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ABSTRACT 

In the context of drug discovery and development, much effort has been exerted to 

determine which conformers of a given molecule are responsible for the observed biological 

activity. In this work we aimed to predict bioactive conformers using a variant of supervised 

learning, named multiple-instance learning. A single molecule, treated as a bag of conformers, is 

biologically active if and only if at least one of its conformers, treated as an instance, is 

responsible for the observed bioactivity; and a molecule is inactive if none of its conformers is 

responsible for the observed bioactivity. The implementation requires instance-based embedding, 

and joint feature selection and classification. The goal of the present project is to implement 

multiple-instance learning in drug activity prediction, and subsequently to identify the bioactive 

conformers for each molecule.  

We encoded the 3-dimensional structures using pharmacophore fingerprints which are 

binary strings, and accomplished instance-based embedding using calculated dissimilarity 

distances. Four dissimilarity measures were employed and their performances were compared. 1-

norm SVM was used for joint feature selection and classification. The approach was applied to 

four data sets, and the best proposed model for each data set was determined by using the 

dissimilarity measure yielding the smallest number of selected features.  

The predictive abilities of the proposed approach were compared with three classical 

predictive models without instance-based embedding. The proposed approach produced the best 

predictive models for one data set and second best predictive models for the rest of the data sets, 
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based on the external validations. To validate the ability of the proposed approach to find 

bioactive conformers, 12 small molecules with co-crystallized structures were seeded in one data 

set. 10 out of 12 co-crystallized structures were indeed identified as significant conformers using 

the proposed approach. 

The proposed approach was demonstrated to be highly competitive with classical 

predictive models, hence it is very powerful for drug activity prediction. The approach was also 

validated as a useful method for pursuit of bioactive conformers. 
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BACKGROUND  

In the context of drug discovery research, it is challenging but of great importance to be 

able to determine which 3-dimensional (3D) shapes (so-called conformers) of a given molecule 

are responsible for its observed biological activity. Due to structural flexibility, a molecule may 

adopt a wide range of conformers and the identification of the bioactive conformers is extremely 

important in order to understand the recognition mechanism between small molecules and 

proteins, which is crucial in drug discovery and development. Until now, the most reliable 

approach to obtain the bioactive conformer is to use the X-ray crystal structure of a ligand-

protein complex; however, the number of such structures is limited because of the experimental 

difficulty in obtaining the crystals, especially for transmembrane proteins, such as G protein-

coupled receptors (GPCR) [1, 2] and membrane transporters. We were interested to apply to this 

problem a machine-learning approach which does not require crystal structures, named multiple-

instance learning (MIL) via embedded instance selection (MILES). MILES has been 

demonstrated as an efficient and accurate approach to solve different multiple-instance problems 

[3], in particular, to predict drug activity using Musk data sets. In the context of drug activity 

prediction, MILES enables the construction of a quantitative structure-activity relationship 

(QSAR) model, and subsequently the identification of bioactive conformers. 

MIL is a variant of supervised learning, and it has been applied for a variety of learning 

problems including drug activity prediction [4], image database retrieval [5], text categorization 
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[6], and natural scene classification [7]. In the context of drug activity prediction, the observed 

biological activity is associated with a single molecule (bag) without knowing which conformer 

or conformers (instances) are responsible. Furthermore, a molecule is biologically active if and 

only if at least one of its conformers is responsible for the observed bioactivity; and the molecule 

is inactive if none of its conformers is responsible (Figure 1). A difficulty in implementation 

arises from the fact that different molecules have a different number of conformers, since some 

molecules having multiple rotatable bonds are highly flexible and others with rigid structures 

only have a small numbers of conformers (Figure 2). 

 
Figure 1. Cartoon representation of the relationsip between molecules and conformers. 

Mi, i=1, 2, 3, 4 represent the molecules (bags), circled by dashed lines. The solid triangles in M1, 

circles in M2, squares in M3, and stars in M4 represent conformers for different molecules. 

Molecules 2, 3, and 4 were biologically active since they had at least one bioactive conformer, 

whereas molecule 1 was inactive since none of its conformers was bioactive. The distance 

between two molecules, M1 and M3, was calculated by the minimum distance D(M1, M3). 
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Figure 2. Three molecules with various numbers of conformers. 

Since losartan has multiple rotatable bonds represented by various dihedral angles, Φk, k = 

1,2,3,4,5, it adopts a large number of conformers and only one of them is responsible for the 

bioactivity, which is called bioactive conformer. However, the other two molecules, paullone and 

indirubin, can only adopt single conformer which is the bioactive one. 

