
Implementation of Múltiple Specialization
in Logic Programs

Germán Puebla and Manuel Hermenegildo
Computer Science Department

Technical University of Madrid (UPM)
{german,herme}@fi.upm.es

Abstract

We study the múltiple specialization of logic programs based
on abstract interpretation. This involves in general gener-
ating several versions of a program predícate for different
uses of such predícate, making use of information obtained
from global analysis performed by an abstract interpreter,
and finally producing a new, "multiply specialized" pro-
gram. While the topic of múltiple specialization of logic
programs has received considerable theoretical attention, it
has never been actually incorporated in a compiler and its
effects quantified. We perform such a study in the context of
a parallelizing compiler and show that it is indeed a relevant
technique in practice. Also, we propose an implementation
technique which has the same power as the strongest of the
previously proposed techniques but requires little or no mod-
ification of an existing abstract interpreter.

Keywords: Múltiple Program Specialization, Abstract In-
terpretation, Logic Programming, Compile-time Analysis,
Optimization.

1 Introduction

Compilers often use static knowledge regarding invariants in
the execution state of the program in order to optimize the
program for such particular cases [1]. Standard optimiza-
tions of this kind include dead-code elimination, constant
propagation, conditional reduction, code hoisting, etc. A
good number of optimizations can be seen as special cases
of partial evaluation [6, 22]. The main objective of par-
tial evaluation is to automatically overeóme losses in per-
formance which are due to general purpose algorithms by
specializing the program for known valúes of the inputs. In
the case of logic programs partial evaluation takes the form
of partial deduction [24, 23], which has recently been found
to be closely related to other techniques used in functional
languages such as "driving" [14]. Much work has been done

in logic program partial deduction and specialization of logic
programs(see e.g. [11, 12, 19]).

It is often the case that the set of possible input val-
úes is unknown, or this set is infinite. However, a form of
specialization can still be performed in such cases by means
of abstract interpretation [7], specialization then being with
respect to abstract valúes, rather than concrete ones. Such
abstract valúes are safe approximations in a "representation
domain" of a set of concrete valúes. Standard safety results
imply that the set of concrete valúes represented by an ab-
stract valué is a superset (or a subset, depending on the
property being abstracted and the optimizations to be per-
formed) of the concrete valúes that may appear at a certain
program point in all possible program executions. Thus,
any optimization allowed in the superset (respectively, sub-
set) will also be correct for all the run-time valúes. The
possible optimizations include again dead-code elimination,
(abstract) constant propagation, conditional reduction, code
hoisting, etc., which can again be viewed as a special case of
a form of "abstract partial evaluation." Consider, for exam-
ple, the following general purpose addition predícate which
can be used when any two of its arguments are integers:

plus(X,Y,Z):-
i n t (X) , i n t (Y) , ! , Z i s X + Y.

plus(X,Y,Z):-
i n t (Y) , i n t (Z) , ! , X i s Z - Y.

plus(X,Y,Z):-
i n t (X) , i n t (Z) , ! , Y i s Z - X.

If, for example, for all calis to this predícate in the program
it is known from global analysis that the first and second
arguments are always integers, then the program can be
specialized as follows

plus(X,Y,Z):-
Z i s X + Y.

which would clearly be more efficient because no tests are
executed. The optimization above is based on "abstractly
executing" the tests, i.e. reducing predícate calis to t rue ,
f a i l , or a set of primitives (typically, unifications) based
on the information available from abstract interpretation.
Abstract interpretation of logic programs and the related
implementation techniques are well understood for several
general types of analysis and, in particular, for top-down
analysis of Prolog [10, 2, 31, 9, 27, 5].

It is also often the case that a procedure has different uses
within a program, i.e. it is called from different places in the
program with different (abstract) input valúes. In principie,

optimizations are then allowable only if the optimization is
applicable to all uses of the predícate. However, it is possi-
ble that in two different uses the input valúes allow different
and incompatible optimizations and then none of them can
take place. This can be overeóme by means of "múltiple
program specialization" [19, 13, 2, 34] (the counterpart of
polyvariant specialization [4]), where different versions of
the predícate are generated for each use, so that each one of
them is optimized for the particular subset of input valúes
with which each versión is to be used. For example, in or-
der to allow maximal optimization, different versions of the
p lus /3 predícate should be generated for the following calis:

. . . . p lus (Xl ,Yl ,Z l) , plus(X2,Y2,Z2), . . .

if, for example, XI, and Yl are known to be bound to inte-
gers, but no information is available on X2, Y2, and Z2.

While the technique outlined above is very interesting in
principie, many practical issues arise, some of which have
been addressed in different ways in previous work [19, 13, 2,
34]. One is the method used for selection of the appropriate
versión for each cali at run-time. This can be done quite
simply by renaming calis and predicates. For example, for
the situation in the example above this would result in the
following calis and additional versión p l u s l / 3 of the p lus /3
predícate:

. . . . p l u s l (X l , Y l , Z l) , plus(X2,Y2,Z2), . . .

plusl(X,Y,Z) : -
Z i s X + Y.

This approach has the potential problem that, in order
to créate a "path" from the cali to the specialized predícate,
some intermedíate predicates may have to also be special-
ized even if no optimization is performed for them, with a
resulting additional increase in code size. Jacobs et al. [19]
propose instead the use of simple run-time tests to discern
the different possible cali modes and determine the appropri-
ate versión dynamically. This is attractive in that it avoids
the "spurious" specializations of the previous solutions (and
thus reduces code size), but is also dangerous as such run-
time tests themselves imply a cost which may be in unfa-
vorable cases higher than the gains obtained due to múltiple
specialization.

Another problem, which will be discussed in more depth
later, is that it is not straightforward to decide the opti-
mum number of versions for each predícate. In general, the
more versions generated, the more optimizations possible,
but this can lead to an unnecessarily large increase in pro-
gram size. Also, there is a cióse interaction between global
analysis and specialization in that in order to optimize each
one of the specialized versions global analysis needs to pro-
vide information not only for one superset of all the different
activations of a predícate, but instead for each one of the dif-
ferent versions that would be generated for each predícate,
including in the worst case all the different program points
in the bodies of all the clauses in all versions. Thus, in some
ways, the actual analysis has to incorpórate múltiple spe-
cialization. Winsborough [34] presents an algorithm, based
on the notion of minimal function graphs [21], that solves
the two problems outlined above. A new abstract interpre-
ta ron framework is introduced which is tightly coupled with
the specialization algorithm. The combination is proved to
produce a program with múltiple versions of predicates that
allow the máximum optimizations possible while having the
minimal number of versions for each predícate.

