforming step which
consisted of one-time application of a high current (or voltage)
ramp bias. We have used both increasing amplitude current and

voltage sweeps for forming but did not see much difference in the
results of the forming procedure (Fig. 2). This could be explained
by the dominant role of capacitive discharge from the crossbar
line during forming, which cannot be controlled well by external
current source or current compliance. The devices were formed
one at a time, and to speed up the whole process, an automated
setup has been developed—see Methods section for more details.
The setup was used for early screening of defective samples and
has allowed a successful forming and testing of numerous
crossbar arrays (Fig. 2). Specially, about 1–2.5% of the devices in
the crossbar arrays, i.e., 10 or less out of 400 total, could not be
formed with the algorithm parameters that we used. (It might
have been possible to form even these devices by applying larger
stress but we have not tried it in this experiment to avoid
permanently damaging the crossbar circuit.) Typically, the failed
devices were stuck at some conductance state, comparable to the
range of conductances utilized in the experiment, and as a result
have negligible impact on the circuit functionality.

Memristor I–V characteristics are nonlinear (Fig. 1c) due to the
alumina barrier between the bottom electrode and the switching
layer. I–V’s nonlinearity provides sufficient selector functionality to
limit leakage currents in the crossbar circuit, and hence reduce
disturbance of half-selected devices during conductance tuning. It is
worth mentioning that the demonstrated nonlinearity is weaker as
compared to state-of-the-art selector devices that are developed in the
context of memory applications. However, our analysis (Supplemen-
tary Note 1) shows that strengthening I–V nonlinearity would only
reduce power consumption during very infrequent tuning operation
but otherwise have no impact on the more common inference
operation in the considered neuromorphic applications.

Most importantly, memristive devices in the fabricated 20 × 20
crossbar circuits have uniform characteristics with gradual
(analog) switching. The distributions of the effective set and reset
voltages are sufficiently narrow (Fig. 2) to allow precise tuning of
devices’ conductances to the desired values in the whole array
(Fig. 3, Supplementary Fig. 12), which is especially challenging in
the passive integrated circuits due to half-select disturbance. For
example, an analog tuning was essential for other demonstrations
based on passive memristive circuits, though was performed with
much cruder precision19,39. A comparable tuning accuracy was
demonstrated in ref. 40, though for less dense but much more
robust to variations 1T1R structures, in which each memory cell is
coupled with a dedicated low-variation transistor. Furthermore,
memristors can be retuned multiple times without noticeable
aging—see Supplementary Note 2 for more details.
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Multilayer perceptron implementation. Two 20 × 20 crossbar
circuits were packaged and integrated with discrete CMOS com-
ponents on two printed circuit boards (Supplementary Fig. 2b) to
implement the multilayer perceptron (MLP) (Fig. 4). The MLP
network features 16 inputs, 10 hidden-layer neurons, and 4-out-
puts, which is sufficient to perform classification of 4 × 4-pixel
black-and-white patterns (Fig. 4d) into 4 classes. With account of
bias inputs, the implemented neural network has 170 and
44 synaptic weights in the first and second layers, respectively.

The integrated memristors implement synaptic weights, while
discrete CMOS circuitry implements switching matrix and
neurons. Each synaptic weight is implemented with a pair of
memristors, so that 17 × 20 and 11 × 8 contiguous subarrays were
involved in the experiment (Fig. 4a), i.e., almost all of the
available memristors in the first crossbar and about a quarter of
the devices in the second one. The switching matrix was
implemented with analog discrete component multiplexers and
designed to operate in two different modes. The first one is
utilized for on-board forming of memristors as well as their
conductance tuning during weight import. In this operation
mode, the switching matrix allows the access to any selected row
and column and, simultaneously, the application of a common
voltage to all remaining (half-selected) crossbar lines, including
an option of floating them. The voltages are generated by an
external parameter analyzer. In the second, inference mode the
switching matrix connects the crossbar circuits to the neurons as
shown in Fig. 4a and enables the application of ±0.2 V inputs,
corresponding to white and black pixels of the input patterns.
Concurrently, the measurement of output voltages of the
perceptron network is carried out. The whole setup is controlled
by a general-purpose computer (Supplementary Fig. 2c).

The neuron circuitry is comprised of three distinct stages
(Supplementary Fig. 2a). The first stage consists of inverting

operational amplifier, which maintains a virtual ground on the
crossbar row electrodes. Its voltage output is a weighted sum
between the input voltages, applied to crossbar columns (Fig. 4a),
and the conductances of the corresponding crosspoint devices. The
second stage op-amp computes the difference between two weighted
sums calculated for the adjacent line of the crossbar. The operational
amplifier’s output in this stage is allowed to saturate for large input
currents, thus effectively implementing tanh-like activation function.
In the third and final stage of the neuron circuit, the output voltage
is scaled down to be within −0.2 V to +0.2 V range before applying
it to the next layer. The voltage scaling is only implemented for the
hidden layer neurons to ensure negligible disturbance of the state of
memristors in the second crossbar array.