The overall strategy for structural and data mining using MILES (Figure 3) is 

summarized here. First of all, a complete sampling of conformational space provides a large 

number of conformers for each molecule. The molecules are themselves each already labelled as 

either positive or negative. However, the labels for the conformers are unavailable during the 

model generation. Each conformer is denoted by a unique pharmacophore fingerprint which is a 

superior feature-based 3D descriptor unveiling structural similarity and diversity [8-11]. The 

pharmacophore fingerprint is encoded into a binary string which indicates the presence or 

absence of a match to individual pharmacophore models. Since the exhaustively enumerated 

fingerprints have millions of bits, which may be beyond computational limits, a significance 

analysis of pharmacophore models [12] is employed to determine the optimal subset of bits of 
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the fingerprint. Subsequently, MILES converts the MIL to a standard supervised learning 

problem by embedding bags (molecules) into an instance-based (conformer-based) feature space 

via structural dissimilarity measures [13]. Finally, 1-norm SVM is applied to select the most 

important features, identifying the highly significant conformers which help the most to 

distinguish active and inactive molecules, and, simultaneously, to construct a predictive 

classification model.  

 
Figure 3. Overview of the MILES approach. 

(1) Structure preprocessing and conformational sampling. (2) Creating pharmacophore 

fingerprints and significance analysis of pharmacophore models. (3) Instance-based feature 

mapping based on structural similarity measures. (4) Joint feature selection and classification 

using 1-norm SVM. 

In the present work, MILES has been applied to study the biological activities of several 

sets of molecules interacting with different receptor targets including glycogen synthase kinase-3 

(GSK-3), cannabinoid receptors (CBrs), and P-glycoprotein (P-gp). All of these receptors have 
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been emerging as increasingly important therapeutic targets. GSK-3 is a multifunctional 

serine/threonine protein kinase involved in the regulation of a wide range of cellular functions, 

including glucose metabolism, neuronal processes, chronic inflammation, cell proliferation and 

apoptosis [14]. CBrs are a class of GPCRs and have been targeted for various disease conditions 

such as obesity, drug abuse disorders, inflammatory diseases, anorexia and vomiting [15]. P-gp, 

a membrane transporter, is responsible for drug efflux and multidrug resistance, especially to 

cancer drugs [16]. Except for GSK-3, the other proteins are membrane-associated and there is no 

available crystal structure for them. The identification of bioactive conformers for the molecules 

targeting membrane-associated proteins using MILES could be highly informative and desirable. 

Identified conformers can be used in various drug discovery approaches such as scaffold 

hopping, target fishing, and 3D structural alignment for 3D quantitative structure-activity 

relationship (QSAR) studies. 

Based on our calculations, MILES is highly competitive with the classical QSAR 

approaches which do not include instance-based feature mapping in terms of predictive abilities.  

Meanwhile, we have validated that MILES has the ability to identify a subset of highly relevant 

conformers, including the bioactive conformers, which contribute to the classification of active 

and inactive molecules.  

 

  



6 

 

METHODOLOGY 

Data Set Preparation 

Four different data sets were compiled through extensive literature search. Data set I 

includes all molecules exhibiting inhibitory activities for human GSK-3. Data sets II and III 

contain molecules modulating the intracellular activities of human CBrs. Since there are two 

identified CBr subtypes, CB1 and CB2, two different data sets were prepared to study the 

protein-small molecule interactions of the receptors separately. Some of the molecules which 

have reported binding affinities for both CB subtypes were included in both data sets II and III. 

Data set IV contained compounds which had been tested as substrates of P-gp.  

The molecules collected for each data set were labelled as either positive or negative. A 

positive molecule has a high binding affinity with the target protein, whereas a negative 

molecule has a low binding affinity. A single cutoff value has been widely used in the 

development of classification models. However, it is inaccurate to use a single cutoff value for 

the separation of continuous biological activities in the context of drug activity prediction. The 

biological activities are represented by continuous numbers, and the small differences between 

the values above and below the cutoff value cannot imply the distinct nature of binding affinity. 

Furthermore, the small difference in the bioassay results may arise from systematic errors 

introduced by different experimental protocols used in different labs, so it cannot be used as solid 
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evidence for the classification of molecules. Therefore, multiple cutoff values were employed to 

separate molecules into positive and negative classes. 

For data set I, the molecules were categorized into positive and negative molecules using 

cutoff values of IC50 ≤ 50 nM and IC50 ≥ 500 nM, respectively. The molecules having inhibitory 

activities between the two cutoff values were considered as moderately active molecules, and 

were discarded from the data set. The wide margin between the two cutoff values was used to 

account for the variances in biological assays. For data set II and III, the molecules were 

classified as positive if the Ki ≤ 50 nM or IC50 ≤ 100 nM or EC50 ≤ 100 nM (IC50 is 

approximately twice as large as Ki based on the definition); and the molecules were classified as 

negative if the Ki ≥ 500 nM or IC50 ≥ 1000 nM or EC50 ≥ 1000 nM. The labels for the molecules 

in data set IV indicated whether or not the molecule is a substrate for the target protein. They 

were obtained from the literature [12]. 

Division of Training and Test Set   

External validation was achieved using an independent test set. The split of the data set 

into training and test sets was carried out using Kohonen self-organizing maps (SOM) in Canvas 

1.4 from Schrödinger Suite 2011. The SOM is trained using unsupervised learning to produce a 

square 2D grid map from the high dimensional input space. Each grid cell (neuron) contains a 

cluster of structurally similar molecules defined by the input vectors. The SOM takes advantage 

of clustering capabilities so that the selected training set can represent the independent test set in 

terms of the input space and chemical domains. Molecular pharmacophore fingerprints were 

used to describe the relevant structural information of the molecules and were used as input 

variables to build the SOM. The grid size of the map depends on the number of molecules in the 
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data set. For data sets I, II, and III, the Kohonen maps built included 10 10 neurons and 500 

epochs. For the data set IV, a Kohonen map consisting of 8 8 neurons and 500 epochs was built. 

