
Implementation of Parallel Numerical

Algorithms Using Hierarchically Tiled Arrays?

Ganesh Bikshandi1 Basilio B. Fraguela2 Jia Guo1

Maŕıa J. Garzarán1 Gheorghe Almási3 José Moreira3 David Padua1

Dept. of Computer Science, University of Illinois at Urbana-Champaign, USA
{bikshand,jiaguo,garzaran,padua}@cs.uiuc.edu

Dept. de Electrónica e Sistemas, Universidade da Coruña, Spain
basilio@udc.es

IBM Thomas J. Watson Research Center. Yorktown Heights, NY, USA
{gheorghe,jmoreira}@us.ibm.com

Abstract. In this paper, we describe our experience in writing parallel
numerical algorithms using Hierarchically Tiled Arrays (HTAs). HTAs
are classes of objects that encapsulate parallelism. HTAs allow the con-
struction of single-threaded parallel programs where a master process
distributes tasks to be executed by a collection of servers holding the
components (tiles) of the HTAs.

The tiled and recursive nature of HTAs facilitates the development of
algorithms with a high degree of parallelism as well as locality. We have
implemented HTAs as a MATLABTM toolbox, overloading conventional
operators and array functions such that HTA operations appear to the
programmer as extensions of MATLABTM. We have successfully used
it to write some widely used parallel numerical programs. The resulting
programs are easier to understand and maintain than their MPI coun-
terparts.

1 Introduction

Parallel programs are difficult to develop and maintain. This is particularly true
in the case of distributed memory machines, where every piece of data that needs
to be accessed by two or more processors must be communicated by means of
messages in the program, and where the user must make sure that every machine
is working with the latest version of the data. Parallel execution also makes
debugging a difficult task. Moreover, more factors influence the performance of
parallel programs than that of sequential programs. For example, systems may be

? This work has been supported in part by the Ministry of Science and Technology of
Spain under contract TIC2001-3694-C02-02, by the Xunta de Galicia under contract
PGIDIT03-TIC10502PR, and by the Defense Advanced Research Project Agency
under contract NBCH30390004. This work is not necessarily representative of the
positions or policies of the Army or Government.

heterogeneous; the architecture to consider involves a communication network,
and different operating system layers and user libraries may be involved in the
passing of a message. As a result, performance tuning is also much harder. The
language and compiler community has come up with several approaches to help
programmers deal with these issues.

The first approach to ease the burden on the programmer when developing
distributed memory programs was based on standard message passing libraries
like MPI [8] or PVM [7] which improve the portability of the parallel applica-
tions. Data distribution and synchronization must be completely managed by
the programmer. The SPMD programming model typically used in conjunc-
tion with these libraries leads to unstructured codes in which communication
may take place between widely separated sections of code and in which a given
communication statement could interact with several different statements dur-
ing the execution of the program. Some programming languages like Co-Array
FORTRAN [11] and UPC [5] improve the readability of the programs by replac-
ing library calls with array assignments, but they still have all the drawbacks of
the SPMD approach.

Another strategy to facilitate the programming of distributed memory sys-
tems consists of writing the programs as a single thread and letting the compiler
take care of the problems of distributing the data and assigning the parallel
tasks. This is for example the approach of the High Performance Fortran[9, 10].
Unfortunately, compiler technology is not always capable of generating code that
matches the performance of hand-written code.

In this paper we explore the possibility of extending a single-threaded object-
oriented programming language with a new class, called Hierarchically Tiled Ar-
ray or HTA [3], that encapsulates the parallelism in the code. HTA operators
overload the standard operators of the language. HTA data can be distributed
across a collection of servers, and its operations can be scheduled on the appropi-
ate processors. The HTA class provides a flexible indexing scheme for its tiles
that allows communication between servers to be expressed by means of simple
array assignments. As a result, HTA based programs are single-threaded, which
improves readability and ease development and maintenance. Furthermore, the
compiler support required by our parallel programming approach is minimal
since the implementation of the class itself takes care of the parallelization. In
MATLABTM we have found an ideal platform for the implementation and test-
ing of HTAs. MATLABTM provides a high-level programming language with
object-oriented features that is easy to extend using the toolbox approach.

