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Abstract 

We study the múltiple specialization of logic programs based 
on abstract interpretation. This involves in general gener-
ating several versions of a program predícate for different 
uses of such predícate, making use of information obtained 
from global analysis performed by an abstract interpreter, 
and finally producing a new, "multiply specialized" pro-
gram. While the topic of múltiple specialization of logic 
programs has received considerable theoretical attention, it 
has never been actually incorporated in a compiler and its 
effects quantified. We perform such a study in the context of 
a parallelizing compiler and show that it is indeed a relevant 
technique in practice. Also, we propose an implementation 
technique which has the same power as the strongest of the 
previously proposed techniques but requires little or no mod-
ification of an existing abstract interpreter. 

Keywords: Múltiple Program Specialization, Abstract In-
terpretation, Logic Programming, Compile-time Analysis, 
Optimization. 

1 Introduction 

Compilers often use static knowledge regarding invariants in 
the execution state of the program in order to optimize the 
program for such particular cases [1]. Standard optimiza-
tions of this kind include dead-code elimination, constant 
propagation, conditional reduction, code hoisting, etc. A 
good number of optimizations can be seen as special cases 
of partial evaluation [6, 22]. The main objective of par-
tial evaluation is to automatically overeóme losses in per-
formance which are due to general purpose algorithms by 
specializing the program for known valúes of the inputs. In 
the case of logic programs partial evaluation takes the form 
of partial deduction [24, 23], which has recently been found 
to be closely related to other techniques used in functional 
languages such as "driving" [14]. Much work has been done 

in logic program partial deduction and specialization of logic 
programs(see e.g. [11, 12, 19]). 

It is often the case that the set of possible input val-
úes is unknown, or this set is infinite. However, a form of 
specialization can still be performed in such cases by means 
of abstract interpretation [7], specialization then being with 
respect to abstract valúes, rather than concrete ones. Such 
abstract valúes are safe approximations in a "representation 
domain" of a set of concrete valúes. Standard safety results 
imply that the set of concrete valúes represented by an ab-
stract valué is a superset (or a subset, depending on the 
property being abstracted and the optimizations to be per-
formed) of the concrete valúes that may appear at a certain 
program point in all possible program executions. Thus, 
any optimization allowed in the superset (respectively, sub-
set) will also be correct for all the run-time valúes. The 
possible optimizations include again dead-code elimination, 
(abstract) constant propagation, conditional reduction, code 
hoisting, etc., which can again be viewed as a special case of 
a form of "abstract partial evaluation." Consider, for exam-
ple, the following general purpose addition predícate which 
can be used when any two of its arguments are integers: 

plus(X,Y,Z):-
i n t ( X ) , i n t ( Y ) , ! , Z i s X + Y. 

plus(X,Y,Z):-
i n t ( Y ) , i n t ( Z ) , ! , X i s Z - Y. 

plus(X,Y,Z):-
i n t ( X ) , i n t ( Z ) , ! , Y i s Z - X. 

If, for example, for all calis to this predícate in the program 
it is known from global analysis that the first and second 
arguments are always integers, then the program can be 
specialized as follows 

plus(X,Y,Z):-
Z i s X + Y. 

which would clearly be more efficient because no tests are 
executed. The optimization above is based on "abstractly 
executing" the tests, i.e. reducing predícate calis to t rue , 
f a i l , or a set of primitives (typically, unifications) based 
on the information available from abstract interpretation. 
Abstract interpretation of logic programs and the related 
implementation techniques are well understood for several 
general types of analysis and, in particular, for top-down 
analysis of Prolog [10, 2, 31, 9, 27, 5]. 

It is also often the case that a procedure has different uses 
within a program, i.e. it is called from different places in the 
program with different (abstract) input valúes. In principie, 



optimizations are then allowable only if the optimization is 
applicable to all uses of the predícate. However, it is possi-
ble that in two different uses the input valúes allow different 
and incompatible optimizations and then none of them can 
take place. This can be overeóme by means of "múltiple 
program specialization" [19, 13, 2, 34] (the counterpart of 
polyvariant specialization [4]), where different versions of 
the predícate are generated for each use, so that each one of 
them is optimized for the particular subset of input valúes 
with which each versión is to be used. For example, in or-
der to allow maximal optimization, different versions of the 
p lus /3 predícate should be generated for the following calis: 

. . . . p lus (Xl ,Yl ,Z l ) , plus(X2,Y2,Z2), . . . 

if, for example, XI, and Yl are known to be bound to inte-
gers, but no information is available on X2, Y2, and Z2. 

While the technique outlined above is very interesting in 
principie, many practical issues arise, some of which have 
been addressed in different ways in previous work [19, 13, 2, 
34]. One is the method used for selection of the appropriate 
versión for each cali at run-time. This can be done quite 
simply by renaming calis and predicates. For example, for 
the situation in the example above this would result in the 
following calis and additional versión p l u s l / 3 of the p lus /3 
predícate: 

. . . . p l u s l ( X l , Y l , Z l ) , plus(X2,Y2,Z2), . . . 

plusl(X,Y,Z) : -
Z i s X + Y. 

This approach has the potential problem that, in order 
to créate a "path" from the cali to the specialized predícate, 
some intermedíate predicates may have to also be special-
ized even if no optimization is performed for them, with a 
resulting additional increase in code size. Jacobs et al. [19] 
propose instead the use of simple run-time tests to discern 
the different possible cali modes and determine the appropri-
ate versión dynamically. This is attractive in that it avoids 
the "spurious" specializations of the previous solutions (and 
thus reduces code size), but is also dangerous as such run-
time tests themselves imply a cost which may be in unfa-
vorable cases higher than the gains obtained due to múltiple 
specialization. 

Another problem, which will be discussed in more depth 
later, is that it is not straightforward to decide the opti-
mum number of versions for each predícate. In general, the 
more versions generated, the more optimizations possible, 
but this can lead to an unnecessarily large increase in pro-
gram size. Also, there is a cióse interaction between global 
analysis and specialization in that in order to optimize each 
one of the specialized versions global analysis needs to pro-
vide information not only for one superset of all the different 
activations of a predícate, but instead for each one of the dif-
ferent versions that would be generated for each predícate, 
including in the worst case all the different program points 
in the bodies of all the clauses in all versions. Thus, in some 
ways, the actual analysis has to incorpórate múltiple spe-
cialization. Winsborough [34] presents an algorithm, based 
on the notion of minimal function graphs [21], that solves 
the two problems outlined above. A new abstract interpre-
ta ron framework is introduced which is tightly coupled with 
the specialization algorithm. The combination is proved to 
produce a program with múltiple versions of predicates that 
allow the máximum optimizations possible while having the 
minimal number of versions for each predícate. 