The molecules were then stratified and sampled from each neuron to select the training and test 

set molecules. 

Preprocessing and Conformational Sampling  

The molecules (bags) can be represented by Mi, i=1,···,l where l is the total number of 

molecules. The 3D molecular structures were generated using the Ligprep module from 

Schrödinger Suite 2011, and then subjected to preprocessing to enumerate all the possible 

tautomers. The protonation states of ionizable groups were set to match pH = 7.4, and the 

stereochemistry was retained from the original 3D structures. In order to explore the 

conformational space exhaustively, the mixed torsional/low mode sampling method was 

employed, using MacroModel from Schrödinger Suite 2011. The torsional sampling involves 

multiple Monte Carlo minimum searches for global exploration, and the low mode 

conformational search allows for automatic local exploration. The torsional increment for each 

rotatable bond was set to 15° and the maximum number of total steps for torsional sampling was 

1,000. The energy window for saving structures was set to 83.7 kJ/mol (20 kcal/mol). The small 

torsional increment and wide energy window were employed to provide a reasonable coverage of 

the conformational space. Each enumerated conformer was energy minimized to eliminate 

unreasonable geometries and reduce internal steric clashes, using the Polak-Ribière conjugate 

gradient method with a gradient convergence threshold of 0.05 and a maximum of 500 iterations. 

To remove redundant conformations, the maximum atom deviation cutoff was set to 1.5 Å. As a 
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result, each molecule Mi has several possible conformers Cij, j=1,···,ni, where ni is the number of 

conformers (instances) for molecule i.  

In order to validate that MILES can identify the bioactive conformers, we seeded 12 co-

crystallized conformers, one for each of 12 molecules, in the set of sampled conformers for data 

set I. The validation process will be described in the following sections. 

Generation of Pharmacophore Fingerprints 

The pharmacophore fingerprint as a measure of molecular similarity and diversity based 

on 3D pharmacophoric shape was enumerated using Canvas 1.4 from Schrödinger Suite 2011. 

Each pharmacophore fingerprint associated with a unique conformer can be represented by a 

binary string, such as Pij = {p1,···,pk, ···,pm} and encodes quantitative structural information for 

conformer Cij, where each bit value pk, k=1,···,m indicates the presence or absence of a match to 

a single pharmacophore model, representing a unique 3D arrangement of a number of 

pharmacophore features. If the conformer fits the pharmacophore model for a particular k, in 

other words if the functional groups of the conformer fully overlap on all the pharmacophore 

features in the model, pk equals 1; otherwise, pk equals 0. As a result, each conformer is 

associated with a unique pharmacophore fingerprint as a conformational signature, which 

enables us to describe quantitatively the 3D structural information (Figure 4). The 

pharmacophore features employed in the models consist of hydrogen bond donor (D), hydrogen 

bond acceptor (A), hydrophobic group (H), negatively charged group (N), positively charged 

group (P), and aromatic ring (A). In the present study, only four-feature based models were 

employed in order to allow a reasonable description of 3D orientation of the structures and retain 

information about molecular chirality, which is lost in three-feature based models. Different 
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combinations of four out of six pharmacophore features were exhaustively enumerated and inter-

feature distances were varied from 2.0 Å to 20.0 Å to form the different pharmacophore models. 

Each pharmacophore feature was treated as a bin with width 2.0 Å, and the bin overlap threshold 

was 1.0 Å. To fit to a model the conformer must fit to each of the four features in the model. The 

maximum distance between pharmacophore features was set to 20.0 Å in order to be able to 

cover the largest molecular structures in the databases. To obtain a unique pharmacophore 

fingerprint for single molecule, binary union operation was applied on a bag of pharmacophore 

fingerprints for the conformers adopted by that molecule (Figure 5). The originally enumerated 

fingerprints were subject to occurrence-based filtering to remove the pharmacophore models 

present in less than 5% of the total number of molecules, since the pharmacophore models with a 

very low occurrence are not useful for discriminating between positive and negative classes. 

 
Figure 4. Pharmacophore fingerprint for single conformer. 
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Figure 5. Pharmacophore fingerprint for single molecule. 