The rest of this paper is structured as follows. HTA syntax and semantics are
described in the next Section. Section 3 provides several code examples that use
HTA. Section 4 describes the implementation of the HTA language extension as
a MATLABTM toolbox. Section 5 presents our implementation of NAS bench-
mark kernels using HTA. In Section 6 we analyze two aspects of our approach
- performance and programmability. In Section 7 an analytical comparison of
HTA with other related languages is given. Finally we conclude in Section 8
with several future directions.

(b) HTA B(a) HTA A

Fig. 1. Two tiled arrays A (a) and B (b).

2 Hierarchically Tiled Arrays: Syntax and Semantics

We define a tiled array as an array partitioned into tiles in such a way that adja-
cent tiles have the same size along the dimension of adjacency. A hierarchically
tiled array (HTA) is a tiled array where each tile is either an unpartitioned array
or an HTA. Note that our definition does not require all tiles to have the same
size: both HTAs in Fig. 1 are legal.

2.1 Dereferencing the contents of an HTA

Given an arbitrary HTA, there are two basic ways to address its contents: hier-
archical or flat. Hierarchical addressing identifies a subset of the HTA at the top
level of the hierarchy, then identifies subsets of those elements at lower levels of
the hierarchy, and so on down to possibly the lowest level.

Flat addressing disregards the hierarchical nature of the HTA and addresses
elements by their absolute indices, as in a normal array. Flattening can be ap-
plied to any level of the hierarchy. Thus, a series of intermediate possibilities lie
between hierarchical and flat addressing.

As an example, consider HTA A shown in Fig. 1(a). The element in its fifth
row and sixth column can be referenced using flat addressing as A(5,6). The
same element can be referenced using hierarchical addressing as A{3,2}(1,3),
where curly brackets are used to index tiles and parentheses are used to index the
elements in the bottommost tile. Indexing using triple notation init:step:limit

is also provided for both hierarchical and flattened addressing.

2.2 HTA arithmetic operations

The semantics of HTA arithmetic operations depend on the operands. The fol-
lowing are the types of operations and the resulting semantics.

– HTA ⊕ Scalar: In this case, the scalar is promoted to an HTA with a single
tile whose value is just a scalar and operated with each tile of the HTA.

– HTA ⊕ Matrix: In this case also, the matrix is promoted to an HTA with
a single tile and operated with the HTA on the left. However, unlike the
scalar promotion, matrix promotion requires a legality check. The condition

for legality of operations depend on the operator - an addition or a subtrac-
tion requires the matrix to match the shape of each tile of the HTA, while
multiplication requires the number of columns of the matrix to be same as
that of rows of each tile of the HTA.

– HTA ⊕ HTA: Two cases are distinguished here. The first one involves two
HTAs with the same topology - with the same number of tiles in every dimen-
sion at the top level and the corresponding tiles being legally operable. The
resulting HTA has the same topology as the input ones, with each of its tiles
associated to the computation of the corresponding input tiles. The other
case involves HTAs in which one of them as a whole has the same topology
as each one of the tiles of the other one at a given level of subdivision. In
this situation, the semantics is similar to that of HTA ⊕ Matrix.

2.3 HTA Assignments

The semantics for assignments to HTAs are similar to those for binary operators.
When a scalar is assigned to a range of positions within an HTA, the scalar gets
replicated in all of them. When an array is assigned to a range of tiles of an HTA,
the array is replicated in all of the tiles if the HTA resulting from the assignment
is legal. Finally, an HTA can be assigned to another HTA (or a range of tiles
of it) if the copy of the correspondingly selected tiles from the right-hand side
(RHS) HTA to those selected in the left-hand side (LHS) one is legal. When the
right HTA has a single tile, it is replicated in each one of the tiles selected in the
left HTA.

2.4 Construction of HTAs

The simplest way to build an HTA is by providing a source array and a series
of delimiters in each dimension where the array should be cut into tiles. For
example, the HTAs A and B from Fig. 1 could be created as follows, using a
source matrix MX:

A = hta(MX, {1:2:10,1:3:12});

B = hta(MX, {[1,2,6,8,9], [1,3,8,12]});

The HTAs built above are local. In order to request the distribution of the
top-level tiles of the HTA on a mesh of processors, the last argument of the
constructor must be a vector specifying the shape of the mesh. The distribution
is currently fixed to be block-cyclic.

HTAs can also be built as structures whose tiles are empty. In this case the
constructor is called just with the number of tiles desired in each dimension. The
empty tiles can be filled in later by means of assignments. As an, example, the
following statement generates an empty 4 × 4 HTA whose tiles are distributed
on a 2 × 2 processor mesh:

A = hta(4, 4, [2, 2]);

for i = 1:n

c = c + a * b;

a = circshift(a, [0, -1]);

b = circshift(b, [-1, 0]);

end

Fig. 2. Main loop in Cannon’s algorithm.