While the body of work in the área and Winsborough's
fundamental results, both briefly summarized above, are en-
couraging, there has been little or no evidence to date on
the practicality of abstract interpretation driven múltiple
specialization in logic programs, other than the small im-
provements for a few small, hand-coded examples reported
in [25, 32]. This is in contrast with the fact that abstract
interpretation is becoming a practical tool in logic program
compilation [18, 32, 31, 33, 3]. The first contribution of this
paper is to fill this gap. We report on the implementation of
múltiple specialization in a parallelizing compiler for Prolog
which incorporates an abstract interpretation-based global
analyzer and present a performance analysis of múltiple spe-
cialization in this system. We argüe that our results show
that múltiple specialization is indeed practical and useful in
the application, and also that such results shed some light
on its possible practicality in other applications.

In doing so, we also propose a novel technique for the
practical implementation of múltiple specialization. While
the analysis framework used by Winsborough is interest-
ing in itself, several generic analysis engines, such as PLAI
[31, 29] and GAIA [5], which greatly facilítate construction
of abstract interpretation analyzers are available, well un-
derstood, and in comparatively wide use. We believe that
it is of practical interest to specify a method for múltiple
specialization which can be incorporated in a compiler us-
ing a minimally modified existing generic analyzer. This
was previously attempted in [13], where a simple program
transformation technique which has no direct communica-
tion with the abstract interpreter is proposed, as well as
a simple mechanism for detecting cases in which múltiple
specialization is profitable. However, this technique is not
capable of detecting all the possibilities for specialization or
producing a minimally specialized program. It also requires
running the interpreter several times after specialization, re-
peating the analysis-program transformation eyele until a
fixpoint is reached. The second contribution of this paper is
to propose an algorithm which achieves the same results as
those of Winsborough's but with only a slight modification
of a standard abstract interpreter and by assuming minimal
communication with such interpreter (access to the memo-
ization tables). Our algorithm can be seen as an implemen-
tation technique for Winsborough's method in the context
of standard analyzers. Regarding the problem of versión
selection, our implementation uses predícate renaming to
créate paths from calis to specialized predicates. However,
we argüe that our technique is equally valid in the context
of run-time test based clause selection.

The structure of the rest of the paper is as follows. In
Section 2 we propose a naive implementation method for
múltiple specialization. In Section 3 we then present an al-
gorithm for minimizing the number of versions and show
that it terminates and is indeed minimal by reasoning over
the lattice of transformed programs. In Section 4 we then
report on the implementation of the algorithm in a paral-
lelizing compiler, and present and discuss our experimental
results. Finally, Section 5 concludes and suggests future
work.

2 Building Multiply Specialized Programs
based on Abstract Interpretation

The aim of the kind of (goal oriented) program analysis per-
formed by the standard analysis engines used in logic pro-

gramming is, for a particular description domain, to take a
program and a set of initial calling patterns (expressed using
elements of such domain) and to annotate the program with
information about the current environment at each program
point whenever that point is reached when executing calis
described by the calling patterns. Usual relevant program
points are entry to the rule, the point between each two
literals, and return from the cali.

In essence, the analyzer produces a program analysis
graph which can be viewed as a finite representation of
the (possibly infinite) set of (possibly infinite) and-or trees
explored by the concrete execution [2]. Execution and-or
trees which are infinite can be represented finitely through
a "widening" [8] into a rational tree. Also, the use of ab-
stract valúes instead of concrete ones allows representing
infinitely many concrete execution trees with a single ab-
stract analysis graph. The graph has two sorts of nodes:
those belonging to rules (also called "and-nodes") and those
belonging to atoms (also called "or-nodes"). In order to in-
crease accuracy analyzers usually perform múltiple program
specialization. This results in several nodes in the and-or
graph that correspond to a single program point (in the
non-specialized versión of the program). Actual analyzers
differ in the degree of specialization supported and in the
way such specialization is represented, but, in general, most
analyzers genérate all possible versions since this allows the
most accurate analysis [2, 31, 29, 5]. Normally, the results of
the analysis are simply "folded back" into the program: in-
formation from nodes which correspond to the same points
in the original program is "lubbed." The main idea that we
will exploit is to instead use the implicit multiply specialized
program explored by the analyzer not only to improve anal-
ysis information, but also to genérate a multiply specialized
program in which we have more accurate information for
each versión and specialize each versión accordingly.

In order to perform múltiple specialization given the in-
formation available at the end of the analysis two problems
remain: the first one is devising a method for actually ma-
terializing the versions generated taking such information
as a starting point and creating the paths connecting each
versión with its corresponding cali point (s). The second one
is ensuring that not all possible versions are materialized in
the specialized program, but rather only the minimal num-
ber necessary to perform all the optimizations which are
possible. The first problem is addressed in the remainder of
this section and the second in Section 3.

2.1 Analyses with Explicit Construction of
the And-Or Graph

As mentioned before, some formulations of top-down ab-
stract interpretation for logic program, such as the original
one in Bruynooghe's seminal work [2], are based on explic-
itly building an abstract versión of the resolution tree which
contains all possible specialized versions [28, 20]. This has
the advantage that, while not directly represented in the
abstract and-or graph, it is quite straightforward to derive
a fully specialized program (i.e. with all possible versions)
from such graph and the original program. Essentially, a
new versión is generated for a predícate for each or-node
present for that predícate in the abstract graph. Thus,
the fully specialized program includes a different, uniquely
named versión of a predicate for each or-node corresponding
to this predicate. Different descendent and-nodes represent

different calis in the bodies of the clauses of the specialized
predicates. Each cali in each clause body in the specialized
program is replaced with a cali to the unique predicate ñame
corresponding to the successor or-node in the graph for each
predicate.

The correctness of this multiply specialized program is
given by the correctness of the abstract interpretation proce-
dure, as specialization is simply materializing the (implicit)
specialized program from which the analysis has obtained
its information.