Significance Analysis of Pharmacophore Models 

The post-filtered pharmacophore fingerprints still have too many bits that lack 

information content, as indicated by too many „0‟ values. Therefore a nonparametric supervised 

learning approach, motivated by the significance analysis of microarrays (SAM) algorithm 

proposed by Tibshirani et al. [17], was applied to elucidate a consistent pattern from the 

numerous bits of pharmacophore fingerprints. The detailed implementation and customization of 

the relevant procedures has been described in [12]. The ranking score for each pharmacophore 

model was computed based on a two-class t-statistic, which calculates the ratio of the difference 

of occurrences of that model in positive and negative classes and compares to the standard 

deviation of occurrence measures. Pharmacophore models with ranking scores greater than a 

threshold have statistical significance, where the threshold was computed at the 90th percentile 

among 500 random permutations of the class labels across all the molecules. In order to 

distinguish truly significant and falsely significant pharmacophore models, that ranking score 

serving as a true score was then compared with a reference score computed from the same set of 

random permutations. If the difference between the true score and the reference score exceeds a 
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cutoff threshold (called Δ) then the pharmacophore model is truly significant; otherwise it is 

falsely significant. .  

Instance-based Feature Mapping 

MILES provides a framework to convert a MIL problem to a standard supervised 

learning problem via instance-based embedding. All the conformers (instances) belong to the 

instance-based feature space. For convenience, all conformers in all molecules were lined up 

together, and were re-indexed in the embedded feature space as C
r
, r=1,···,n where      

 
   . 

Instance-based feature mapping can be accomplished using calculated structural dissimilarities. 

Different binary string distance measures were tested, including the Soergel distance, Dice 

distance, Manhattan distance, and Rogers-Tanimoto distance (Table 1). The range of each 

dissimilarity measure was normalized to be [0, 1] by definition. Given a conformer Cij denoted 

by a binary string Pij, the dissimilarity measure, denoted as D(Cij, C
r
), is calculated based on the 

number of occurrences of bit matches. Since one molecule is defined as a bag of multiple 

conformers (instances), the dissimilarity measure for a molecule, denoted as D(Mi, C
r
), is 

calculated based on the minimum distance using the closest instance in the bag for Mi: 

      
      

 
       

   (1) 

The minimum distance calculation (Figure 1) extends the idea of the diverse density framework 

proposed for instance-based learning [18]. 
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Table 1. Metrics used for dissimilarity measurements. 

Dissimilarity Measure Definition
a
 

Soergel 
   

     
 

Dice 
   

      
 

Manhattan 
   

       
 

Rogers-Tanimoto 
       

           
 

a
 Let P1 and P2 be two pharmacophore fingerprints, a be the count of bits which are set to 1 in 

both P1 and P2, b be the count of bits which are set to 1 in P1 but not in P2, c be the count of bits 

which are set to 1 in P2 but not in P1, and d be the count of bits which are set to 0 in both P1 and 

P2. So a is called the number of total matches, b and c are called the number of single matches, 

and d is called the number of no matches. 

 

Joint Feature Selection and Classification 

Since the molecules in the training sets are highly flexible, instance-based embedding, 

which provides a framework to convert a MIL problem to a traditional supervised learning 

problem, may produce a very high dimensional feature space. But many features are redundant 

or irrelevant, and do not play an important role in the classification of molecules as positive or 

negative. So an efficient feature selection model is required for selection of an optimal subset of 

instance-based features. Considering its excellent performance in many applications [19], the 1-

norm SVM method was chosen as a joint approach to construct classifiers and to select important 

features simultaneously. The prediction model can be formulated as a linear classifier, 

              (2) 

where   denotes the class label as either positive or negative;   and   are model parameters 

which are optimized during model generation; and m corresponds to a molecule (bag), which is 

defined by an n-dimensional vector of dissimilarities calculated using (1), i.e., dissimilarities 
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with respect to all conformers in all molecules. The domain to (2) is therefore the space of R
n
, 

where n is the sum of all conformers in all molecules. The SVM approach constructs classifiers 

based on hyperplanes by minimizing a regularized training error, ξtraining (hinge loss), 

λP[•] + ξtraining (3) 

where P[•] is a regularizer, and λ is the regularization parameter, the only tuning parameter to be 

optimized by the user. In 1-norm SVM, the regularizer is chosen to be the 1-norm of the weight 

vector, 

           . (4) 

1-norm regularization favors sparse solutions, i.e., it drives many components of   to zero.  

Once the optimal solution, with values    and   , is obtained, the magnitude of its 

component   
  indicates the significance of the r-th feature (conformer) in the instance-based 

feature space. The features corresponding to non-zero entries in    are selected as important 

features, whose indices are specified as a set          
     ). They are needed for the 

classification problem of interest  

          
       

         . (5) 

Note that (2) is equivalent to (5) where all weights with 0 values are ignored. The domain of (5) 

is R
|Γ|

, a subspace of R
n
, defined by conformers whose weights are nonzero. The features 

selected as important are called prototype conformers. The plus or minus sign of   
  indicates the 

positive or negative contribution, respectively, of the r-th prototype conformer to the putative 

bioactive conformers for each individual molecule. 



15 

 

Our formulation of MILES works directly on a dissimilarity mapping, which is different from a 

similarity mapping described by Chen, et al. [3]. One can transform a dissimilarity mapping to a 

similarity mapping via an exponential function. However, this would introduce an additional 

super parameter, σ. Although, a proper choice of σ could improve the performance of a model, 

the selection of a proper value for σ increases the computational cost significantly. Hence we use 

a dissimilarity mapping to reduce the computational cost. 