3 Parallel Programming using HTAs

Codes using HTAs have a single thread of execution that runs in a client (mas-
ter). The client is connected to a distributed memory machine with an array of
processors, called servers. HTAs can be created on the client side and their tiles
can be distributed to the severs. An operator involving HTA requires the client
to broadcast the operation to the servers where they are executed in parallel.
Some operators, once initiated by the client, involve communication among sev-
ers without the further involvement of the client. Some other operators involve
accessing arbitrary tiles across different severs, mediated by the client. We will
see some of these common examples in this section.

The first example we consider is the Cannon’s matrix multiplication algo-
rithm shown in Fig. 2. Cannon’s matrix multiplication algorithm [4] is an exam-
ple of code that requires communication between the servers. In our implementa-
tion of the algorithm, the operands, denoted a and b respectively, are HTAs tiled
in two dimensions. The HTAs are mapped onto a mesh of n × n processors. In
each iteration of the algorithm’s main loop, each server executes a matrix mul-
tiplication of the tiles of a and b that currently reside on that server. The result
of the multiplication is accumulated in a (local) tile of the result HTA, c. After
the local matrix multiplication, the tiles of b and a are circularly shifted in the
first and second dimensions respectively. The effect of this operation is that the
tiles of a are sent to the left processor in the mesh and the tiles of b are sent to
the lower processor in the mesh. The left-most processor transfers its tile of a to
the right-most processor in its row and the bottom-most processor transfers its
tile of b to the top-most processor in its column. The statement c=a*b, in Fig. 2,
initiates the above mentioned parallel computation with circular shift after each
iteration. The circular shift is done by circshift, an HTA-overloaded version
of the native circshift in MATLABTM . In this code the function involves
communication because the HTAs are distributed.

The next example shows how to reference arbitrary elements of HTAs. The
blocked Jacobi relaxation code in Fig. 3 requires a given element to compute
its new value as a function of the values of its four neighbors. Each block is
represented by a tile of the HTA v. In addition the tiles also contain extra
rows and columns for use as border regions exchanging information with the
neighbors. Border exchange is executed in the first four statements of the main
loop. The actual computation step (last statement in the loop) uses only local
data.

while ~converged

v{2:n,:}(1,:) = v{1:n-1,:}(d+1,:);

v{1:n-1,:}(d+2,:) = v{2:n,:}(2,:);

v{:,2:n}(:,1) = v{:,1:n-1}(:,d+1);

v{:,1:n-1}(:,d+2) = v{:,2:n}(:,2);

u{:,:}(2:d+1,2:d+1) = K * (v{:,:}(2:d+1,1:d) + v{:,:}(1:d,2:d+1)...

+ v{:,:}(2:d+1,3:d+2) + v{:,:}(3:d+2,2:d+1));

end

Fig. 3. Parallel Jacobi relaxation

input = hta(px, py, [px py]);

input{:, :} = zeros(px, py);

output = parHTAFunc(@randx, input);

Fig. 4. Filling an HTA with uniform random numbers

Easy programming of embarrassingly parallel and MIMD style codes is also
possible using HTAs thanks to the parHTAFunc function. It allows the execution
of a function in parallel on different tiles of the same HTA. A call to this function
has the form parHTAFunc(@func, arg1, arg2, ...), where @func is a pointer
to the function to execute in parallel, and arg1, arg2,. . . are its arguments. At
least one of these arguments must be a distributed HTA. The function func will
be executed over each of the tiles, on their owning servers. If the server keeps
several tiles, the function will be executed for each of these. Several arguments
to parHTAFunc can be distributed HTAs. In this case they all must have the
same number of tiles in every dimension and the same mapping.

Fig. 4 illustrates the usage of parHTAFunc to fill an array represented as HTA
with uniform random numbers in the range [0,1]. A distributed HTA input

with one tile per processor is built and is sent as the argument to randx via
the parHTAFunc. The function randx is similar to rand in MATLABTM but
generates a different sequence on each processor. Specific details of this function
is ignored for brevity. The result of the parallel execution of the function is a
distributed HTA output that has the same mapping as input and keeps a single
tile per processor with the random numbers filled in.