With such implementation, perceptron operation for the first
and second layers is described by the following equations:

VH
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Here V in, V H, V out are, respectively, perceptron input, hidden
layer output, and perceptron output voltages. G(1)± and G(2)± are
the device conductances in the first and second crossbar circuits,
with ± superscripts denoting a specific device of a differential
pair, while I± are the currents flowing into the corresponding
neurons. j and k are hidden and output neuron indexes, while i is
the pixel index of an input pattern. The additional bias inputs
V17

in and V11
H are always set to +0.2 V.
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Pattern classification. In our first set of experiments, the multi-
layer perceptron was trained ex-situ by first finding the synaptic
weights in the software-implemented network, and then importing
the weights into the hardware. Because of limited size of the clas-
sifier, we have used custom 4-class benchmark, which is comprised
of a total of 40 training (Fig. 4d) and 640 test (Supplementary
Fig. 4) 4 × 4-pixel black and white patterns representing stylized
letters “A”, “T”, “V”, and “X”. As Supplementary Fig. 5 shows, the
classes of the patterns in the benchmark are not linearly separable
and the use of multi-bit (analog) weights significantly improve
performance for the implemented training algorithm.

In particular, the software-based perceptron was trained using
conventional batch-mode backpropagation algorithm with mean-
square error cost function. The neuron activation function was
approximated with tangent hyperbolic with a slope specific to the
hardware implementation. We assumed a linear I–V characteristics
for the memristors, which is a good approximation for the considered
range of voltages used for inference operation (Fig. 1c). During the
training the weights were clipped within (10 μS, 100 μS) conductance
range, which is an optimal range for the considered memristors.

In addition, two different approaches for modeling weights
were considered in the software network. In the simplest,
hardware-oblivious approach, all memristors were assumed to
be perfectly functional, while in a more advanced, hardware-
aware approach, the software model utilized additional informa-
tion about the defective memristors. These were the devices
whose conductances were experimentally found to be stuck at
some values, and hence could not be changed during tuning.

The calculated synaptic weights were imported into the
hardware by tuning memristors’ conductances to the desired
values using an automated write-and-verify algorithm48. The

stuck devices were excluded from tuning for the hardware-aware
training approach. To speed up weight import, the maximum
tuning error was set to 30% of the target conductance (Fig. 5a, b),
which is adequate import precision for the considered benchmark
according to the simulation results (Supplementary Fig. 5). Even
though tuning accuracy was often worse than 30%, the weight
errors were much smaller and, e.g., within 30% for 42 weights
(out of 44 total) in the second layer of the network
(Supplementary Fig. 6). This is due to our differential synapses
implementation, in which one of the conductances was always
selected to have the smallest (i.e., 10 µS) value and the cruder
accuracy was used for tuning these devices because of their
insignificant contribution to the actual weight.

After weight import had been completed, the inference was
performed by applying ±0.2 V inputs specific to the pattern pixels
and measuring four analog voltage outputs. Figure 5c shows typical
transient response. Though the developed system was not
optimized for speed, the experimentally measured classification
rate was quite high—about 300,000 patterns per second and was
mainly limited by the chip-to-chip propagation delay of analog
signals on the printed circuit board.

Figure 5d, e shows classification results for the considered
benchmark using the two different approaches. (In both software
simulations and hardware experiments, the winning class was
determined by the neuron with maximum output voltage.) The
generalization functionality was tested on a 640 noisy test
patterns (Supplementary Fig. 4), obtained by flipping one of the
pixels in the training images (Fig. 4d). The experimentally
measured fidelity on a training and test set patterns for the
hardware-oblivious approach were 95% and 79.06%, respectively
(Fig. 5d, f), as compared to 100% and 82.34% achieved in the
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software (Supplementary Fig. 5). As expected, the experimental
results were much better for hardware-aware approach, i.e., 100%
for the training patterns and 81.4% for the test ones (Fig. 5e, g).

It should be noted that the achieved classification fidelity on
test patterns is far from ideal 100% value due to rather
challenging benchmark. In our demonstration, the input images
are small and addition of noise, by flipping one pixel, resulted in
many test patterns being very similar to each other. In fact, many
of them are very difficult to classify even for a human, especially
distinguishing between test patterns ‘V’ and ‘X’.

In our second set of experiments, we have trained the network
in-situ, i.e., directly in a hardware21. (Similar to our previous
work26, only inference stage was performed in a hardware during
such in-situ training, while other operations, such as computing and
storing the necessary weight updates, were assisted by an external
computer.) Because of limitations of our current experimental
setup, we implemented in-situ training using fixed-amplitude
training pulses, which is similar to Manhattan rule algorithm.
The classification performance for this method was always worse as
compared to that of both hardware-aware and hardware-oblivious
ex-situ approaches. For example, the experimentally measured
fidelity for 3-pattern classification task was 70%, as compared to
100% classification performance achieved on training set using both
ex-situ approaches. This is expected because in ex-situ training the
feedback from read measurements of the tuning algorithm allows to
effectively cope with switching threshold variations by uniquely
adjusting write pulse amplitude for each memristor, which is not
the case for the fixed-amplitude weight update (Supplementary
Fig. 7). We expect that fidelity of in-situ trained network can be
further improved using variable-amplitude implementation49.