Identification of Bioactive Conformers 

One appealing advantage of the MILES algorithm is that it can identify the most 

significant instances in a bag according to their contributions to the classification of that bag. In 

the context of drug activity prediction, we can identify the most significant conformers, called 

the bioactive conformers, for each molecule. The putative bioactive conformers are the 

conformers that contributed the most to the classification of positive and negative molecules. 

 
Figure 6. Identification of bioactive conformers. 
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Molecule i was circled by a dashed line and its conformers were represented by solid triangles. 

The plus circles represent the positively contributing prototype conformers and the minus circles 

represent the negatively contributing prototype conformers. The identification of bioactive 

conformers was accomplished by calculating the total contributions from the closest prototype 

conformers. 

The identification of bioactive conformers can be accomplished with the assistance of the 

prototype conformers mentioned above (Figure 6). Given a molecule Mi with its conformers Cij, 

j=1,···,ni, we define an index set                          
        ), which includes the 

index for conformers closest to each prototype conformer. Hence,   defines a minimal set of 

conformers, called significant conformers, which are responsible for the classification of Mi. By 

definition, each prototype conformer in set   has a single conformer in set   closest to it, but 

each significant conformer in set   may have multiple prototype conformers in set   closest to it. 

So we need to define an index set for each significant conformer in set   that includes the index 

for the prototype conformers closest to it, which is given as 

                             
    ). As a result, the contribution of each significant 

conformer to the classification of molecule can be calculated as 

           
           

     

 (6) 

where         denotes the contribution of the conformer      to the classification of the molecule 

Mi. The conformer in set   making the highest contribution is selected as a bioactive conformer.  

In order to validate the ability of MILES to identify the bioactive conformers, the 

contributions         for the 12 seeded conformers, which were taken directly from co-
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crystallized complex structures, were calculated and ranked among all the conformers sampled 

for those 12 molecules.  

Classical QSAR Methods without Instance-based Embedding 

In order to examine the predictive performance of MILES, conventional classification 

approaches based on classical QSAR principles without instance-based embedding were tested 

for comparison. Since one molecule is defined as a bag of multiple conformers (instances), the 

pharmacophore fingerprint associated with a single molecule was obtained from the binary union 

of all of the pharmacophore fingerprints associated with the conformers of that molecule. The 

same occurrence-based filtering and significance analysis of pharmacophore fingerprints were 

performed to select the optimal subsets of the fingerprints which constituted the feature space for 

the classical QSAR studies. Three widely used classification algorithms including decision tree 

(DT) [20], 1-norm SVM [19], and random forest [21] were employed for comparison with 

MILES-SVM. The decision tree is a greedy method based on a recursive partitioning algorithm. 

The classification trees were constructed using the „classregtree‟ function implemented in Matlab 

R2011b. The tree-based classification method can account well for multiple binding mechanisms 

[12]. Gini‟s diversity index was used for recursive partitioning, and the minimal number of 

molecules per tree leaf was set as 3 to terminate tree growing. The 1-norm SVM model is a 

statistical learning theory derived from the structural risk minimization principle and Vapnik-

Chervonenkis (VC) dimension [22]. It is different from the tree-based method and served as an 

alternative comparison. Since the major drawback of DT is its low prediction caused by the 

overfitted tree-based structure, the ensemble learning method, random forests [21], can deliver 

improved prediction while retaining the appealing properties of tree-based methods. It is a 
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collection of decision trees which are grown from bootstrapping samples of the original data 

without tree pruning, and has been demonstrated as one of the most powerful tools available for 

data exploration [23]. The Matlab implementation (randomforest-matlab v0.02) was used with 

default parameters. 
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RESULTS AND DISCUSSION 

Data Set Preparation and Division 

According to the criteria used to label positive and negative molecules, the number of 

molecules in each of two classes was balanced for four data sets. Data set I has 266 molecules as 

positive and 258 molecules as negative; data set II has 253 molecules as positive and 284 

molecules as negative; data set III has 307 molecules as positive and 188 molecules as negative; 

and data set IV has 122 molecules as positive and 128 molecules as negative. In terms of 

division of training and test sets, a stratified sampling was used to partition all four data sets into 

training and test sets at ratios around 3:1, respectively (Table 2).  

Table 2. Data set statistics. 

Data 

set 

No. of molecules in training set No. of molecules in test set Total no. of 

molecules Positive Negative Positive Negative 

I 199 188 67 70 524 

II 191 210 62 74 537 

III 247 131 60 57 495 

IV 94 93 28 35 250 

 

Conformational Sampling  

The molecules in different data sets had various conformational flexibilities, so the 

average number of conformers for each molecule was distinct for the four data sets (Table 3). 

The average number of conformers for each molecule was 43 in data set I, 89 in data set II, 86 in 

data set III, and 211 in data set IV. So the molecules in data set IV had the highest 
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conformational flexibility. The feature space constructed through instance-based embedding only 

consisted of the instances from training bags, in other words, the conformers from the molecules 

in the training set. The molecules in the test set were not used in the construction of the instance-

based feature space. So ntraining in Table 3 indicates the number of instance-based features used 

for embedding.  