2.2 Tabulation-based Analyses
For efficiency reasons, most practical analyzers [10, 18, 31,
5, 26] do not explicitly build the analysis graph. Instead,
a representation of the information corresponding to each
program point is kept in a "memo table." Entries in such
memo tables typically contain matched pairs of cali and suc-
cess patterns for that program point. In most systems some
of the graph structure is lost and the data available after
analysis (essentially, the memo table) is not quite sufficient
for connecting each versión with its cali point(s). This re-
quires a (very minor) modification of the analysis algorithm.
For concreteness, we consider here the case of PLAI [31, 29].
In the standard implementation of this analyzer, the memo
table essentially contains only entries which correspond to
or-nodes in the table. And-nodes are also computed and
used, but they are not stored. In the following we will refer
to the table entries which correspond to or-nodes as or-
records. Each or-record contains the following information:
predicate to which the or-record belongs, call-pattern, ab-
stract success substitution, and a number identifying the or-
record itself. The modification proposed involves the simple
addition of one more field to the or-record which contains
the ancestor information i.e., the point(s) in the multiply
specialized program where this or-record (versión) is used.
By a point we mean a literal within an or-record. It should
be noted that the fixpoint algorithm also has to be modified
slightly so that this information is correctly stored, but this
modification is straightforward. The versión to use in each
cali can then be determined by the ancestor information and
no run-time tests are needed to choose among versions.

Example
We will try to clarify the ideas presented with an example.
Consider the following program, where the predicate plus/3
is defined as before and go/2 is known to be always called
with both arguments bound to integers

go(A,B):-
p(A,B,_), p(A,_,B) .

ptt .Y.Z):-
plus(X,Y,Z),
wr i t e (Z) , u r i t e (; i s ')»
wri te(X) , u r i t e (; + ') , wri te(Y), n i .

After analysis the memo table contains the following or-
records:

predicate
go/2
p /3
p /3
plus/3
plus/3

id
1
2
4
3
5

ancestors
{(query,l)}
{(go/2/1/1,1)}
{(go/2/1/2,1)}
{(p/3/1/1,2)}
{(p/3/1/1,4)}

Figure 1: Ancestor information for the example

(only fields relevant to our purposes are shown.) The first
field is the predícate to which the or-record belongs, the
second is the number that identifies the or-record, and the
third is the ancestor information. It is a list of pairs (literal,
or-record). A literal is identified with the following format:
Predicate/Arity/Clause/Literal. For example, go/2/1/2
stands for the second literal in the first clause of predícate
go/2.

In Figure 1 the ancestor information for each or-record
is shown graphically. Each or-record is represented by its
identifier. It is clear that the ancestor information can be
interpreted as backward pointers. These pointers can be
followed to determine the versión to use in the multiply spe-
cialized program. The special literal query indicates the
starting point of the top-down analysis. PLAI admits any
number of starting (entry) points. They are identified by
the second number of the pair (query,N).

3 Minimizing the Number of Versions

The number of versions in the multiply specialized program
introduced in Section 2 does not depend on the possible op-
timizations but rather on the number of versions generated
during analysis. Even if no benefit is obtained, the program
may have several versions of predicates. In this section we
address the issue of finding the minimal program that al-
lows the same set of optimizations. In order to do that
we collapse into the same versión those or-records that are
equivalent.1 This way the set of or-records for each predi-
cate is partitioned into equivalence classes. We now provide
an informal description of an algorithm for finding such a
program, followed by a more formal description and an al-
gebraic interpretation of the algorithm. The section ends
with an example illustrating the execution of the algorithm.

3.1 Informal Description of the algorithm
As mentioned before, the purpose of this algorithm is to
minimize the number of versions needed of each predícate
while maintaining all the possible optimizations. After anal-
ysis and prior to the execution of the algorithm, we compute
the optimizations that would be allowed in each versión if
we implemented the program introduced in Section 2 (i.e.,
the one which introduces one versión of a predícate for each

or-record). These optimizations are represented as finite
sets which are associated with the corresponding or-record.
The algorithm receives as input the set of table entries (or-
records) computed during analysis, augmented with the set
of optimizations allowed in each or-record. The output of
the algorithm is a partition of the or-records for each pred-
ícate into equivalence classes. This information together
with the original program is enough to build the final pro-
gram. For each predícate in the original program as many
copies are generated as equivalence classes exist for it. Each
of these copies (implementations) receives a unique ñame.
Then, the predícate symbols of the calis to predicates with
múltiple versions are replaced with the predícate symbols of
the corresponding versión. This is done using the ancestor
information. At the same time, some optimizations can take
place in each specialized versión.

Not all the information in the or-records is necessary for
this algorithm. The identifier of the or-record, the ancestor
information, and the set of optimizations are enough.

Note that two or-records that allow the same set of op-
timizations cannot be blindly collapsed since they may use
for the same literal (program point) versions of predicates
with different optimizations, and thus these two or-records
must be kept sepárate if all possible optimizations are to
be maintained. This is why the algorithm consists of two
phases. In the first one all the or-records for the same pred-
ícate that allow the same set of optimizations are joined in a
single versión. In the second phase those that use different
versions of a predícate for the same literal are split into dif-
ferent versions. Note that each time versions are split it is
possible that other versions may also need to be split. This
process goes on until no more splitting is needed (a fixpoint
is reached). The process always terminates as the number of
versions for a predícate is bounded by the number of times
the predícate has been analyzed with a different cali pattern.
Thus, in the worst case we will have as many versions for a
predícate as or-records have been generated by the analysis.

3.2 Formalization of the algorithm
In this section some notation is first introduced and then
the algorithm and the operations involved are formalized
based on such definitions. Termination of the algorithm is
discussed in Section 3.3. In the following definitions a pro-
gram is a set of predicates, a predícate a set of versions, and
a versión a set of or-records. The algorithm is independent
of the kind of optimizations being performed. Thus, no def-
inition of optimization is presented. Instead, it is left open
for each particular implementation. However, this algorithm
requires sets of optimizations for different or-records to be
comparable for equality. As an example, in our implemen-
tation an optimization is a pair (literal, valué), where valué
is t rue , f a i l or a list of unifications. The optimization will
be materialized in the final program using source to source
transformations.

The equivalence relation will be presented more formally in Sec-
tion 3.2.

Deflnition 1 (Or—record) An or record is a
o —< N,P,S> where N is a natural number that
fies the or-record, P is a set of pairs (literal, number of
or-record) and S a set of optimizations.

Deflnition 2 (Set of Or—records of a Predícate) The
set of or-records of a predícate Pred, denoted by Opred> is
the set of all the or-records the analyzer has generated for
Pred.