While the body of work in the área and Winsborough's 
fundamental results, both briefly summarized above, are en-
couraging, there has been little or no evidence to date on 
the practicality of abstract interpretation driven múltiple 
specialization in logic programs, other than the small im-
provements for a few small, hand-coded examples reported 
in [25, 32]. This is in contrast with the fact that abstract 
interpretation is becoming a practical tool in logic program 
compilation [18, 32, 31, 33, 3]. The first contribution of this 
paper is to fill this gap. We report on the implementation of 
múltiple specialization in a parallelizing compiler for Prolog 
which incorporates an abstract interpretation-based global 
analyzer and present a performance analysis of múltiple spe-
cialization in this system. We argüe that our results show 
that múltiple specialization is indeed practical and useful in 
the application, and also that such results shed some light 
on its possible practicality in other applications. 

In doing so, we also propose a novel technique for the 
practical implementation of múltiple specialization. While 
the analysis framework used by Winsborough is interest-
ing in itself, several generic analysis engines, such as PLAI 
[31, 29] and GAIA [5], which greatly facilítate construction 
of abstract interpretation analyzers are available, well un-
derstood, and in comparatively wide use. We believe that 
it is of practical interest to specify a method for múltiple 
specialization which can be incorporated in a compiler us-
ing a minimally modified existing generic analyzer. This 
was previously attempted in [13], where a simple program 
transformation technique which has no direct communica-
tion with the abstract interpreter is proposed, as well as 
a simple mechanism for detecting cases in which múltiple 
specialization is profitable. However, this technique is not 
capable of detecting all the possibilities for specialization or 
producing a minimally specialized program. It also requires 
running the interpreter several times after specialization, re-
peating the analysis-program transformation eyele until a 
fixpoint is reached. The second contribution of this paper is 
to propose an algorithm which achieves the same results as 
those of Winsborough's but with only a slight modification 
of a standard abstract interpreter and by assuming minimal 
communication with such interpreter (access to the memo-
ization tables). Our algorithm can be seen as an implemen-
tation technique for Winsborough's method in the context 
of standard analyzers. Regarding the problem of versión 
selection, our implementation uses predícate renaming to 
créate paths from calis to specialized predicates. However, 
we argüe that our technique is equally valid in the context 
of run-time test based clause selection. 

The structure of the rest of the paper is as follows. In 
Section 2 we propose a naive implementation method for 
múltiple specialization. In Section 3 we then present an al-
gorithm for minimizing the number of versions and show 
that it terminates and is indeed minimal by reasoning over 
the lattice of transformed programs. In Section 4 we then 
report on the implementation of the algorithm in a paral-
lelizing compiler, and present and discuss our experimental 
results. Finally, Section 5 concludes and suggests future 
work. 

2 Building Multiply Specialized Programs 
based on Abstract Interpretation 

The aim of the kind of (goal oriented) program analysis per-
formed by the standard analysis engines used in logic pro-



gramming is, for a particular description domain, to take a 
program and a set of initial calling patterns (expressed using 
elements of such domain) and to annotate the program with 
information about the current environment at each program 
point whenever that point is reached when executing calis 
described by the calling patterns. Usual relevant program 
points are entry to the rule, the point between each two 
literals, and return from the cali. 

In essence, the analyzer produces a program analysis 
graph which can be viewed as a finite representation of 
the (possibly infinite) set of (possibly infinite) and-or trees 
explored by the concrete execution [2]. Execution and-or 
trees which are infinite can be represented finitely through 
a "widening" [8] into a rational tree. Also, the use of ab-
stract valúes instead of concrete ones allows representing 
infinitely many concrete execution trees with a single ab-
stract analysis graph. The graph has two sorts of nodes: 
those belonging to rules (also called "and-nodes") and those 
belonging to atoms (also called "or-nodes"). In order to in-
crease accuracy analyzers usually perform múltiple program 
specialization. This results in several nodes in the and-or 
graph that correspond to a single program point (in the 
non-specialized versión of the program). Actual analyzers 
differ in the degree of specialization supported and in the 
way such specialization is represented, but, in general, most 
analyzers genérate all possible versions since this allows the 
most accurate analysis [2, 31, 29, 5]. Normally, the results of 
the analysis are simply "folded back" into the program: in-
formation from nodes which correspond to the same points 
in the original program is "lubbed." The main idea that we 
will exploit is to instead use the implicit multiply specialized 
program explored by the analyzer not only to improve anal-
ysis information, but also to genérate a multiply specialized 
program in which we have more accurate information for 
each versión and specialize each versión accordingly. 

In order to perform múltiple specialization given the in-
formation available at the end of the analysis two problems 
remain: the first one is devising a method for actually ma-
terializing the versions generated taking such information 
as a starting point and creating the paths connecting each 
versión with its corresponding cali point (s). The second one 
is ensuring that not all possible versions are materialized in 
the specialized program, but rather only the minimal num-
ber necessary to perform all the optimizations which are 
possible. The first problem is addressed in the remainder of 
this section and the second in Section 3. 

2.1 Analyses with Explicit Construction of 
the And-Or Graph 

As mentioned before, some formulations of top-down ab-
stract interpretation for logic program, such as the original 
one in Bruynooghe's seminal work [2], are based on explic-
itly building an abstract versión of the resolution tree which 
contains all possible specialized versions [28, 20]. This has 
the advantage that, while not directly represented in the 
abstract and-or graph, it is quite straightforward to derive 
a fully specialized program (i.e. with all possible versions) 
from such graph and the original program. Essentially, a 
new versión is generated for a predícate for each or-node 
present for that predícate in the abstract graph. Thus, 
the fully specialized program includes a different, uniquely 
named versión of a predicate for each or-node corresponding 
to this predicate. Different descendent and-nodes represent 

different calis in the bodies of the clauses of the specialized 
predicates. Each cali in each clause body in the specialized 
program is replaced with a cali to the unique predicate ñame 
corresponding to the successor or-node in the graph for each 
predicate. 

The correctness of this multiply specialized program is 
given by the correctness of the abstract interpretation proce-
dure, as specialization is simply materializing the (implicit) 
specialized program from which the analysis has obtained 
its information. 