4 Execution Model and Implementation

HTAs can be added to almost any object-based or object-oriented language. We
chose the MATLABTM environment as the host for our implementation, for 3
main reasons: wide user base, support of polymorphism and extensibility as a
toolbox. HTAs are implemented as a new type of object, accessible through the
constructors described in Section 2.

The HTA class methods have been written either in MATLABTM or in C that
interfaces with MATLABTM (version R13 or above) through MEX. In general,

�������

MATLAB

�	
�����
��

�
	�
�	��

���������

��� �������

��������� ��� ���

������ �������

MATLAB

�	
�

����
��

�
	�
�	��

���������

��� �������

���������

User

Fig. 5. HTA implementation in MATLABTM

methods that do not involve communications, such as those that test the legal-
ity of operations, were written in MATLABTM to simplify their development.
Small methods used very frequently were written in C for performance reasons.
Communications between the client and the servers are implemented using the
MPI [8] library, thus methods that involve communication were written in C in
order to use the message-passing library.

The architecture of our MATLABTM implementation is shown in Fig. 5.
MATLABTM is used both in the client, where the code is executed following a
single thread, and in the servers, where it is used as a computational engine for
the distributed operations on the HTAs. The lower layers of the HTA toolbox
deal with communication, while the higher layers implement the syntax.

Our implementation supports both dense and sparse matrices with double
precision data, which can be real or complex. Any number of levels of tiling is
allowed in the HTAs, although every tile must have the same number of levels
of decomposition.

When an HTA is distributed, the client keeps an image of its complete struc-
ture, so that legality checks can always be made locally. As the number of servers
grows, the centralized legality check and the required broadcast of commands
from the client will become a bottleneck. Thus HTA implementations for highly-
parallel systems should be based on compilers in order to scale as required.

5 NAS Benchmark Suite

In this section we present our experience with writing highly parallel numerical
programs using HTA. Specifically, we deal with the kernels of the NAS bench-
marks [1]. We have successfully implemented four kernels so far - cg, ep, mg
and ft. We are also in the process of implementing the other kernels. We first
created serial versions of the programs in MATLABTM and incrementally paral-
lelized them with minimal efforts using the HTA representation. In the following
subsections we present a detailed description of ep, mg and ft.

5.1 NAS Kernel ep

The NAS kernel ep is an embarrassingly parallel application that generates pairs
of uniformly distributed pseudo-random numbers and tabulates those pairs that
lie in successive square annuli. In the parallel implementation of the algorithm,
each processor generates its section of random numbers and does the above
mentioned computation locally and exchange the results through a reduction at
the end. This is implemented using the parHTAFunc described in Section 3. The
resulting code looks similar to that shown in Fig. 4, with additional computations
that involves finding the number of pairs that lie in the successive square annuli.
All these steps are encoded inside the randx function of the Fig. 4 that is called
via the parHTAFunc. Function myHTARank is used to identify the rank of the
servers in execution, inside randx.

5.2 NAS Kernel mg

The NAS kernel mg solves the Poisson’s equation, ∇2u = v, in 3D using a
multigrid V-cycle. An outline of the algorithm, as presented in [1] is shown in
Fig. 6. P, Q, A and S are arrays of coefficients. Each iteration of the algorithm
consists of two steps, 1 and 2, listed in Fig. 6. The step 2 is recursive and is
also explained in the same figure. The step 1 consists of finding the residual
r = v − Au. The step 2 consists of solving the residual equation Ae = r and
updating the current solution u, u = u+ e. Solving the residual equation is done
using the V-cycle approach, described as Mk, in the figure. The first step of the
V-cycle is restricting (restrict) larger grids to smaller ones (step 3) successively
(step 4), until we reach the smallest grid that could be solved trivially (step 8).
Then the reverse process of interpolation (interpolate) takes place where a
smaller grid is expanded to a larger grid (step 5). The above sequence is repeated
for several iterations until the solution converges.

The grids v and u are 3-dimensional and are represented as 3-dimensional
arrays. ri, 0 < i < k, is an array of grids with the kth grid being the largest.
Each grid is 3-dimensional and is represented in the same way as u. P, Q, A and
S are banded diagonal matrices with the same 4 values in each row. Hence they
are represented using a vector with 4 values. Given the above representations, it
is straight forward to implement the above algorithm in MATLABTM . In order
to parallelize this algorithm, the grids must be divided into several chunks along
each dimension and each such chunk must be allocated to a processor, using
a processor map. After each operation, communication of the boundary values
in each dimension should be performed. Shadow regions are allocated in each
chunk to hold the boundary values.