Table 3. Conformational sampling and pharmacophore fingerprints. 

Data 

set 
ntraining

a
 ntest

b
 mpre-filtering

c
 mpost-filtering

d
 msignificant

e
 Δ

*f
 

I 17249 5399 1872521 243721 2979 1.77 

II 35434 12333 1670985 155220 14002 5.40 

III 32528 9942 1636254 145996 1542 1.80 

IV 41960 10746 13687602 161018 3467 1.66 
a
 The number of conformers in the training set; 

b
 the number of conformers in the test set; 

c
 the 

number of pharmacophore bits in the fingerprint originally enumerated; 
d
 the number of 

pharmacophore bits in the fingerprint after filtering; 
e
 the number of bits in the optimal subset of 

the pharmacophore fingerprint; 
f
 the optimal threshold value to select truly significant 

pharmacophore bits. 

Significance Analysis of Pharmacophore models 

Millions of pharmacophore models were originally enumerated for each data set, and the 

largest number of pharmacophore models was generated for data set IV. This correlated with the 

observation that the molecules in data set IV have the highest conformational flexibility. After 

occurrence-based filtering, only a small portion of the pharmacophore models was retained for 

each data set. For instance, 13% was retained for data set I, 9% for both data sets II and III, and 

1% for data set IV (Table 3).  

Significance analysis was subsequently performed upon those retained pharmacophore 

models. The threshold values were set to 100 equally spaced intervals from 0 to the largest 

difference between the ranking scores and reference scores. As the threshold value increases in a 
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bottom-up manner, the number of falsely significant pharmacophore models decreases, and the 

number of truly significant models remains roughly constant. So the optimal threshold values 

(Δ
*
) for each data set can be obtained when the number of falsely significant pharmacophore 

models drops to zero (Table 3). Subsequently, the optimal subsets of the pharmacophore 

fingerprint bits were obtained for four data sets (Table 3). Only a very small portion of the 

fingerprint bits were significant for classification, namely 1% in data set I, 9% in data set II, 1% 

in data set III, and 2% in data set IV.  

In the context of MIL, the optimal subsets of the binary strings were used to calculate the 

dissimilarity between two conformers for instance-based feature mapping. For the classical 

QSAR methods, the optimal subsets of the fingerprints were used as the 3D descriptors in the 

pharmacophore-based feature space for building classification models.   

Predictive Performance of MILES and Classical QSAR methods 

In the MILES model, the only tuning parameter λ was determined by a grid search. Five 

replications of 5-fold cross-validation were performed to assess the classification accuracies at 

each point over a fixed grid which ranged from 2
-8

 to 2
5
 with exponential increment in base 2. 

The median values for the 5 replications were used to find the optimal tuning parameters. During 

the cross-validation, the instance-based feature space was dynamically defined, which means that 

the conformers from the molecules in the internal test set, after random split of the training set, 

were excluded from the feature space. As a result, the optimal tuning parameters as well as the 

number of prototype conformers were obtained for four dissimilarity measures (Table 4).  
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Table 4. Optimization of tuning parameter λ for MILES. 

Data set Dissimilarity measure Cross-validation
a
 λ n

b
 

I 

Soergel 0.777 8.000 196 

Dice 0.761 4.400 165 

Manhattan
c
 0.803 4.400 130 

Rogers-Tanimoto 0.801 4.000 153 

II 

Soergel 0.865 0.001 103 

Dice 0.865 0.001 85 

Manhattan
c
 0.877 0.022 63 

Rogers-Tanimoto 0.868 0.069 72 

III 

Soergel 0.899 0.001 94 

Dice 0.901 0.001 75 

Manhattan 0.934 0.550 63 

Rogers-Tanimoto
c
 0.935 4.400 46 

IV 

Soergel 0.579 0.003 125 

Dice 0.544 0.031 111 

Manhattan 0.690 0.550 87 

Rogers-Tanimoto
c
 0.689 6.800 78 

a
 The median classification accuracy for 5 replications of 5-fold cross-validation; 

b
 the number of 

prototype conformers selected in the set  ; 
c
 The model selected based on the number of 

prototype conformers. 

 

Based on the internal validation, the classification accuracies were similar within each 

data set using four different dissimilarity measures. However, the numbers of prototype 

conformers selected were much different. For instance, in data set I and II, Manhattan distance 

yielded the smallest subset of selected prototype conformers, but in data set III and IV, Rogers-

Tanimoto yielded the smallest subset. Furthermore, Soergel distance yielded the largest subset 

for all the four data sets. The dissimilarity measure which yielded the smallest number of 

selected prototype conformers was chosen as the best MILES model and used later for 

comparison with classical QSAR models without instance-based embedding. 

After finding the optimal λ, a MILES model was identified from the training set and 

applied to the test set. In addition to comparing classification accuracy, denoted as the proportion 
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of correct predictions, Matthews Correlation Coefficient (MCC) [24] was also employed as a 

complementary indicator for the predictive performance. MCC is defined as:  

    
           

                             
 (7) 

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. 