Discussion
We believe that the presented work is an important milestone
towards implementation of extremely energy efficient and fast
mixed-signal neuromorphic hardware. Though demonstrated net-
work has rather low complexity to be useful for practical applica-
tions, it has all major features of more practical large-scale deep
learning hardware—a nonlinear neuromorphic circuit based on
metal-oxide memristive synapses integrated with silicon neurons.
The successful board-level demonstration was mainly possible due
to the advances in memristive circuit fabrication technology, in
particular much improved uniformity and reliability of memristors.

Practical neuromorphic hardware should be able to operate cor-
rectly under wide temperature ranges. In the proposed circuits, the
change in memristor conductance with ambient temperature (Sup-
plementary Fig. 9) is already partially compensated by differential
synapse implementation. Furthermore, the temperature dependence
of I–V characteristics is weaker for higher conductive states (Sup-
plementary Fig. 9). This can be exploited to improve robustness with
respect to variations in ambient temperature, for example, by setting
the device conductances within a pair to GBIAS ±G/2, where GBIAS is
some large value. An additional approach is to utilize memristor, with
conductance GM, in the feedback of the second operational amplifier
stage of the original neuron circuit (Supplementary Fig. 2a). In this
case, the output of the second stage is proportional to ΣiVi

in(Gi
+-

Gi
−)/GM with temperate drift further compensated assuming similar

temperature dependence for the feedback memristor.
Perhaps the only practically useful way to scale up the neuro-

morphic network complexity further is via monolithical integration
of memristors with CMOS circuits. Such work has already been
started by several groups19,30, including ours47. We envision that the
most promising implementations will be based on passive memristor
technology, i.e., similar to the one demonstrated in this paper,
because it is suitable for monolithical back-end-of-line integration of
multiple crossbar layers46. The three dimensional nature of such

circuits50 will enable neuromorphic networks with extremely high
synaptic density, e.g., potentially reaching 1013 synapses in one square
centimeter for 100-layer 10-nm memristive crossbar circuits, which is
only hundred times less compared to the total number of synapses in
a human brain. (Reaching such extremely high integration density of
synapses would also require increasing crossbar dimensions—see
discussion of this point in Supplementary Note 1.)

Storing all network weights locally would eliminate overhead of
the off-chip communication and lead to unprecedented system-level
energy efficiency and speed for large-scale networks. For example, the
crude estimates showed that energy-delay product for the inference
operation of a large-scale deep learning neural networks imple-
mented with mixed-signal circuits based on the 200-nm memristor
technology similar to the one discussed in this paper could be six
orders of magnitude smaller as compared to that of the advanced
digital circuits, while more than eight orders of magnitude smaller
when utilizing three-dimensional 10-nm memristor circuits51.

Methods
Automated forming procedure. To speed up the memristor forming, an algo-
rithm for its automation was developed (Supplementary Fig. 1a). In general, the
algorithm follows a typical manual process of applying an increasing amplitude
current sweep to form a memristor. To avoid overheating during voltage controlled
forming, the maximum current was limited by the current compliance imple-
mented with external transistor connected in series with biased electrode.

In the first step of the algorithm, the user specifies a list of crossbar devices to be
formed, the number of attempts, and the algorithm parameters specific to the
device technology, including the initial (Istart) and the final minimum (Imin) and
maximum (Imax) values, and step size (Istep) for the current sweep, the minimum
current ratio (Amin), measured at 0.1 V, which user requires to register successful
forming, reset voltage Vreset, and the threshold resistance of pristine devices (RTH),
measured at 0.1 V. The specified devices are then formed, one at a time, by first
checking the pristine state of the device.

In particular, if the measured resistance of as-fabricated memristor is lower than
the defined threshold value, then the device is already effectively pre-formed by
annealing. In this case, the forming procedure is not required, and the device is
switched into the low conducting state to reduce leakage currents in the crossbar
during the forming of the subsequent devices from the list.

Alternatively, a current sweep (or voltage) is applied to the device to form the
device. If forming is failed, the amplitude of the maximum current in a sweep is
increased and the process is repeated. (The adjustment of the maximum sweep
current is performed manually in this work but could be easily automated as well.)
If the device could not be formed within allowed number of attempts, the same
forming procedure is performed again after resetting all devices in the crossbar to
the low conductive states. The second try could still result in successful forming, if
the failure to form in the first try was because of large leakages via on-state
memristors that were already formed. Even though all formed devices are reset
immediately after forming, some of them may be accidentally turned on during
forming of other devices. Finally, if a device could not be formed within allowed
number of attempts for the second time, it is recorded as defective.

Experimental setup. Supplementary Fig. 2 shows additional details of the MLP
implementation and the measurement setup. We have used AD8034 discrete
operational amplifiers for the CMOS-based neurons and ADG1438 discrete analog
multiplexers to implement on-board switch matrix.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon reasonable
request.
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