2.2 Tabulation-based Analyses 
For efficiency reasons, most practical analyzers [10, 18, 31, 
5, 26] do not explicitly build the analysis graph. Instead, 
a representation of the information corresponding to each 
program point is kept in a "memo table." Entries in such 
memo tables typically contain matched pairs of cali and suc-
cess patterns for that program point. In most systems some 
of the graph structure is lost and the data available after 
analysis (essentially, the memo table) is not quite sufficient 
for connecting each versión with its cali point(s). This re-
quires a (very minor) modification of the analysis algorithm. 
For concreteness, we consider here the case of PLAI [31, 29]. 
In the standard implementation of this analyzer, the memo 
table essentially contains only entries which correspond to 
or-nodes in the table. And-nodes are also computed and 
used, but they are not stored. In the following we will refer 
to the table entries which correspond to or-nodes as or-
records. Each or-record contains the following information: 
predicate to which the or-record belongs, call-pattern, ab-
stract success substitution, and a number identifying the or-
record itself. The modification proposed involves the simple 
addition of one more field to the or-record which contains 
the ancestor information i.e., the point(s) in the multiply 
specialized program where this or-record (versión) is used. 
By a point we mean a literal within an or-record. It should 
be noted that the fixpoint algorithm also has to be modified 
slightly so that this information is correctly stored, but this 
modification is straightforward. The versión to use in each 
cali can then be determined by the ancestor information and 
no run-time tests are needed to choose among versions. 

Example 
We will try to clarify the ideas presented with an example. 
Consider the following program, where the predicate plus/3 
is defined as before and go/2 is known to be always called 
with both arguments bound to integers 

go(A,B):-
p(A,B,_), p(A,_,B) . 

ptt .Y.Z):-
plus(X,Y,Z), 
wr i t e (Z) , u r i t e ( ; i s ' )» 
wri te(X) , u r i t e ( ; + ' ) , wri te(Y), n i . 

After analysis the memo table contains the following or-
records: 

predicate 
go/2 
p /3 
p /3 
plus/3 
plus/3 

id 
1 
2 
4 
3 
5 

ancestors 
{(query,l)} 
{(go/2/1/1,1)} 
{(go/2/1/2,1)} 
{(p/3/1/1,2)} 
{(p/3/1/1,4)} 



Figure 1: Ancestor information for the example 

(only fields relevant to our purposes are shown.) The first 
field is the predícate to which the or-record belongs, the 
second is the number that identifies the or-record, and the 
third is the ancestor information. It is a list of pairs (literal, 
or-record). A literal is identified with the following format: 
Predicate/Arity/Clause/Literal. For example, go/2/1/2 
stands for the second literal in the first clause of predícate 
go/2. 

In Figure 1 the ancestor information for each or-record 
is shown graphically. Each or-record is represented by its 
identifier. It is clear that the ancestor information can be 
interpreted as backward pointers. These pointers can be 
followed to determine the versión to use in the multiply spe-
cialized program. The special literal query indicates the 
starting point of the top-down analysis. PLAI admits any 
number of starting (entry) points. They are identified by 
the second number of the pair (query,N). 

3 Minimizing the Number of Versions 

The number of versions in the multiply specialized program 
introduced in Section 2 does not depend on the possible op-
timizations but rather on the number of versions generated 
during analysis. Even if no benefit is obtained, the program 
may have several versions of predicates. In this section we 
address the issue of finding the minimal program that al-
lows the same set of optimizations. In order to do that 
we collapse into the same versión those or-records that are 
equivalent.1 This way the set of or-records for each predi-
cate is partitioned into equivalence classes. We now provide 
an informal description of an algorithm for finding such a 
program, followed by a more formal description and an al-
gebraic interpretation of the algorithm. The section ends 
with an example illustrating the execution of the algorithm. 

3.1 Informal Description of the algorithm 
As mentioned before, the purpose of this algorithm is to 
minimize the number of versions needed of each predícate 
while maintaining all the possible optimizations. After anal-
ysis and prior to the execution of the algorithm, we compute 
the optimizations that would be allowed in each versión if 
we implemented the program introduced in Section 2 (i.e., 
the one which introduces one versión of a predícate for each 

or-record). These optimizations are represented as finite 
sets which are associated with the corresponding or-record. 
The algorithm receives as input the set of table entries (or-
records) computed during analysis, augmented with the set 
of optimizations allowed in each or-record. The output of 
the algorithm is a partition of the or-records for each pred-
ícate into equivalence classes. This information together 
with the original program is enough to build the final pro-
gram. For each predícate in the original program as many 
copies are generated as equivalence classes exist for it. Each 
of these copies (implementations) receives a unique ñame. 
Then, the predícate symbols of the calis to predicates with 
múltiple versions are replaced with the predícate symbols of 
the corresponding versión. This is done using the ancestor 
information. At the same time, some optimizations can take 
place in each specialized versión. 

Not all the information in the or-records is necessary for 
this algorithm. The identifier of the or-record, the ancestor 
information, and the set of optimizations are enough. 

Note that two or-records that allow the same set of op-
timizations cannot be blindly collapsed since they may use 
for the same literal (program point) versions of predicates 
with different optimizations, and thus these two or-records 
must be kept sepárate if all possible optimizations are to 
be maintained. This is why the algorithm consists of two 
phases. In the first one all the or-records for the same pred-
ícate that allow the same set of optimizations are joined in a 
single versión. In the second phase those that use different 
versions of a predícate for the same literal are split into dif-
ferent versions. Note that each time versions are split it is 
possible that other versions may also need to be split. This 
process goes on until no more splitting is needed (a fixpoint 
is reached). The process always terminates as the number of 
versions for a predícate is bounded by the number of times 
the predícate has been analyzed with a different cali pattern. 
Thus, in the worst case we will have as many versions for a 
predícate as or-records have been generated by the analysis. 

3.2 Formalization of the algorithm 
In this section some notation is first introduced and then 
the algorithm and the operations involved are formalized 
based on such definitions. Termination of the algorithm is 
discussed in Section 3.3. In the following definitions a pro-
gram is a set of predicates, a predícate a set of versions, and 
a versión a set of or-records. The algorithm is independent 
of the kind of optimizations being performed. Thus, no def-
inition of optimization is presented. Instead, it is left open 
for each particular implementation. However, this algorithm 
requires sets of optimizations for different or-records to be 
comparable for equality. As an example, in our implemen-
tation an optimization is a pair (literal, valué), where valué 
is t rue , f a i l or a list of unifications. The optimization will 
be materialized in the final program using source to source 
transformations. 

The equivalence relation will be presented more formally in Sec-
tion 3.2. 

Deflnition 1 (Or—record) An or record is a 
o —< N,P,S> where N is a natural number that 
fies the or-record, P is a set of pairs (literal, number of 
or-record) and S a set of optimizations. 

Deflnition 2 (Set of Or—records of a Predícate) The 
set of or-records of a predícate Pred, denoted by Opred> is 
the set of all the or-records the analyzer has generated for 
Pred. 