MCC not only takes into account true positives and true negatives as classification accuracy 

does, but also false positives and false negatives. Thus it is considered as a balanced measure of 

the performance of binary classification (Table 5).  

Table 5. Predictive performance for different dissimilarity measures. 

Data set Dissimilarity measure 
Training set Test set 

Accuracy MCC Accuracy MCC 

I 

Soergel 0.972 0.944 0.854 0.714 

Dice 0.979 0.959 0.825 0.653 

Manhattan
a
 0.941 0.881 0.861 0.725 

Rogers-Tanimoto 0.961 0.923 0.861 0.725 

II 

Soergel 0.965 0.933 0.860 0.725 

Dice 0.965 0.933 0.868 0.745 

Manhattan
a
 0.978 0.956 0.904 0.807 

Rogers-Tanimoto 0.973 0.946 0.897 0.793 

III 

Soergel 0.989 0.977 0.846 0.706 

Dice 0.989 0.977 0.855 0.717 

Manhattan 0.979 0.954 0.838 0.686 

Rogers-Tanimoto
a
 0.947 0.885 0.846 0.711 

IV 

Soergel 0.904 0.823 0.667 0.301 

Dice 0.904 0.823 0.635 0.307 

Manhattan 0.957 0.918 0.714 0.433 

Rogers-Tanimoto
a
 0.898 0.811 0.794 0.584 

a
 The model selected based on the number of prototype conformers.  

 

In accordance to classification accuracy and MCC, the performance of different 

dissimilarity measures was dataset-specific. For data set I, both the Manhattan and Rogers-

Tanimoto distances were top-ranked and performed equally well on the test set, whereas on the 
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training set, the Soergel and Dice distances performed much better than the Rogers-Tanimoto 

and Manhattan distances, and the Rogers-Tanimoto distance performed slightly better than the 

Manhattan distance. In addition, the results did not change after removing the 12 seeded 

conformers which were used for the validation of identifying bioactive conformers. For data set 

II, the Manhattan distance was top-ranked on both training set and test set. For data set III, the 

Dice distance was top-ranked on both training and test sets. For data set IV, the Rogers-

Tanimoto distance performed much better on the test set, but on the training set it was not the 

top-ranked dissimilarity measure. It is interesting that for data sets I, II, and III the differences in 

the predictive performances of the four dissimilarity measures were very small, whereas for data 

set IV the differences were much larger. This may be caused by the high structural diversity in 

data set IV. The small difference in dissimilarity measures had a big impact on the predictive 

performance. The other interesting observation was that the classification accuracy and MCC 

provided the same indications for the predictive performance, which means that the data sets in 

the present work were highly balanced and good for benchmark studies.  

After comparing the predictive performance of different dissimilarity measures in the 

MILES model, the predictive performance of MILES models was compared with that of 

conventional classification approaches, which are based on classical QSAR principles without 

instance-based embedding. To find the optimal λ for 1-norm SVM on the basis of classical 

QSAR principles, the same procedure was employed, which resulted in the minimal subset of the 

most important pharmacophore models (Table 6).  
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Table 6. Optimization of tuning parameter λ for 1-norm SVM. 

Data set Cross-validation
a
 λ n

b
 

I 0.693 0.001 223 

II 0.880 2.000 80 

III 0.912 0.016 77 

IV 0.598 0.125 89 
a
 The median classification accuracy for 5 replications of 5-fold cross-validation; 

b
 the number of 

important pharmacophore bits. 

 

For data set I, the 1-norm SVM without instance-based embedding overfit the training 

set, producing perfect prediction on the training set and poor prediction on the test set. However, 

MILES performed fairly well on both the training and test sets without overfitting. MILES 

performed much better than decision trees and slightly worse than random forests in terms of the 

predictive power on the test set. For data set II, MILES was highly competitive with the other 

classical QSAR methods, yielding the second best prediction on both training and test sets, while 

1-norm SVM without embedding provided the best prediction on the training set but suffered 

from overfitting and decision trees produced the best prediction on the test set. For data set III, 

MILES performed slightly worse than random forests, but better than the other two methods, 

based on the predictions on the test set. Although MILES using Dice distance was not selected, 

since it yielded a large number of selected prototype conformers, it performed equally as good as 

random forests on the test set. For data set IV, MILES significantly outperformed the other 

approaches based on the predictions on the test set. For all the data sets, 1-norm SVM without 

embedding overfit the training set, yielding the best predictions on the training sets and relatively 

low predictions on the test sets. However, after instance-based embedding, MILES performed 

fairly well on both training and test sets without overfitting, and its predictive power was highly 

comparable with other conventional QSAR approaches (Table 7). It was interesting that the 
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classification accuracy and MCC provided the same indications again, even for the comparison 

of different QSAR approaches. 

Table 7. Predictive performance for different models. 