Deflnítion 3 (Versión of a Predícate) Given a predi-
cate Pred v is a versión of Pred if v C Opred •

Deflnítion 4 (Well Defined Set of Versions)

Let Opred be the set of or-records of Pred and let Vpred —
{VÍ,Í — 1 , . . . , n} be the set of versions for Pred. Vpred is a
well defined set of versions if

n

[J Vi — O pred and v¡ | | ^ = 0 J / _;'
i = l

i.e. Vpred is a partition of Opred-

Definition 5 (Feasible Versión) A versión v G Vpred is
feasible if it does not use two different versions for the same
literal, i.e. if
Vo¿,Oj G v \/literal G Pred : 3Vpred/(
(3vh G VpredBoi = (Ni,PhSt)e vk\(literal, Ni) E P ¡) A
(3DTO G Vpredi^On — (Nn,Pn,S„) G vm\(literal, Nj) G Pn))

=> k — m

Programs with versions that are not feasible cannot be im-
plemented without run-time tests to decide the versión to
use. Infeasible programs use for the same literal sometimes
a versión and sometimes another. This sometimes must be
determined at run-time. A set of versions is feasible if all
the versions in it are feasible.

Definition 6 (Equivalent Or—records) Two or-records
OÍ — (Ni,Pi,Si),Oj — (Nj,Pj,Sj) G Opred, are equivalent,
denote by OÍ =„ Oj, if

Si — Sj and {OÍ,OJ} is a feasible versión.

Definition 7 (Minimal set of Versions) A set of ver-
sions Vpred is minimal ifVot,Oj G Opred

Oi =v Oj =S> 3«fc G y Pred SUch that Oi,Oj G Vk

Definition 8 (Versión of Maximal Optimization) A
versión v is of maximal optimization if

VOÍ = (NÍ,PÍ, SÍ), Oj = {NhPj, Sj) G v Si = Sj

(all the or-records in the versión allow the same optimiza-
tions). A set of versions is of maximal optimization if all
the versions in it are of maximal optimization.

Definition 9 (Optimal Set of versions) A set of ver-
sions Vpred for a predicóte Pred is optimal if it is minimal,
of maximal optimization, and feasible, i.e. if

Voi,Oj G O Pred • 3«fc G Vpred(Oi,Oj E » i) « O j = „ Oj

We extend these definitions in the obvious way. For ex-
ample, we say that a program is minimal if the set of versions
for all the predicates in the program are minimal.

According to these definitions, the program before múlti-
ple specialization is well defined, feasible, and minimal, but
not of maximal optimization in general.

Definition 10 (Programo) For each predícate Pred let
y Pred — {VÍ\VÍ — {o¿}} • We cali this program Programo

Clearly Programo, which assigns a different versión to
each or-record, is feasible, of maximal optimization, and
well defined. This is the program constructed in Section 2.

Definition 11 (Reunión of Versions) Given two ver-
sions VÍ,VJ G Vpred the reunión of vt and Vj, denoted by
Vi +v Vj, is

• VÍ [}VJ ifVok,oi G (VÍ \Jvj) Sk — Si

• VÍ,VJ otherwise

The new set of versions Vpred1 is VpTed — {vi, Vj} {J{VÍ+VVJ}

It is easy to see that if we apply the reunión of versions to
programs that are well defined and of maximal optimization
the resulting programs are also well defined and of maximal
optimization.

Definition 12 (Prograrrií) Prograrrií is the program ob-
tained from Programo by reunión of versions when no more
reunions are possible (a fixpoint is reached).

The fixpoint obtained by applying reunión of versions
to Programo is unique and corresponds to the program in
which the set of or-records for each predicate is partitioned
into equivalence classes using the equality of sets of opti-
mizations as equivalence relation.

Prograrrii is well defined, of maximal optimization (like
Programo) and minimal. However, it is not feasible in gen-
eral. This is the purpose of phase 2 of the algorithm.

We now introduce the concept of restriction. It will be
used during phase 2 to split versions that are not feasible. It
allows expressing in a compact way the fact that several or-
records for the same predicate must be in different versions.
For example {{1}, {2, 3}, {4}} can be interpreted as: 1 must
be in a different versión than 2, 3, and 4. Or-records 2 and
3 cannot be in the same versión as 4 (2 and 3 can, however,
be in the same versión).

Definition 13 (Restriction) Given a set of oí—records
Opred, 1Z is a restriction over Opred if 1Z is a partition
of M and Ai C Opred-

Definition 14 (Restriction from a Predicate to a
Goal) Let Vpred — {vi, vi, • • •, Vi, • • •, v„} be a set versions
of the predicate Pred, and let lit be a literal of the program.
The restriction from Pred to lit is

TZut,Pred — {ri, r-2, • • •, n, • • •, r„}

where n is {N\3o - (N, P, S) G vt such that (lit, N) G P}2

Definition 15 (A Restriction Holds) A restriction 1Z
holds in a versión v if

VOÍ,OJ G v Vrfc, n e TI • N e rt A Nj e r¡ = > k — l

Definition 16 (Splitting of Versions by Restrictions)
Given a versión v and a restriction 1Z, the result of splitting
v with résped to 1Z is written vxvlZ and is

• v if v holds the restriction 1Z

• v\,V2 where v\ — {o — (N,P,S)\o G v A N G ru}
and vi — v — vi if v does not hold 1Z, i.e.
Ni<=rkANj£riAk¿l

After splitting a versión v G Vpred by a restriction, the new
set of versions is

y Pred' — y Pred ~ {v} [J{v Xv 1Z}

2 Note that r¿ may be 0.

E.g, {1,2 ,3 ,5K{{1},{2,3,4},{5}} = {1},{2,3,5},
but in {2,3,5} the restriction does not hold yet.
{2,3,5}x„{{l}, {2,3,4}, {5}} = {2, 3}, {5}. Now the re-
striction holds. Thus, the initial versión is split into 3 ver-
sions: {1}, {2, 3},{5}.

The programs obtained by applying splitting of versions
by restrictions to programs that are well defined, of maximal
optimization, and minimal are also well defined, of maximal
optimization and minimal.

Phase 2 of the algorithm terminates. In the worst case
we will finish with Programo-

Deflnítion 17 (Program/) Program/ is the program ob-
tained when all the restrictions hold and no more splitting
is needed, i.e., when a fixpoint is reached.

Theorem 1 (Múltiple Specialization Algorithm)
Programf, the result of the múltiple specialization algo-
rithm, is optimal.