Deflnítion 3 (Versión of a Predícate) Given a predi-
cate Pred v is a versión of Pred if v C Opred • 

Deflnítion 4 (Well Defined Set of Versions) 

Let Opred be the set of or-records of Pred and let Vpred — 
{VÍ,Í — 1 , . . . , n} be the set of versions for Pred. Vpred is a 
well defined set of versions if 

n 

[ J Vi — O pred and v¡ | | ^ = 0 J / _;' 
i = l 

i.e. Vpred is a partition of Opred-

Definition 5 (Feasible Versión) A versión v G Vpred is 
feasible if it does not use two different versions for the same 
literal, i.e. if 
Vo¿,Oj G v \/literal G Pred : 3Vpred/( 
(3vh G VpredBoi = (Ni,PhSt)e vk\(literal, Ni) E P ¡ ) A 
(3DTO G Vpredi^On — (Nn,Pn,S„) G vm\(literal, Nj) G Pn)) 

=> k — m 

Programs with versions that are not feasible cannot be im-
plemented without run-time tests to decide the versión to 
use. Infeasible programs use for the same literal sometimes 
a versión and sometimes another. This sometimes must be 
determined at run-time. A set of versions is feasible if all 
the versions in it are feasible. 

Definition 6 (Equivalent Or—records) Two or-records 
OÍ — (Ni,Pi,Si),Oj — (Nj,Pj,Sj) G Opred, are equivalent, 
denote by OÍ =„ Oj, if 

Si — Sj and {OÍ,OJ} is a feasible versión. 

Definition 7 (Minimal set of Versions) A set of ver-
sions Vpred is minimal ifVot,Oj G Opred 

Oi =v Oj =S> 3«fc G y Pred SUch that Oi,Oj G Vk 

Definition 8 (Versión of Maximal Optimization) A 
versión v is of maximal optimization if 

VOÍ = (NÍ,PÍ, SÍ), Oj = {NhPj, Sj) G v Si = Sj 

(all the or-records in the versión allow the same optimiza-
tions). A set of versions is of maximal optimization if all 
the versions in it are of maximal optimization. 

Definition 9 (Optimal Set of versions) A set of ver-
sions Vpred for a predicóte Pred is optimal if it is minimal, 
of maximal optimization, and feasible, i.e. if 

Voi,Oj G O Pred • 3«fc G Vpred(Oi,Oj E » i ) « O j = „ Oj 

We extend these definitions in the obvious way. For ex-
ample, we say that a program is minimal if the set of versions 
for all the predicates in the program are minimal. 

According to these definitions, the program before múlti-
ple specialization is well defined, feasible, and minimal, but 
not of maximal optimization in general. 

Definition 10 (Programo) For each predícate Pred let 
y Pred — {VÍ\VÍ — {o¿}} • We cali this program Programo 

Clearly Programo, which assigns a different versión to 
each or-record, is feasible, of maximal optimization, and 
well defined. This is the program constructed in Section 2. 

Definition 11 (Reunión of Versions) Given two ver-
sions VÍ,VJ G Vpred the reunión of vt and Vj, denoted by 
Vi +v Vj, is 

• VÍ [}VJ ifVok,oi G (VÍ \Jvj) Sk — Si 

• VÍ,VJ otherwise 

The new set of versions Vpred1 is VpTed — {vi, Vj} {J{VÍ+VVJ} 

It is easy to see that if we apply the reunión of versions to 
programs that are well defined and of maximal optimization 
the resulting programs are also well defined and of maximal 
optimization. 

Definition 12 (Prograrrií) Prograrrií is the program ob-
tained from Programo by reunión of versions when no more 
reunions are possible (a fixpoint is reached). 

The fixpoint obtained by applying reunión of versions 
to Programo is unique and corresponds to the program in 
which the set of or-records for each predicate is partitioned 
into equivalence classes using the equality of sets of opti-
mizations as equivalence relation. 

Prograrrii is well defined, of maximal optimization (like 
Programo) and minimal. However, it is not feasible in gen-
eral. This is the purpose of phase 2 of the algorithm. 

We now introduce the concept of restriction. It will be 
used during phase 2 to split versions that are not feasible. It 
allows expressing in a compact way the fact that several or-
records for the same predicate must be in different versions. 
For example {{1}, {2, 3}, {4}} can be interpreted as: 1 must 
be in a different versión than 2, 3, and 4. Or-records 2 and 
3 cannot be in the same versión as 4 (2 and 3 can, however, 
be in the same versión). 

Definition 13 (Restriction) Given a set of oí—records 
Opred, 1Z is a restriction over Opred if 1Z is a partition 
of M and Ai C Opred-

Definition 14 (Restriction from a Predicate to a 
Goal) Let Vpred — {vi, vi, • • •, Vi, • • •, v„} be a set versions 
of the predicate Pred, and let lit be a literal of the program. 
The restriction from Pred to lit is 

TZut,Pred — {ri, r-2, • • •, n, • • •, r„} 

where n is {N\3o - (N, P, S) G vt such that (lit, N) G P}2 

Definition 15 (A Restriction Holds) A restriction 1Z 
holds in a versión v if 

VOÍ,OJ G v Vrfc, n e TI • N e rt A Nj e r¡ = > k — l 

Definition 16 (Splitting of Versions by Restrictions) 
Given a versión v and a restriction 1Z, the result of splitting 
v with résped to 1Z is written vxvlZ and is 

• v if v holds the restriction 1Z 

• v\,V2 where v\ — {o — (N,P,S)\o G v A N G ru} 
and vi — v — vi if v does not hold 1Z, i.e. 
Ni<=rkANj£riAk¿l 

After splitting a versión v G Vpred by a restriction, the new 
set of versions is 

y Pred' — y Pred ~ {v} [J{v Xv 1Z} 

2 Note that r¿ may be 0. 



E.g, {1,2 ,3 ,5K{{1},{2,3,4},{5}} = {1},{2,3,5}, 
but in {2,3,5} the restriction does not hold yet. 
{2,3,5}x„{{l}, {2,3,4}, {5}} = {2, 3}, {5}. Now the re-
striction holds. Thus, the initial versión is split into 3 ver-
sions: {1}, {2, 3},{5}. 

The programs obtained by applying splitting of versions 
by restrictions to programs that are well defined, of maximal 
optimization, and minimal are also well defined, of maximal 
optimization and minimal. 

Phase 2 of the algorithm terminates. In the worst case 
we will finish with Programo-

Deflnítion 17 (Program/) Program/ is the program ob-
tained when all the restrictions hold and no more splitting 
is needed, i.e., when a fixpoint is reached. 

Theorem 1 (Múltiple Specialization Algorithm) 
Programf, the result of the múltiple specialization algo-
rithm, is optimal. 

By definition of splitting of versions Programf is well 
defined, of maximal optimization, and minimal. We can see 
that it is also feasible because otherwise there would be a 
restriction that would not hold. This is in contradiction with 
the assumption that phase 2 (splitting) has terminated. 

3.3 Structure of the Set of Programs and 
Termination 

As shown above, given a multiply specialized program gen-
erated by the analyzer, several different (but equivalent) 
programs may be obtained. They may differ in size, op-
timizations, and even feasibility. In this section we discuss 
the structure of this set of programs and the relations among 
its elements. 