In a typical MPI program, the programmer is responsible for doing all the
above mentioned steps. The algorithm is implemented in parallel using the HTA
representation in an easy manner as follows. The grids v and u are represented as
a 3-D HTAs of size dx×dy×dz. ri is represented as an array of HTAs, with each
HTA representing a grid of size i. Fig. 7 presents an outline of this step. Also
shown in the figure is the allocation of extra space for shadow regions in each

(1) r = v − A u
(2) u = u + Mk r

where Mk is defined as follows:
zk = Mk rk :

if k > 1
(3) [restrict] rk−1 = Prk

(4) [recursive solve] zk−1 = Mk−1 rk−1

(5) [interpolate] zk = Qzk−1

(6) [evaluate residue] rk = rk − A zk

(7) [smoothen] zk = zk + S rk

else
(8) z1 = S r1

end

Fig. 6. mg - Outline of the algorithm

%px, py, pz are processors along X, Y and Z axes
for i = 1 : k
%add shadow regions for the boundaries

sx = nx(i) + 2 ∗ px;
sy = ny(i) + 2 ∗ py;
sz = nz(i) + 2 ∗ pz;
r{i} = hta(zeros(sx, sy, sz), {1 : sx/px : sx, 1 : sy/py : sy, 1 : sz/pz : sz}, [px py pz]);

end
u = hta(r{k});
v = hta(r{k});

Fig. 7. mg - Creation of HTAs

tile. It should be noted that the HTA constructor automatically maps the tiles
to the processors according to the specified topology as explained in Section 2.4.
The next important step is the communication of the boundary values, shown
in Fig. 8. The figure shows the communication along X dimension; the commu-
nications along the other dimensions look very similar. The grid operations are
implemented as a subroutine with the HTAs as parameters. One such operation,
restrict, is shown in the Fig. 9. The above subroutine implemented as such is
inefficient, as each addition operation requires the client to send a message to the
servers along with the two operands. This is mitigated by the use of parHTAFunc,
explained in section 3, as follows - s = parHTAFunc(@restrict, r, s). This re-
quires only one message to be sent to the servers. Thus parHTAFunc, apart
from facilitating MIMD-style of programming, also enables optimization. Fi-
nally, the program involves computing the sum

∑
rk

2, which is done using the
HTA-overloaded parallel sum and power operators.

%dx is the size of the HTA along X dimension
u{1 : dx − 1, :, :}(n1, 2 : n2 − 1, 2 : n3 − 1) = u{2 : dx, :, :}(2, 2 : n2 − 1, 2 : n3 − 1);
u{dx, :, :}(n1, 2 : n2 − 1, 2 : n3 − 1) = u{1, :, :}(2, 2 : n2 − 1, 2 : n3 − 1);
u{2 : dx, :, :}(1, 2 : n2 − 1, 2 : n3 − 1) = u{1 : dx − 1, :, :}(n1 − 1, 2 : n2 − 1, 2 : n3 − 1);
u{1, :, :}(1, 2 : n2 − 1, 2 : n3 − 1) = u{dx, :, :}(n1 − 1, 2 : n2 − 1, 2 : n3 − 1);

Fig. 8. mg - Communication of Boundary Regions

%i1b,i2b,i2e - begining position in tiles of r along X,Y,Z respectively;
%i1e,i2e,i3e - ending position in tiles of r along X,Y,Z respectively;
%m1j,m2j,m3j - ending position in tiles of s along X,Y,Z respectively;
s{:, :, :}(2 : m1j − 1, 2 : m2j − 1, 2 : m3j − 1) = 0.5D0 ∗ r{:, :, :}(i1b : 2 : i1e, i2b : 2 : i2e, i3b : 2 : i3e)...