By definition of splitting of versions Programf is well
defined, of maximal optimization, and minimal. We can see
that it is also feasible because otherwise there would be a
restriction that would not hold. This is in contradiction with
the assumption that phase 2 (splitting) has terminated.

3.3 Structure of the Set of Programs and
Termination

As shown above, given a multiply specialized program gen-
erated by the analyzer, several different (but equivalent)
programs may be obtained. They may differ in size, op-
timizations, and even feasibility. In this section we discuss
the structure of this set of programs and the relations among
its elements.

As Programo is well defined and due to the definitions of
reunión and splitting, all the intermedíate programs and the
final program are well defined. This means that ill-defined
programs are not of interest to us and the set of well defined
programs is closed under reunión and splitting of versions.
This set of well defined programs forms a complete lattice
under the C operation. The _L element of such a lattice is
given by the program in which each or-record is in a different
versión (Programo)- This is the program with the greatest
number of versions. The T element is the program in which
all the or-records that correspond to the same predicate are
in the same versión. This program is the one with the mín-
imum number of versions and is the one obtained when no
múltiple specialization is done. We move up in the lattice by
applying the reunión operation and down with the splitting
operation.

Note that not all the programs in the lattice are feasible.
A program is not feasible when two or-records in the same
versión use at the same program point or-records that are
in different versions. This is the reason why phase 2 of the
algorithm is required. This phase ends as soon as a program
is reached that is feasible.

Although not formally stated, the two different oper-
ations used during the múltiple specialization algorithm
(namely reunión and splitting) are operators defined on this
lattice since they receive a program as input and produce
another program as output. Phase 1 starts with _L and re-
peatedly applies operatori (reunión) moving up in the lat-
tice until we reach a fixpoint. Since the lattice is finite and

operatori is monotonic the termination of phase 1 is guar-
anteed.

Phase 2 starts with the program that is a fixpoint
of operaton (Prograrrii) and moves down in the lattice.
During phase 2 using operator-2 (splitting) we move from
an infeasible program to (a less) infeasible program, until
we reach a feasible program (which will be the fixpoint).
operator-2 is also monotonic and thus phase 2 also termi-
nates.

3.4 Example
We now apply the minimizing algorithm to the example pro-
gram in Section 2.2. As was mentioned before, the algorithm
also needs to know the set of possible optimizations in each
or-record. We will add this information to the or-record
registers. The input to the algorithm is as follows:

Pred
go/2
p /3
p /3

plus/3

plus/3

id
1
2
4

3

5

ancestors
{(query,l)}
{(go/2/1/1,1)}
{(go/2/1/2,1)}

{(p/3/1/1,2)}

{(p/3/1/1,4)}

optimizations

0
0
0

{(plus/3/3/2,fail),
(plus/3/2/l,true),
plus/3/l/2,true)}

|(plus/3/3/2,true),
(plus/3/2/l,fail),
(plus/3/l/2,fail) |

We will not go into the details of the set of optimiza-
tions, because as mentioned before, the múltiple specializa-
tion technique presented is independent of the type of opti-
mizations performed. In any case, the set of optimizations is
empty in the or-record for go/2 and in the two or-records for
p /3 . It has three elements in the or-records for plus/3 that
indicate the valué that the test i n t will take in execution.
The only thing to note here is that the set of optimizations
is different in these two or-records for plus/3.

Phase 1 starts with each or-record in a different versión
(Programo). We represent each or-record only by its iden-
tifier:

Programo'-
go/2
{{1}}

p /3
{{2},{4}}

plus/3
{{3},{5}}

The two or-records for p /3 have the same optimizations
(none) and can be joined. At the end of phase 1 we are in
the following situation:

Programa
go/2
{{1}}

P/3
{{2,4}}

plus/3
U3},{5}}

Now we execute phase 2. Only plus/3 can produce re-
strictions. The other two predicates only have one versión.
The only restriction will be TZp/3/i/i,Pius/3 — {{2}, {4}}.
The intuition behind this restriction is that or-record num-
ber 2 must be in a different versión than or-record number 4.
The restriction does not hold and thus {2,4}x„{{2}, {4}} —
{2}, {4}. Now we must check if this splitting has introduced
new restrictions. No new restriction appears because there
is no literal that belongs to the ancestor information of both
or-record 2 and or-record 4. Thus, the result of the algo-
rithm will be:

I ®
{1}{2,4}{3,5}

{1}{2}{4}{3}{5}
(Program O = Program f)

Figure 2: Lattice for the example program

Program / :
go/2

{{1}}

p/3

{{2},{4}}

plus/3

{{3},{5}}

The final program generated in our implementation of
the múltiple specializer is the following:

go(A,B) : -
' p / 3 / $ s p / Í ' (A . B . J , ' p /3 /$sp /2 ' (A ,_ ,B) .

, p/3 /$sp / l ' (X,Y,Z) : -
'p lus /3 /$sp/ l>(X,Y,Z) ,
wr i t e (Z) , w r i t e C i s ')>
wri te(X), w r i t e C + ') , wri te(Y), n i .

,p/3/$sp/2 ' (X,Y,Z) : -
'plus/3/$sp/2>(X,Y,Z),
wr i t e (Z) , w r i t e C i s ')>
wri te(X), w r i t e C + ') , wri te(Y), n i .

' p lus /3 /$sp / l ' (X,Y,Z) : -
Z i s X+Y.

'p lus /3/$sp/2 ' (X,Y,Z) : -
Y i s Z-X.

Each multiply specialized versión receives a unique ñame
(predicate/arity, the string /$sp / being used to avoid col-
liding with user-defined ñames, and the versión number).

Figure 2 shows the lattice for the example program. The
node marked with a cross (B) is infeasible. That is why
during phase 2 we move down in the lattice and return to
programo-

We can use Figure 2 to ¡Ilústrate the definitions intro-
duced in Section 3.2. Nodes B and D are of maximal op-
timization. A and C are not because or-records with dif-
ferent optimizations (3,5) are in the same versión. Nodes
A, C, and D are feasible. B is not feasible because for the
literal p /3 /1 /1 it uses both or-record 3 and 5 (we cannot
decide at compile-time which one to use). All the nodes
in the lattice are minimal. A program is not minimal if
two or-records that are equivalent are in different versions.
No two or-records are equivalent, thus all the programs are
minimal.