As Programo is well defined and due to the definitions of 
reunión and splitting, all the intermedíate programs and the 
final program are well defined. This means that ill-defined 
programs are not of interest to us and the set of well defined 
programs is closed under reunión and splitting of versions. 
This set of well defined programs forms a complete lattice 
under the C operation. The _L element of such a lattice is 
given by the program in which each or-record is in a different 
versión (Programo)- This is the program with the greatest 
number of versions. The T element is the program in which 
all the or-records that correspond to the same predicate are 
in the same versión. This program is the one with the mín-
imum number of versions and is the one obtained when no 
múltiple specialization is done. We move up in the lattice by 
applying the reunión operation and down with the splitting 
operation. 

Note that not all the programs in the lattice are feasible. 
A program is not feasible when two or-records in the same 
versión use at the same program point or-records that are 
in different versions. This is the reason why phase 2 of the 
algorithm is required. This phase ends as soon as a program 
is reached that is feasible. 

Although not formally stated, the two different oper-
ations used during the múltiple specialization algorithm 
(namely reunión and splitting) are operators defined on this 
lattice since they receive a program as input and produce 
another program as output. Phase 1 starts with _L and re-
peatedly applies operatori (reunión) moving up in the lat-
tice until we reach a fixpoint. Since the lattice is finite and 

operatori is monotonic the termination of phase 1 is guar-
anteed. 

Phase 2 starts with the program that is a fixpoint 
of operaton (Prograrrii) and moves down in the lattice. 
During phase 2 using operator-2 (splitting) we move from 
an infeasible program to (a less) infeasible program, until 
we reach a feasible program (which will be the fixpoint). 
operator-2 is also monotonic and thus phase 2 also termi-
nates. 

3.4 Example 
We now apply the minimizing algorithm to the example pro-
gram in Section 2.2. As was mentioned before, the algorithm 
also needs to know the set of possible optimizations in each 
or-record. We will add this information to the or-record 
registers. The input to the algorithm is as follows: 

Pred 
go/2 
p /3 
p /3 

plus/3 

plus/3 

id 
1 
2 
4 

3 

5 

ancestors 
{(query,l)} 
{(go/2/1/1,1)} 
{(go/2/1/2,1)} 

{(p/3/1/1,2)} 

{(p/3/1/1,4)} 

optimizations 

0 
0 
0 

{(plus/3/3/2,fail), 
(plus/3/2/l,true), 
plus/3/l/2,true)} 

|(plus/3/3/2,true), 
(plus/3/2/l,fail), 
(plus/3/l/2,fail) | 

We will not go into the details of the set of optimiza-
tions, because as mentioned before, the múltiple specializa-
tion technique presented is independent of the type of opti-
mizations performed. In any case, the set of optimizations is 
empty in the or-record for go/2 and in the two or-records for 
p /3 . It has three elements in the or-records for plus/3 that 
indicate the valué that the test i n t will take in execution. 
The only thing to note here is that the set of optimizations 
is different in these two or-records for plus/3. 

Phase 1 starts with each or-record in a different versión 
(Programo). We represent each or-record only by its iden-
tifier: 

Programo'-
go/2 
{{1}} 

p /3 
{{2},{4}} 

plus/3 
{{3},{5}} 

The two or-records for p /3 have the same optimizations 
(none) and can be joined. At the end of phase 1 we are in 
the following situation: 

Programa 
go/2 
{{1}} 

P/3 
{{2,4}} 

plus/3 
U3},{5}} 

Now we execute phase 2. Only plus/3 can produce re-
strictions. The other two predicates only have one versión. 
The only restriction will be TZp/3/i/i,Pius/3 — {{2}, {4}}. 
The intuition behind this restriction is that or-record num-
ber 2 must be in a different versión than or-record number 4. 
The restriction does not hold and thus {2,4}x„{{2}, {4}} — 
{2}, {4}. Now we must check if this splitting has introduced 
new restrictions. No new restriction appears because there 
is no literal that belongs to the ancestor information of both 
or-record 2 and or-record 4. Thus, the result of the algo-
rithm will be: 



I ® 
{1}{2,4}{3,5} 

{1}{2}{4}{3}{5} 
(Program O = Program f) 

Figure 2: Lattice for the example program 

Program / : 
go/2 

{{1}} 

p/3 

{{2},{4}} 

plus/3 

{{3},{5}} 

The final program generated in our implementation of 
the múltiple specializer is the following: 

go(A,B) : -
' p / 3 / $ s p / Í ' ( A . B . J , ' p /3 /$sp /2 ' (A ,_ ,B) . 

, p/3 /$sp / l ' (X,Y,Z) : -
'p lus /3 /$sp/ l>(X,Y,Z) , 
wr i t e (Z) , w r i t e C i s ')> 
wri te(X), w r i t e C + ' ) , wri te(Y), n i . 

,p/3/$sp/2 ' (X,Y,Z) : -
'plus/3/$sp/2>(X,Y,Z), 
wr i t e (Z) , w r i t e C i s ')> 
wri te(X), w r i t e C + ' ) , wri te(Y), n i . 

' p lus /3 /$sp / l ' (X,Y,Z) : -
Z i s X+Y. 

'p lus /3/$sp/2 ' (X,Y,Z) : -
Y i s Z-X. 

Each multiply specialized versión receives a unique ñame 
(predicate/arity, the string /$sp / being used to avoid col-
liding with user-defined ñames, and the versión number). 

Figure 2 shows the lattice for the example program. The 
node marked with a cross (B) is infeasible. That is why 
during phase 2 we move down in the lattice and return to 
programo-

We can use Figure 2 to ¡Ilústrate the definitions intro-
duced in Section 3.2. Nodes B and D are of maximal op-
timization. A and C are not because or-records with dif-
ferent optimizations (3,5) are in the same versión. Nodes 
A, C, and D are feasible. B is not feasible because for the 
literal p /3 /1 /1 it uses both or-record 3 and 5 (we cannot 
decide at compile-time which one to use). All the nodes 
in the lattice are minimal. A program is not minimal if 
two or-records that are equivalent are in different versions. 
No two or-records are equivalent, thus all the programs are 
minimal. 