+0.25D0 ∗ (r{:, :, :}(i1b − 1 : 2 : i1e − 1, i2b : 2 : i2e, i3b : 2 : i3e)...
+r{:, :, :}(i1b + 1 : 2 : i1e + 1, i2b : 2 : i2e, i3b : 2 : i3e)...
+r{:, :, :}(i1b : 2 : i1e, i2b − 1 : 2 : i2e − 1, i3b : 2 : i3e)...
+r{:, :, :}(i1b : 2 : i1e, i2b + 1 : 2 : i2e + 1, i3b : 2 : i3e)...
+r{:, :, :}(i1b : 2 : i1e, i2b : 2 : i2e, i3b − 1 : 2 : i3e − 1)...
+r{:, :, :}(i1b : 2 : i1e, i2b : 2 : i2e, i3b + 1 : 2 : i3e + 1));

+ several other similar operations, ignored here for brevity

Fig. 9. mg - Operation restrict (Line 3 of Fig. 6)

5.3 NAS Kernel ft

NAS kernel ft numerically solves certain partial differential equations (PDE)

using forward and inverse Fast Fourier Transform. Consider the PDE, ∂u(x,t)
∂t

=
α∇2u(x, t) where x is a position in 3-dimensional space. Now applying FFT on

both side we get, ∂v(z,t)
∂t

= −4απ2|Z|
2
v(z, t), where v(z, t) is the Fast Fourier

transform of u(x, t). This has the solution v(z, t) = e−4απ2|z|2tv(z, 0). Thus, the
original equation can be solved by applying the FFT to u, then multiplying the
result by a certain exponential, and finding the inverse FFT of the result.To
implement this algorithm we essentially need to have a forward and inverse FFT
operator. Fortunately, MATLABTM already has this operator.

In the parallel version of FFT for N-Dimensional arrays, one of the dimensions
is not distributed. 1D-FFTs are calculated along each non-distributed dimension,
one by one. If a dimension is distributed, it is transposed with a non-distributed
dimension and the 1-D FFT is applied along that dimension. In the MPI version
the programmer has to implement the transpose using alltoall communica-
tion and cumbersome processor mapping data structures. An implementation of
this algorithm for calculating the forward FFT of a 3-D array, 2-D decomposed
along Y and Z axes, using HTAs is shown in Fig. 10. The function fft is the
native MATLABTM function to calculate the FFT of an array along a specified
dimension. The operator dpermute permutes the data of the fft array without
changing its underlying structure. In this kernel, the HTAs are of complex data
type.

x = hta(complex(nx,ny, nz), {1, 1 : ny/py, 1 : nz/pz}, [1 py pz]);
x = parHTAFunc(@compute initial conditions, x);
x = parHTAFunc(@fft, x, [], 1);
x = dpermute(x, [2 1 3]);
x = parHTAFunc(@fft, x, [], 1);
x = dpermute(x, [3 2 1]);
x = parHTAFunc(@fft, x, [], 1);

Fig. 10. ft - Calculating Forward FFT using HTA

6 Analysis of the Results

In this subsection we discuss two aspects of our implementation of NAS bench-
mark kernels using HTA - Performance and Programmability. We conducted
our experiment in an IBM SP system consisting of two SMP nodes of 8 Power3
processors running at 375 MHz and sharing 8 GB of memory each. In our ex-
periments we allocated one processor for the client (master) and either other 4
or 8 additional ones for the servers. In both cases, half of the processors were
allocated from each one of the two SMP nodes. The next natural step of ex-
perimentation involves 16 servers, but that would require 17 processors. The C
files of the toolbox were compiled with the VisualAge C xlc compiler for AIX,
version 5.0, while the MPI versions of the NAS benchmarks were compiled with
the corresponding xlf compiler from IBM. In both cases the O3 level of optimiza-
tion was applied. The computational engine and interpreter for the HTA was
MATLABTM R13, while the MPI programs used the native highly optimized
IBM ESSL library to perform their computations. The MPI library and envi-
ronment in both cases was the one provided by the IBM Parallel Environment
for AIX Version 3.1.

6.1 Performance

Fig. 11 is the execution time and speedup plot using 4 and 8 servers (processors)
for both MPI and HTA programs . ft 1d and ft 2d correspond to ft with 1-D
and 2-D decomposition respectively. Also shown in the figure is the speedup
for mg without the use of parHTAFunc (mg H). The size of the input for mg
is a 256 × 256 × 256 array, while for ft it is 256 × 256 × 128. For kernel ep
536870912 random numbers are generated. All of them correspond to Class A of
the NAS benchmark. The raw execution time is considerably larger for HTA - the
HTA system is built over MATLABTM which is a slow interpreted environment.
However, the speedup obtained for each kernel is significant.