4 Experimental Results

In this section we present a series of experimental results.
Our aim is to study some of the cost/benefit tradeoffs in-
volved in múltiple specialization, in terms of time and space.
Even though the results have been obtained in the context
of a particular implementation and type of optimizations,
we believe that it is possible to derive some conclusions
from the results regarding the cost and benefits of múl-
tiple specialization in general. In particular, we have im-
plemented the specialization method presented in the pre-
vious sections in the context of the &-Prolog parallelizing
compiler [15, 31, 18, 3], where automatic program paral-
lelization, analysis, optimization, and, now, specialization
are completely integrated. This required the addition of a
specialization module and a slight modification of the ana-
lyzer, as described previously. The analysis time overhead
resulting from this modification has been measured at 3%
on the average, which we argüe is quite tolerable. Further-
more, the same modification is used for other purposes, most
notably for incremental global analysis [16], and is there-
fore now in any case a permanent addition to the analyzer.
Only one pass of the analyzer is required to genérate both
the multiply specialized program and to obtain the infor-
mation needed to determine the optimizations applicable to
each versión. These optimizations are of the "abstract ex-
ecutability" type [13], where, as mentioned before, certain
builtins or even user defined predicates are reduced to t rue ,
f a i l , or a set of primitives (typically, unifications) based on
the information available from abstract interpretation. Such
executability is expressed in a system table (which can be
extended through a user-defined predícate). There is one
such table for each abstract domain supported since differ-
ent abstract domains provide different information and allow
different optimizations.

The particular application studied is automatic program
parallelization. Sequential programs are transformed into
equivalent ones in which some parts of the program can
be executed in parallel. The parallelism generated by the
system is among goals which are "independent," a prop-
erty which ensures several correctness and efficiency results
[17] and which has the additional advantage of not requir-
ing locking during unification. However, while independence
can sometimes be determined statically by the analyzer [3],
in other cases the resulting parallelized programs contain
run-time tests and conditionals (which are used to dynam-
ically ensure independence) and which are targets for opti-
mization through specialization. In a specialized program
these tests also provide much information to the analyzer
which can be used for subsequent optimizations.

We have used a relatively wide range of programs as
benchmarks. They are described in more detail in [3] and
can be obtained from h t t p : / / c l i p . d i a . f i . u p m . e s . These
benchmarks have been automatically parallelized using the
sharing + freeness abstract domain [30] to elimínate un-
necessary run-time tests. We study the very interesting sit-
uation in which no information is provided to the analyzer
regarding the possible input valúes - i.e. the analysis has
to do its job with only the entry points to the programs
given in the module declarations as input data. Since as a
result of this the analyzer will sometimes have incomplete
information, run-time tests will be included in the resulting
programs, which are then amenable to múltiple specializa-
tion.

In order to assess the cost of specialization at compilation

http://clip.dia.fi.upm.es

Benchmark

aiakl
ann
bid
boyer
browse
deriv
hanoiapp
mmatrix
occur
peephole
progeom
qplan
query
read
serialize
warplan
zebra

Analysís

3806
11442

1309
5792
1069
2032

806
673
915

8399
276

2338
239

37639
656

15932
4586

Specialíz.

336
4306

723
840
600
430
143
233
236

1173
143

1813
153

2290
186

2907
543

Total

4142
15748
2032
6632
1669
2462
949
906

1151
9572
419

4151
392

39929
842

18839
5129

Average

%
8.11

27.34
35.58
12.67
35.95
17.47
15.07
25.72
20.50
12.25
34.13
43.68
39.03

5.74
22.09
15.43
10.59
14.84

Table 1: Múltiple Specialization Times

time in Table 1 we compare the analysis and specialization
time. We argüe that it is reasonable to compare these times
as the programs that accomplish those tasks are both coded
in Prolog and work with the same input program. The spe-
cialization time includes computing the possible optimiza-
tions in each or-record, minimizing the number of versions,
and materializing the new program in which the new ver-
sions are optimized (using source to source transformations).
It is also important to note that our múltiple specialization
algorithm requires an analysis. Thus, in principie the total
time needed would be the sum of both times. However, as
mentioned above, during the automatic parallelization pro-
cess, an analysis is generally done to optimize the run-time
tests. This first analysis can in fact be reused for the múl-
tiple specialization with a few modifications [16]. For each
benchmark program we present the analysis time, the múl-
tiple specialization time, their sum, and the percentage of
the total time used in specialization. All the times are in
milliseconds and have been measured on a SPARC 10.

We argüe that the time required for múltiple specializa-
tion, at least in this application, is reasonable. However, a
potentially greater concern in múltiple specialization than
compilation time is the increase in program size. Table 2
shows a series of measurements relevant to this issue. Pred
is the number of predicates in the original program. Max is
the number of additional (versions of) predicates that would
be introduced if the minimization were not applied (when
adding it to Pred this is also the number of versions that the
analyzer implicitly uses internally during analysis). Min is
the number of additional versions if the minimization algo-
rithm is applied. As mentioned before, sometimes, in order
to achieve an optimization some additional versions have to
be created just to créate a "path" to another specialized ver-
sión, i.e. to make the program feasible. The impact of this is
measured by Ind which represents the number of such "In-
direct" versions in the minimized program that have been
included during phase 2 of the algorithm. Le., this is the
number of versions which have the same set of optimiza-
tions as an already existing versión for that predicate.

We observe that for some benchmarks Mín is 0. This
means that múltiple specialization has not been able to op-
timize the benchmark any further. That is, the final pro-
gram equals the original program. However, note that if we
did not minimize the number of versions the program size
would be increased even though no additional optimization
is achieved. M a x (%) is computed as -^f^ x 100. Min(%)
and Ind(%) are computed similarly. Finally Ratio is the
relation between the sizes (in number of predicates) of the
multiply specialized programs with and without minimiza-
tion. The last rows of Table 2 show two different aver-
ages. The first is computed considering all the benchmark
programs and the second considering only the programs in
which the specialization method has obtained some opti-
mization (Min> 0).