4 Experimental Results 

In this section we present a series of experimental results. 
Our aim is to study some of the cost/benefit tradeoffs in-
volved in múltiple specialization, in terms of time and space. 
Even though the results have been obtained in the context 
of a particular implementation and type of optimizations, 
we believe that it is possible to derive some conclusions 
from the results regarding the cost and benefits of múl-
tiple specialization in general. In particular, we have im-
plemented the specialization method presented in the pre-
vious sections in the context of the &-Prolog parallelizing 
compiler [15, 31, 18, 3], where automatic program paral-
lelization, analysis, optimization, and, now, specialization 
are completely integrated. This required the addition of a 
specialization module and a slight modification of the ana-
lyzer, as described previously. The analysis time overhead 
resulting from this modification has been measured at 3% 
on the average, which we argüe is quite tolerable. Further-
more, the same modification is used for other purposes, most 
notably for incremental global analysis [16], and is there-
fore now in any case a permanent addition to the analyzer. 
Only one pass of the analyzer is required to genérate both 
the multiply specialized program and to obtain the infor-
mation needed to determine the optimizations applicable to 
each versión. These optimizations are of the "abstract ex-
ecutability" type [13], where, as mentioned before, certain 
builtins or even user defined predicates are reduced to t rue , 
f a i l , or a set of primitives (typically, unifications) based on 
the information available from abstract interpretation. Such 
executability is expressed in a system table (which can be 
extended through a user-defined predícate). There is one 
such table for each abstract domain supported since differ-
ent abstract domains provide different information and allow 
different optimizations. 

The particular application studied is automatic program 
parallelization. Sequential programs are transformed into 
equivalent ones in which some parts of the program can 
be executed in parallel. The parallelism generated by the 
system is among goals which are "independent," a prop-
erty which ensures several correctness and efficiency results 
[17] and which has the additional advantage of not requir-
ing locking during unification. However, while independence 
can sometimes be determined statically by the analyzer [3], 
in other cases the resulting parallelized programs contain 
run-time tests and conditionals (which are used to dynam-
ically ensure independence) and which are targets for opti-
mization through specialization. In a specialized program 
these tests also provide much information to the analyzer 
which can be used for subsequent optimizations. 

We have used a relatively wide range of programs as 
benchmarks. They are described in more detail in [3] and 
can be obtained from h t t p : / / c l i p . d i a . f i . u p m . e s . These 
benchmarks have been automatically parallelized using the 
sharing + freeness abstract domain [30] to elimínate un-
necessary run-time tests. We study the very interesting sit-
uation in which no information is provided to the analyzer 
regarding the possible input valúes - i.e. the analysis has 
to do its job with only the entry points to the programs 
given in the module declarations as input data. Since as a 
result of this the analyzer will sometimes have incomplete 
information, run-time tests will be included in the resulting 
programs, which are then amenable to múltiple specializa-
tion. 

In order to assess the cost of specialization at compilation 
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Benchmark 

aiakl 
ann 
bid 
boyer 
browse 
deriv 
hanoiapp 
mmatrix 
occur 
peephole 
progeom 
qplan 
query 
read 
serialize 
warplan 
zebra 

Analysís 

3806 
11442 

1309 
5792 
1069 
2032 

806 
673 
915 

8399 
276 

2338 
239 

37639 
656 

15932 
4586 

Specialíz. 

336 
4306 

723 
840 
600 
430 
143 
233 
236 

1173 
143 

1813 
153 

2290 
186 

2907 
543 

Total 

4142 
15748 
2032 
6632 
1669 
2462 
949 
906 

1151 
9572 
419 

4151 
392 

39929 
842 

18839 
5129 

Average 

% 
8.11 

27.34 
35.58 
12.67 
35.95 
17.47 
15.07 
25.72 
20.50 
12.25 
34.13 
43.68 
39.03 

5.74 
22.09 
15.43 
10.59 
14.84 

Table 1: Múltiple Specialization Times 

time in Table 1 we compare the analysis and specialization 
time. We argüe that it is reasonable to compare these times 
as the programs that accomplish those tasks are both coded 
in Prolog and work with the same input program. The spe-
cialization time includes computing the possible optimiza-
tions in each or-record, minimizing the number of versions, 
and materializing the new program in which the new ver-
sions are optimized (using source to source transformations). 
It is also important to note that our múltiple specialization 
algorithm requires an analysis. Thus, in principie the total 
time needed would be the sum of both times. However, as 
mentioned above, during the automatic parallelization pro-
cess, an analysis is generally done to optimize the run-time 
tests. This first analysis can in fact be reused for the múl-
tiple specialization with a few modifications [16]. For each 
benchmark program we present the analysis time, the múl-
tiple specialization time, their sum, and the percentage of 
the total time used in specialization. All the times are in 
milliseconds and have been measured on a SPARC 10. 

We argüe that the time required for múltiple specializa-
tion, at least in this application, is reasonable. However, a 
potentially greater concern in múltiple specialization than 
compilation time is the increase in program size. Table 2 
shows a series of measurements relevant to this issue. Pred 
is the number of predicates in the original program. Max is 
the number of additional (versions of) predicates that would 
be introduced if the minimization were not applied (when 
adding it to Pred this is also the number of versions that the 
analyzer implicitly uses internally during analysis). Min is 
the number of additional versions if the minimization algo-
rithm is applied. As mentioned before, sometimes, in order 
to achieve an optimization some additional versions have to 
be created just to créate a "path" to another specialized ver-
sión, i.e. to make the program feasible. The impact of this is 
measured by Ind which represents the number of such "In-
direct" versions in the minimized program that have been 
included during phase 2 of the algorithm. Le., this is the 
number of versions which have the same set of optimiza-
tions as an already existing versión for that predicate. 

We observe that for some benchmarks Mín is 0. This 
means that múltiple specialization has not been able to op-
timize the benchmark any further. That is, the final pro-
gram equals the original program. However, note that if we 
did not minimize the number of versions the program size 
would be increased even though no additional optimization 
is achieved. M a x ( % ) is computed as -^f^ x 100. Min(%) 
and Ind(%) are computed similarly. Finally Ratio is the 
relation between the sizes (in number of predicates) of the 
multiply specialized programs with and without minimiza-
tion. The last rows of Table 2 show two different aver-
ages. The first is computed considering all the benchmark 
programs and the second considering only the programs in 
which the specialization method has obtained some opti-
mization (Min> 0). 

According to the global average, the specialized program 
has 43% additional versions with respect to the original pro-
gram. However, this average greatly depends on the amount 
of possible optimizations the original program has (in our 
case run-time tests) and cannot be taken as a general result. 
Of much more relevance are the ratios between Max(%) 
and Min(%) , and between Ind(%) and Min (%) , which 
are in some ways independent of the number of possible 
optimizations in the program. This is supported by the rel-
ative independence of the ratios from the benchmarks. The 
first ratio measures the effectiveness of the minimization al-
gorithm. This ratio is 3.41 or 2.6 using global or relative 
averages respectively. Le., the minimizing algorithm is able 
to reduce to a third the number of additional versions needed 
by múltiple specialization. The second ratio represents how 
many of the additional versions are indirect. It is 56% or 
41% (Global or Relative). This means that half of the ad-
ditional versions are due to indirect optimizations. Another 
way to look at this result is as meaning that on the aver-
age there is one intermediate, indirect predicate between an 
originating cali to an optimized, multiply specialized pred-
icate and the actual predicate. We argüe that this can in 
many cases be an acceptable cost in return for no run-time 
overhead in versión selection. 