Data 

set 
Methods 

Training set Test set 

Accuracy MCC Accuracy MCC 

I 

MILES
a
 0.941 0.881 0.861 0.725 

Decision tree 0.915 0.830 0.781 0.569 

1-norm SVM 1.000 1.000 0.832 0.668 

Random forest 0.995 0.990 0.891 0.783 

II 

MILES
a
 0.978 0.956 0.904 0.807 

Decision tree 0.955 0.913 0.919 0.837 

1-norm SVM 0.980 0.961 0.882 0.765 

Random forest 0.945 0.896 0.868 0.754 

III 

MILES
b
 0.947 0.885 0.846 0.711 

Decision tree 0.966 0.924 0.838 0.682 

1-norm SVM 0.995 0.988 0.812 0.624 

Random forest 0.982 0.959 0.855 0.717 

IV 

MILES
b
 0.898 0.811 0.794 0.584 

Decision tree 0.914 0.829 0.698 0.398 

1-norm SVM 0.952 0.906 0.714 0.418 

Random forest 0.936 0.877 0.698 0.392 
a
 Manhattan dissimilarity measure; 

b
 Rogers-Tanimoto dissimilarity measure.   

 

Identification of Bioactive Conformers 

After examining the predictive ability of MILES, we tested the ability of MILES in the 

pursuit of the bioactive conformers. Due to the lack of experimental data, the validation can only 

be made for the molecules in data set I. We made use of 12 co-crystallized structures of GSK-3 

with bound small molecules, which adopt bioactive conformers in the complex structures (Table 

8). The direct comparison between the structures of the co-crystallized conformers and the ones 

from conformational sampling is difficult and sometimes impossible, since the conformational 

sampling plus structural minimization may not provide the exact same conformations found in 

the co-crystallized complex, due to the lack of protein environment in the conformational search 

process. So we adopted an indirect validation method. We seeded the 12 co-crystallized 
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conformers in the set of sampled conformers generated through extensive exploration of 

conformational space. Then we calculated their contributions         to the classification of the 

relevant positive molecules as described above (Table 8). 

Table 8. Validations on the prediction of bioactive conformers. 

ID
a
 Name

b
 PDB ID

c
 Contribution

d
 Rank

e
 ni

f
 

23 AR 1Q5K 2.792 3 117 

37 Benzoimidazole-1 2O5K 0 N.A.
g
 138 

50 Jonjon-1 2OW3 2.827 6 38 

59 LM-4 1Q3W 0.858 1 2 

60 LM-5 1UV5 11.941 1 3 

77 LM-29 1Q41 8.576 2 7 

97 Maleimide 1R0E 0 N.A. 
g
 121 

98 OxaD-0 3F7Z 10.629 1 53 

99 OxaD-00 3GB2 4.637 2 9 

153 Pyzo-11 3L1S 10.371 1 11 

198 RM-0 1Q4L 5.568 2 25 

199 Staurosporine 1Q3D 22.359 1 5 

 
a
 Molecule index in the data set; 

b
 molecular name in the data set; 

c
 Protein Data Bank index for 

the protein structure from which the experimental conformer was extracted; 
d
 contribution 

        calculated using equation 6; 
e
 the rank in the set of contributions; 

f
 the number of 

conformers for each molecule; g the rank cannot be determined and the conformer was predicted 

to be irrelevant to classification based on the MILES method. 

 

Three out of 12 molecules are highly flexible, adopting more than 100 conformers. For 

these three, MILES only correctly predicted one co-crystallized conformer as the third most 

significant conformer contributing to the classification of the molecule named AR. It incorrectly 

predicted the other two co-crystallized conformers as irrelevant conformers in terms of the 

contribution to the classification of benzoimidazole-1 and maleimide. 

But for the molecules adopting less than 100 conformers, which had relatively rigid 

structures, MILES correctly predicted all the co-crystallized conformers as significant 

conformers for the classification of positive molecules. Five co-crystallized conformers were 
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predicted to be the most significant conformers, i.e., the bioactive conformers; three co-

crystallized conformers were predicted to be the second most significant conformers; and one co-

crystallized conformer was predicted to be the sixth most significant conformer, based on the 

calculations of        . So the pursuit of bioactive conformers is easy for relatively rigid 

molecules and relatively more difficult for the highly flexible ones.  
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CONCLUSIONS  

We have successfully implemented a multiple-instance learning (MIL) framework, 

multiple-instance learning via embedded instance selection (MILES), for drug activity 

prediction. The molecules and relevant conformers were described using superior 3D descriptors, 

pharmacophore fingerprints, encoded as binary strings. The instance-based embedding was 

accomplished using dissimilarity measures designed for calculations on binary strings. The joint 

feature selection and classification was accomplished using a wrapper model based on 1-norm 

SVM. We have used the approach for the prediction of the labels of molecules interacting with 

four therapeutic targets, including GSK-3, CBrs, and P-gp. Based on the predictive performance, 

our proposed approach was highly competitive with conventional classification approaches based 

on classical QSAR principle. However, the proposed method, unlike conventional classification 

approaches, can also predict the contributions of individual conformers for each molecule and 

further can identify the putative bioactive conformer. These unique characteristics make the 

proposed method very useful for the pursuit of biologically significant conformers. Finally, we 

have validated that the proposed approach is highly useful in the pursuit of bioactive conformers. 
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