According to the global average, the specialized program
has 43% additional versions with respect to the original pro-
gram. However, this average greatly depends on the amount
of possible optimizations the original program has (in our
case run-time tests) and cannot be taken as a general result.
Of much more relevance are the ratios between Max(%)
and Min(%) , and between Ind(%) and Min (%) , which
are in some ways independent of the number of possible
optimizations in the program. This is supported by the rel-
ative independence of the ratios from the benchmarks. The
first ratio measures the effectiveness of the minimization al-
gorithm. This ratio is 3.41 or 2.6 using global or relative
averages respectively. Le., the minimizing algorithm is able
to reduce to a third the number of additional versions needed
by múltiple specialization. The second ratio represents how
many of the additional versions are indirect. It is 56% or
41% (Global or Relative). This means that half of the ad-
ditional versions are due to indirect optimizations. Another
way to look at this result is as meaning that on the aver-
age there is one intermediate, indirect predicate between an
originating cali to an optimized, multiply specialized pred-
icate and the actual predicate. We argüe that this can in
many cases be an acceptable cost in return for no run-time
overhead in versión selection.

B e n c h m a r k

aiakl
ann
bid
boyer
browse
deriv
hanoiapp
m m a t r i x
occur
peephole
progeom
qplan
query
read
serialize
warplan
zebra

P r e d s

9

77
22
27

9

5

3

3

5

27
10
48

6

25
6

37
7

M a x

4

70

39
57

19

5

10
11
15
31

5

17
1

52

3

130
10

M i n

0

29
9

9

15
5

2

4

7

11
0

6

0

0

0

42
0

I n d

0

16

4

7

7

1

1

0

3

6

0

4

0

0

0

29

0

G l o b a l A v e r a g e

R e l a t i v e A v e r a g e

M a x (%)

44
90

177
211
211
100
333
366
300
114

50
35
16

208
50

351
142

147
208

M i n (%)

0

37
40
33

166
100

66
133
140

40
0

12

0

0

0

113
0

43
80

I n d (%)

0

21
18
26
78
20
33

0

60
22

0

8

0

0

0

78
0

24
33

R a t i o

1.44
1.39
1.97
2.33
1.17
1.00
2.60
2.00
1.67
1.53
1.50
1.20
1.17
3.08
1.50
2.11
2.43

1.73
1.72

Table 2: Number of Versions

p

1

2

3

4

5

6

7

8

9

m m a t r i x

s td
31800
16309
11200

8819
7235
5845
5069
4750
4075

spec
11549

6500
4579
3555
2930
2495
2200
1980
1820

•Pl
imp(%)

175.35
150.91
144.59
148.07
146.93
134.27
130.41
139.90
123.90

d e r i v . p l

s td
759
420
305
250
211
190
172
162
151

spec
715
399
289
235
202
182
166
156
145

imp(%)
6.15
5.26
5.54
6.38
4.46
4.40
3.61
3.85
4.14

o c c u r . p l

s td
690
458
330
276
225
210
203
203
203

spec
665
385
283
234
200
179
174
167
158

imp(%)
3.76

18.96
16.61
17.95
12.50
17.32
16.67
21.56
28.48

Table 3: Run-time performance

Having briefly addressed the cost (in time and size) of
múltiple specialization, we now study the actual benefits
obtained. In order to do so we report on the execution of a
representative subset of the parallelized programs, with and
without múltiple specialization on a 10 processor Sequent
Symmetry and compare their performance. The results
are shown in Table 3. All times are again in milliseconds.

The first benchmark program, ramatrix.pl, is a program
for matrix multiplication. It is a good candidate for par-
allelization and its execution time decreases nearly linearly
with the number of processors. If the user provides enough
information regarding the input this program can be par-
allelized without any run-time tests. However, if no in-
formation is provided by the user (the case studied) such
tests are generated and performance decreases. In this ar-
guably interesting case from the practical point of view the
improvement obtained with múltiple specialization is quite
high, ranging from 175.35% with one processor to 126.32%
with ten processors, i.e. the specialized program runs more
than twice as fast as the original program. This is because

it is a recursive program in which specialization automati-
cally detects and extracts an invariant (see [13]): that once
a certain run-time test has succeeded it does not need to be
checked in the following recursive calis.

d e r i v . p l is a program for symbolic differentiation and
also a good candidate for parallelization. However, the
improvement obtained with specialization is not very high
(around 5%). This shows that not all programs with signif-
icant parallelism are good candidates for specialization.

The last benchmark program we present is occur .pl . It
counts the number of occurrences of an element in a list.
Improvement in the sequential execution is low. However,
it increases when more processors are involved. It is also
important to note that the program before múltiple special-
ization gets no speedup from 7 to 9 processors, while the
multiply specialized program keeps on speeding up in that
range.

Note that these times are not comparable with the previous ones
since the Sequent is a slower machine sequentially than SPARC 10.

http://deriv.pl
http://occur.pl
http://ramatrix.pl
http://deriv.pl
http://occur.pl

5 Conclusions and Future Work

While the topic of múltiple specialization of logic programs
has received considerable theoretical attention, it has never
been actually incorporated in a compiler and its effects quan-
tified. We perform such a study in the context of a paralleliz-
ing compiler and show that it is indeed a relevant technique
in practice. Also, we propose an implementation technique
which has the same power as the strongest of the previously
proposed ones but requires little or no modification of an
existing abstract interpreter.

We argüe that our experimental results are encouraging
and show that múltiple specialization has a reasonable cost
both in compile-time cost and final program size. Also, the
results provide some evidence that the resulting programs
can show considerable benefits in actual execution time for
the application studied. As future work we plan to inves-
tígate reducing program size by using run-time test based
selection of specialized predicates. However, it also remains
to be studied whether this is more profitable when execution
time is also taken into account. We also plan on extending
our studies to other forms of optimization in program paral-
lelization and also to optimizations beyond this application.

Refere nces

[1] A. Aho and J.D. Ullman. Principies of Compiler De-
sign. Addison-Wesley, Reading, Mass., 1977.

[2] M. Bruynooghe. A Practical Framework for the Ab-
stract Interpretation of Logic Programs. Journal of
Logic Programming, 10:91-124, 1991.

[3] F. Bueno, M. García de la Banda,
and M. Hermenegildo. Effectiveness of Global Analysis
in Strict Independence-Based Automatic Program Par-
allelization. In International Symposium on Logic Pro-
gramming, pages 320-336. MIT Press, November 1994.

[4] M.A. Bulyonkov. Polivariant Mixed Computation for
Analyzer Programs. Acta Informática, 21:473-484,
1984.

[5] B. Le Charlier and P. Van Hentenryck. Experimental
Evaluation of a Generic Abstract Interpretation Algo-
rithm for Prolog. ACM Transactions on Programming
Languages and Systems, 16(1):35-101, 1994.