B e n c h m a r k 

aiakl 
ann 
bid 
boyer 
browse 
deriv 
hanoiapp 
m m a t r i x 
occur 
peephole 
progeom 
qplan 
query 
read 
serialize 
warplan 
zebra 

P r e d s 

9 

77 
22 
27 

9 

5 

3 

3 

5 

27 
10 
48 

6 

25 
6 

37 
7 

M a x 

4 

70 

39 
57 

19 

5 

10 
11 
15 
31 

5 

17 
1 

52 

3 

130 
10 

M i n 

0 

29 
9 

9 

15 
5 

2 

4 

7 

11 
0 

6 

0 

0 

0 

42 
0 

I n d 

0 

16 

4 

7 

7 

1 

1 

0 

3 

6 

0 

4 

0 

0 

0 

29 

0 

G l o b a l A v e r a g e 

R e l a t i v e A v e r a g e 

M a x ( % ) 

44 
90 

177 
211 
211 
100 
333 
366 
300 
114 

50 
35 
16 

208 
50 

351 
142 

147 
208 

M i n ( % ) 

0 

37 
40 
33 

166 
100 

66 
133 
140 

40 
0 

12 

0 

0 

0 

113 
0 

43 
80 

I n d ( % ) 

0 

21 
18 
26 
78 
20 
33 

0 

60 
22 

0 

8 

0 

0 

0 

78 
0 

24 
33 

R a t i o 

1.44 
1.39 
1.97 
2.33 
1.17 
1.00 
2.60 
2.00 
1.67 
1.53 
1.50 
1.20 
1.17 
3.08 
1.50 
2.11 
2.43 

1.73 
1.72 

Table 2: Number of Versions 

p 

1 

2 

3 

4 

5 

6 

7 

8 

9 

m m a t r i x 

s td 
31800 
16309 
11200 

8819 
7235 
5845 
5069 
4750 
4075 

spec 
11549 

6500 
4579 
3555 
2930 
2495 
2200 
1980 
1820 

•Pl 
imp(%) 

175.35 
150.91 
144.59 
148.07 
146.93 
134.27 
130.41 
139.90 
123.90 

d e r i v . p l 

s td 
759 
420 
305 
250 
211 
190 
172 
162 
151 

spec 
715 
399 
289 
235 
202 
182 
166 
156 
145 

imp(%) 
6.15 
5.26 
5.54 
6.38 
4.46 
4.40 
3.61 
3.85 
4.14 

o c c u r . p l 

s td 
690 
458 
330 
276 
225 
210 
203 
203 
203 

spec 
665 
385 
283 
234 
200 
179 
174 
167 
158 

imp(%) 
3.76 

18.96 
16.61 
17.95 
12.50 
17.32 
16.67 
21.56 
28.48 

Table 3: Run-time performance 

Having briefly addressed the cost (in time and size) of 
múltiple specialization, we now study the actual benefits 
obtained. In order to do so we report on the execution of a 
representative subset of the parallelized programs, with and 
without múltiple specialization on a 10 processor Sequent 
Symmetry and compare their performance. The results 
are shown in Table 3. All times are again in milliseconds. 

The first benchmark program, ramatrix.pl, is a program 
for matrix multiplication. It is a good candidate for par-
allelization and its execution time decreases nearly linearly 
with the number of processors. If the user provides enough 
information regarding the input this program can be par-
allelized without any run-time tests. However, if no in-
formation is provided by the user (the case studied) such 
tests are generated and performance decreases. In this ar-
guably interesting case from the practical point of view the 
improvement obtained with múltiple specialization is quite 
high, ranging from 175.35% with one processor to 126.32% 
with ten processors, i.e. the specialized program runs more 
than twice as fast as the original program. This is because 

it is a recursive program in which specialization automati-
cally detects and extracts an invariant (see [13]): that once 
a certain run-time test has succeeded it does not need to be 
checked in the following recursive calis. 

d e r i v . p l is a program for symbolic differentiation and 
also a good candidate for parallelization. However, the 
improvement obtained with specialization is not very high 
(around 5%). This shows that not all programs with signif-
icant parallelism are good candidates for specialization. 

The last benchmark program we present is occur .pl . It 
counts the number of occurrences of an element in a list. 
Improvement in the sequential execution is low. However, 
it increases when more processors are involved. It is also 
important to note that the program before múltiple special-
ization gets no speedup from 7 to 9 processors, while the 
multiply specialized program keeps on speeding up in that 
range. 

Note that these times are not comparable with the previous ones 
since the Sequent is a slower machine sequentially than SPARC 10. 

http://deriv.pl
http://occur.pl
http://ramatrix.pl
http://deriv.pl
http://occur.pl


5 Conclusions and Future Work 

While the topic of múltiple specialization of logic programs 
has received considerable theoretical attention, it has never 
been actually incorporated in a compiler and its effects quan-
tified. We perform such a study in the context of a paralleliz-
ing compiler and show that it is indeed a relevant technique 
in practice. Also, we propose an implementation technique 
which has the same power as the strongest of the previously 
proposed ones but requires little or no modification of an 
existing abstract interpreter. 

We argüe that our experimental results are encouraging 
and show that múltiple specialization has a reasonable cost 
both in compile-time cost and final program size. Also, the 
results provide some evidence that the resulting programs 
can show considerable benefits in actual execution time for 
the application studied. As future work we plan to inves-
tígate reducing program size by using run-time test based 
selection of specialized predicates. However, it also remains 
to be studied whether this is more profitable when execution 
time is also taken into account. We also plan on extending 
our studies to other forms of optimization in program paral-
lelization and also to optimizations beyond this application. 

Refere nces 

[1] A. Aho and J.D. Ullman. Principies of Compiler De-
sign. Addison-Wesley, Reading, Mass., 1977. 

[2] M. Bruynooghe. A Practical Framework for the Ab-
stract Interpretation of Logic Programs. Journal of 
Logic Programming, 10:91-124, 1991. 

[3] F. Bueno, M. García de la Banda, 
and M. Hermenegildo. Effectiveness of Global Analysis 
in Strict Independence-Based Automatic Program Par-
allelization. In International Symposium on Logic Pro-
gramming, pages 320-336. MIT Press, November 1994. 

[4] M.A. Bulyonkov. Polivariant Mixed Computation for 
Analyzer Programs. Acta Informática, 21:473-484, 
1984. 

[5] B. Le Charlier and P. Van Hentenryck. Experimental 
Evaluation of a Generic Abstract Interpretation Algo-
rithm for Prolog. ACM Transactions on Programming 
Languages and Systems, 16(1):35-101, 1994. 