Kernel ep has a perfect speedup, as it is embarrassingly parallel and there is
no communication overhead apart from the initial distribution and final reduc-
tion. Kernel ft has a super-linear speedup for HTA version. In ft the timing also
includes the initialization of the complex array with random entries. This takes
huge time in a serial MATLABTM program, which we believe is due to overhead

ep mg ft_1d ft_2d mg_H
0

50

100

150

200

250

T
im

e
(S

ec
on

ds
)

Execution Time for 4 processors

HTA
MPI

ep mg ft_1d ft_2d mg_H
0

2

4

6

8

10

S
pe

ed
up

Speedup for 4 processors

HTA
MPI

ep mg ft_1d ft_2d mg_H
0

50

100

150
T

im
e

(S
ec

on
ds

)
Execution Time for 8 processors

HTA
MPI

ep mg ft_1d ft_2d mg_H
0

5

10

15

S
pe

ed
up

Speedup for 8 processors

HTA
MPI

Fig. 11. Execution Time and Speedup

in cache or TLB. For kernel mg the speedup of HTA program is slightly lesser
than that of MPI program. We discovered two main sources of overhead that
are the reasons for this. The first overhead is associated with the interpretation
of every command and its broadcast to the servers each time. We plan to have
a compiler support to overcome this overhead. The other overhead is caused by
the need to make a full copy of the LHS of any indexed HTA assignment opera-
tion. This is due to the fact that the (overloaded) indexed assignment operator
cannot deal with arguments passed in by reference; it needs arguments to be
passed by value. This is a limitation imposed by our need to operate inside the
MATLABTM environment. This overhead is pronounced in mg, which has a lot
of communication. Readers should note that the NAS benchmark kernels are
highly optimized, while our current HTA versions are not that optimized.

6.2 Ease of programming

The primary goal of our research is to ease the burden of parallel programmers. In
order to show the effectiveness of HTA for this purpose, we measure the number
of lines of key parts of the HTA and MPI programs. Though the number of lines
of code is not a standard metric to measure the ease of programming, it gives a
rough idea about the complexity of programs.

Fig. 12 shows the number of lines of code for two main parts of mg and
ft programs - data decomposition/mapping and communication. Kernel ep look
very similar in both MPI and HTA versions, resulting in equal sized codes in both
the cases. In mg, the domain decomposition/mapping has almost same number
of lines because both the HTA and MPI programs do similar steps to find the

mg−MPI mg−HTA ft−MPI ft−HTA
0

100

200

300

400

500

600

700

800

lin
es

 o
f c

od
e

Data Decomposition/Mapping
Communication

Fig. 12. Lines of code for key sections of mg and ft.

init and limit of each array chunk. However, the MPI version of ft does additional
computations for the later transpose operation and hence it is bigger than the
HTA version. The number of lines consumed by the communication operations
is significantly lesser in the HTA programs for both mg and ft. In the HTA
programs, communication consists of simple assignments for mg as explained in
Fig. 8 and an overloaded HTA-aware permute operation for ft as explained in
Fig. 10. Another metric worth measuring is the degree of similarity of parallel
programs to the serial versions. HTA programs look very similar, in style and
size, to the serial programs written in MATLABTM , while MPI programs look
drastically different from their serial versions. Readers should note that NAS
benchmarks are very well written and are easily readable; programs written by
less experienced MPI programmers are more complex.

7 Related Works

Languages for Parallel Programming have been an object of research for very
long time. Several experimental languages and compilers have been developed so
far. Prominent among them is High Performance Fortran [2]. HPF is an exten-
sion to FORTRAN that provides new constructs to define the type of data dis-
tribution and mapping of data chunks into processors. However, a key drawback
in HPF is the inability to operate on a tile (chunk) as a whole. The program-
mer must explicitly compute the tile sizes and their indexes for each distributed
array for each processor. The second drawback is the lack of transparency in
communication of data elements across processors. For instance, the main loop
in the matrix multiplication program using cannon’s algorithm would look like
that in Fig. 13. The code in the figure assumes block distribution along both the
dimensions of the matrices.