[6] C. Consel and O. Danvy. Tutorial Notes on Partial
Evaluation. In ACM SIGPLAN-SIGACT Symposium
on Principies of Programming Languages POPL'93,
pages 493-501, Charleston, South Carolina, 1993.
ACM.

[7] P. Cousot and R. Cousot. Abstract Interpretation: a
Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In
Fourth ACM Symposium on Principies of Programming
Languages, pages 238-252, 1977.

[8] P. Cousot and R. Cousot. Abstract Interpretation and
Application to Logic Programs. Journal of Logic Pro-
gramming, 13(2 and 3): 103-179, July 1992.

[9] S. Debray, editor. Journal of Logic Programming, Spe-
cial Issue: Abstract Interpretation, volume 13(1-2).
North-Holland, July 1992.

[10] S. K. Debray. Static Inference of Modes and Data De-
pendencies in Logic Programs. ACM Transactions on
Programming Languages and Systems, ll(3):418-450,
1989.

[11] J. Gallagher and M. Bruynooghe. The Derivation of
an Algorithm for Program Specialization. In 1990 In-
ternational Conference on Logic Programming, pages
732-746. MIT Press, June 1990.

[12] J. Gallagher, M. Codish, and E. Shapiro. Specialisation
of Prolog and FCP Programs Using Abstract Interpre-
tation. New Generation Computing, 6:159-186, 1988.

[13] F. Giannotti and M. Hermenegildo. A Technique for
Recursive Invariance Detection and Selective Program
Specialization. In Proc. Srd. Int'l Symposium on Pro-
gramming Language Implementation and Logic Pro-
gramming, pages 323-335. Springer-Verlag, 1991.

[14] R. Glueck and M.H. S0rensen. Partial Deduction and
Driving are Equivalent. In International Symposium
on Programming Language Implementation and Logic
Programming, PLILP'94, volume 844 of LNCS, pages
165-182, Madrid, Spain, 1994. Springer Verlag.

[15] M. Hermenegildo andK. Greene. The &-Prolog System:
Exploiting Independent And-Parallelism. New Gener-
ation Computing, 9(3,4):233-257, 1991.

[16] M. Hermenegildo, K. Marriott, G. Puebla, and
P. Stuckey. Incremental Analysis of Logic Programs. In
International Conference on Logic Programming. MIT
Press, June 1995.

[17] M. Hermenegildo and F. Rossi. Strict and Non-
Strict Independent And-Parallelism in Logic Programs:
Correctness, Efficiency, and Compile-Time Conditions.
Journal of Logic Programming, 22(l):l-45, 1995.

[18] M. Hermenegildo, R. Warren, and S. Debray. Global
Flow Analysis as a Practical Compilation Tool. Journal
of Logic Programming, 13(4):349-367, August 1992.

[19] D. Jacobs, A. Langen, and W. Winsborough. Múltiple
specialization of logic programs with run-time tests. In
1990 International Conference on Logic Programming,
pages 718-731. MIT Press, June 1990.

[20] G. Janssens and M. Bruynooghe. Deriving Descrip-
tions of Possible Valúes of Program Variables by means
of Abstract Interpretation. Journal of Logic Program-
ming, 13(2 and 3):205-258, July 1992.

[21] N. D. Jones and A. Mycroft. Dataflow analysis of
applicative programs using minimal function graphs.
In Thirteenth Ann. ACM Symp. Principies of Pro-
gramming Languages, pages 296-306. St. Petersburg,
Florida, ACM, 1986.

[22] N.D. Jones, C.K. Gomard, and P. Sestoft. Partid Eval-
uation and Automatic Program Generation. Prenctice
Hall, New York, 1993.

[23] J. Komorovski. An Introduction to Partial Deduction.
In A. Pettorossi, editor, Meta Programming in Logic,
Proceedings of META '92, volume 649 of LNCS, pages
49-69. Springer-Verlag, 1992.

[24] J.W. Lloyd and J.C. Shepherdson. Partial Evaluation
in Logic Programming. Journal of Logic Programming,
ll(3-4):217-242, 1991.

[25] A. Marien, G. Janssens, A. Mulkers,
and M. Bruynooghe. The Impact of Abstract Inter-
pretaron: an Experiment in Code Generation. In Sixth
International Conference on Logic Programming, pages
33-47. MIT Press, June 1989.

[26] K. Marriott and H. Sondergaard. Abstract interpreta-
tion, 1989. 1989 SLP Tutorial Notes.

[27] K. Marriott, H. S0ndergaard, and N.D. Jones. Denota-
tional Abstract Interpretation of Logic Programs. ACM
Transactions on Programming Languages and Systems,
16(3):607-648, 1994.

[28] A. Mulkers, W. Winsborough, and M. Bruynooghe.
Analysis of Shared Data Structures for Compile-Time
Garbage Collection in Logic Programs. In Proceedings
of the Seventh International Conference on Logic Pro-
gramming, pages 747-762, Jerusalem, Israel, June 1990.
MIT Press.

[29] K. Muthukumar and M. Hermenegildo. Deriving A Fix-
point Computation Algorithm for Top-down Abstract
Interpretation of Logic Programs. Technical Report
ACT-DC-153-90, Microelectronics and Computer Tech-
nology Corporation (MCC), Austin, TX 78759, April
1990.

[30] K. Muthukumar and M. Hermenegildo. Combined De-
termination of Sharing and Freeness of Program Vari-
ables Through Abstract Interpretation. In 1991 Inter-
national Conference on Logic Programming, pages 49-
63. MIT Press, June 1991.

[31] K. Muthukumar and M. Hermenegildo. Compile-time
Derivation of Variable Dependency Using Abstract In-
terpretation. Journal of Logic Programming, 13(2 and
3):315-347, July 1992.

[32] P. Van Roy and A.M. Despain. High-Performace
Logic Programming with the Aquarius Prolog Com-
piler. IEEE Computer Magazine, pages 54-68, January
1992.

[33] V. Santos-Costa, D.H.D. Warren, and R. Yang. The
Andorra-I Preprocessor: Supporting Full Prolog on the
Basic Andorra Model. In 1991 International Confer-
ence on Logic Programming, pages 443-456. MIT Press,
June 1991.

[34] W. Winsborough. Múltiple Specialization using
Minimal-Function Graph Semantics. Journal of Logic
Programming, 13(2 and 3):259-290, July 1992.