[6] C. Consel and O. Danvy. Tutorial Notes on Partial 
Evaluation. In ACM SIGPLAN-SIGACT Symposium 
on Principies of Programming Languages POPL'93, 
pages 493-501, Charleston, South Carolina, 1993. 
ACM. 

[7] P. Cousot and R. Cousot. Abstract Interpretation: a 
Unified Lattice Model for Static Analysis of Programs 
by Construction or Approximation of Fixpoints. In 
Fourth ACM Symposium on Principies of Programming 
Languages, pages 238-252, 1977. 

[8] P. Cousot and R. Cousot. Abstract Interpretation and 
Application to Logic Programs. Journal of Logic Pro-
gramming, 13(2 and 3): 103-179, July 1992. 

[9] S. Debray, editor. Journal of Logic Programming, Spe-
cial Issue: Abstract Interpretation, volume 13(1-2). 
North-Holland, July 1992. 

[10] S. K. Debray. Static Inference of Modes and Data De-
pendencies in Logic Programs. ACM Transactions on 
Programming Languages and Systems, ll(3):418-450, 
1989. 

[11] J. Gallagher and M. Bruynooghe. The Derivation of 
an Algorithm for Program Specialization. In 1990 In-
ternational Conference on Logic Programming, pages 
732-746. MIT Press, June 1990. 

[12] J. Gallagher, M. Codish, and E. Shapiro. Specialisation 
of Prolog and FCP Programs Using Abstract Interpre-
tation. New Generation Computing, 6:159-186, 1988. 

[13] F. Giannotti and M. Hermenegildo. A Technique for 
Recursive Invariance Detection and Selective Program 
Specialization. In Proc. Srd. Int'l Symposium on Pro-
gramming Language Implementation and Logic Pro-
gramming, pages 323-335. Springer-Verlag, 1991. 

[14] R. Glueck and M.H. S0rensen. Partial Deduction and 
Driving are Equivalent. In International Symposium 
on Programming Language Implementation and Logic 
Programming, PLILP'94, volume 844 of LNCS, pages 
165-182, Madrid, Spain, 1994. Springer Verlag. 

[15] M. Hermenegildo andK. Greene. The &-Prolog System: 
Exploiting Independent And-Parallelism. New Gener-
ation Computing, 9(3,4):233-257, 1991. 

[16] M. Hermenegildo, K. Marriott, G. Puebla, and 
P. Stuckey. Incremental Analysis of Logic Programs. In 
International Conference on Logic Programming. MIT 
Press, June 1995. 

[17] M. Hermenegildo and F. Rossi. Strict and Non-
Strict Independent And-Parallelism in Logic Programs: 
Correctness, Efficiency, and Compile-Time Conditions. 
Journal of Logic Programming, 22(l):l-45, 1995. 

[18] M. Hermenegildo, R. Warren, and S. Debray. Global 
Flow Analysis as a Practical Compilation Tool. Journal 
of Logic Programming, 13(4):349-367, August 1992. 

[19] D. Jacobs, A. Langen, and W. Winsborough. Múltiple 
specialization of logic programs with run-time tests. In 
1990 International Conference on Logic Programming, 
pages 718-731. MIT Press, June 1990. 

[20] G. Janssens and M. Bruynooghe. Deriving Descrip-
tions of Possible Valúes of Program Variables by means 
of Abstract Interpretation. Journal of Logic Program-
ming, 13(2 and 3):205-258, July 1992. 



[21] N. D. Jones and A. Mycroft. Dataflow analysis of 
applicative programs using minimal function graphs. 
In Thirteenth Ann. ACM Symp. Principies of Pro-
gramming Languages, pages 296-306. St. Petersburg, 
Florida, ACM, 1986. 

[22] N.D. Jones, C.K. Gomard, and P. Sestoft. Partid Eval-
uation and Automatic Program Generation. Prenctice 
Hall, New York, 1993. 

[23] J. Komorovski. An Introduction to Partial Deduction. 
In A. Pettorossi, editor, Meta Programming in Logic, 
Proceedings of META '92, volume 649 of LNCS, pages 
49-69. Springer-Verlag, 1992. 

[24] J.W. Lloyd and J.C. Shepherdson. Partial Evaluation 
in Logic Programming. Journal of Logic Programming, 
ll(3-4):217-242, 1991. 

[25] A. Marien, G. Janssens, A. Mulkers, 
and M. Bruynooghe. The Impact of Abstract Inter-
pretaron: an Experiment in Code Generation. In Sixth 
International Conference on Logic Programming, pages 
33-47. MIT Press, June 1989. 

[26] K. Marriott and H. Sondergaard. Abstract interpreta-
tion, 1989. 1989 SLP Tutorial Notes. 

[27] K. Marriott, H. S0ndergaard, and N.D. Jones. Denota-
tional Abstract Interpretation of Logic Programs. ACM 
Transactions on Programming Languages and Systems, 
16(3):607-648, 1994. 

[28] A. Mulkers, W. Winsborough, and M. Bruynooghe. 
Analysis of Shared Data Structures for Compile-Time 
Garbage Collection in Logic Programs. In Proceedings 
of the Seventh International Conference on Logic Pro-
gramming, pages 747-762, Jerusalem, Israel, June 1990. 
MIT Press. 

[29] K. Muthukumar and M. Hermenegildo. Deriving A Fix-
point Computation Algorithm for Top-down Abstract 
Interpretation of Logic Programs. Technical Report 
ACT-DC-153-90, Microelectronics and Computer Tech-
nology Corporation (MCC), Austin, TX 78759, April 
1990. 

[30] K. Muthukumar and M. Hermenegildo. Combined De-
termination of Sharing and Freeness of Program Vari-
ables Through Abstract Interpretation. In 1991 Inter-
national Conference on Logic Programming, pages 49-
63. MIT Press, June 1991. 

[31] K. Muthukumar and M. Hermenegildo. Compile-time 
Derivation of Variable Dependency Using Abstract In-
terpretation. Journal of Logic Programming, 13(2 and 
3):315-347, July 1992. 

[32] P. Van Roy and A.M. Despain. High-Performace 
Logic Programming with the Aquarius Prolog Com-
piler. IEEE Computer Magazine, pages 54-68, January 
1992. 

[33] V. Santos-Costa, D.H.D. Warren, and R. Yang. The 
Andorra-I Preprocessor: Supporting Full Prolog on the 
Basic Andorra Model. In 1991 International Confer-
ence on Logic Programming, pages 443-456. MIT Press, 
June 1991. 

[34] W. Winsborough. Múltiple Specialization using 
Minimal-Function Graph Semantics. Journal of Logic 
Programming, 13(2 and 3):259-290, July 1992. 