A more closely related work to ours is ZPL [6]. ZPL defines a region of a
specified shape and size that can be distributed using any specified distribution

on any specified grid. Using the indexed sequential arrays, one can build

for i= 1, nprow

blocksize = n/nprow

FORALL (j=1:nprow, k=1:npcol)

j_b = (j-1)*blocksize + 1

j_e = j_b + blocksize - 1

k_b = (k-1)*blocksize + 1

k_e = k_b + blocksize - 1

c(j_b:j_e, k_b:k_e) = c(j_b:j_e, k_b:k_e) + &

matmul(a(j_b:j_e, k_b:k_e), b(j_b:j_e, k_b:k_e))

ENDFORALL

a = cshift(a, blocksize, 2)

b = cshift(b, blocksize, 1)

enddo

Fig. 13. HPF - Main loop in Cannon’s algorithm.

region R = [1..n, 1..n];

direction north = [-1, 0]; south = [1, 0];

east = [0, 1]; west = [0,-1];

[R] repeat

Temp := (A@north+A@east+A@west+A@south) / 4.0;

err := max<< abs(A-Temp);

A := Temp;

until err < tolerance;

end;

Fig. 14. ZPL - Main loop in Jacobi.

a structure similar to HTA, with operations on tiles as a whole. However, ZPL
is still not transparent to the programmer and it is of higher level than HTA.
For instance, in ZPL the programmer never knows where and how the exchange
of data occurs, in a case like jacobi. Lack of such a transparency might lead
to programs that are difficult to debug. Fig 14 shows the main part of jacobi
implementation in ZPL.

8 Conclusions

In this paper we have presented a novel approach to write parallel programs
in object-oriented languages using a class called Hierarchically Tiled Arrays
(HTAs). HTAs allow the expression of parallel computation and data movement
by means of indexed assignment and computation operators that overload those
of the host language. HTAs improve the ability of the programmer to reason
about a parallel program, particularly when compared to the code written using
SPMD programming model. HTA tiling can also be used to express memory
locality in linear algebra routines.

We have implemented our new data type as a MATLABTM toolbox. We
have successfully written three NAS benchmark kernels in the MATLABTM +

HTA environment. The kernels are easy to read, understand and maintain, as
the examples shown through our paper illustrate. We discovered two key over-
heads suffered by HTA codes, both related to details of our current implemen-
tation. First, the current implementation combines the interpreted execution of
MATLABTM with the need to broadcast each command to a remote server. This
could be mitigated in the future by more intelligent ahead-of-time broadcasting
of commands or by the deployment of a compiler. The second cause of overhead
is the need to use intermediate buffering and to replicate pieces of data. This
is not because of algorithmic requirements, but due to the need to operate in-
side the MATLABTM environment. This effect can be improved by more careful
implementation.

In summary, we consider the HTA toolbox to be a powerful tool for the
prototyping and design of parallel algorithms and we plan to make it publicly
available soon along with the benchmark suite.

References

1. Nas Parallel Benchmarks. Website. http://www.nas.nasa.gov/Software/NPB/.
2. High performance fortran forum. High Performance Fortran Specification Version

2.0, January 1997.
3. G. Almasi, L. De Rose, B.B. Fraguela, J. Moreira, and D. Padua. Programming for

locality and parallelism with hierarchically tiled arrays. In Proc. of the 16th Inter-
national Workshop on Languages and Compilers for Parallel Computing, LCPC
2003, to be published in Lecture Notes in Computer Science, vol. 2958, College
Station, Texas, Oct 2003. Springer-Verlag.

4. L.E. Cannon. A cellular computer to implement the Kalman Filter Algorithm. PhD
thesis, Montana State University, 1969.

5. W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren. Intro-
duction to upc and language specification. Technical Report CCS-TR-99-157, IDA
Center for Computing Sciences, 1999.

6. B.L. Chamberlin, S.Choi, E.C. Lewis, C. Lin, L. Synder, and W.D. Weathersby.
The case for high level parallel programming in ZPL. IEEE Computational Science
and Engineering, 5(3):76–86, July–September 1998.

7. Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and
Vaidyalingam S. Sunderam. PVM: Parallel Virtual Machine: A Users’ Guide and
Tutorial for Networked Parallel Computing. MIT Press, Cambridge, MA, USA,
1994.

8. W. Gropp, E. Lusk, and A. Skjellum. Using MPI (2nd ed.): Portable Parallel
Programming with the Message-Passing Interface. MIT Press, 1999.

9. S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling fortran d for mimd
distributed-memory machines. Commun. ACM, 35(8):66–80, 1992.

10. C. Koelbel and P. Mehrotra. An overview of high performance fortran. SIGPLAN
Fortran Forum, 11(4):9–16, 1992.

11. R. W. Numrich and J. Reid. Co-array fortran for parallel programming. SIGPLAN
Fortran Forum, 17(2):1–31, 1998.

