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An e�cient low power high speed 5-bit 5-GS/s 
ash analogue-to-digital converter (ADC) is proposed in this paper. �e designing
of a thermometer code to binary code is one of the exacting issues of low power 
ash ADC.�e embodiment consists of two main
blocks, a comparator and a digital encoder. To reduce the metastability and the e�ect of bubble errors, the thermometer code is
converted into the gray code and there a�er translated to binary code through encoder.�e proposed encoder is thus implemented
by using di�erential cascade voltage switch logic (DCVSL) to maintain high speed and low power dissipation. �e proposed 5-bit

ash ADC is designed using Cadence 180 nm CMOS technology with a supply rail voltage typically ±0.85V.�e simulation results
include a total power dissipation of 46.69mW, integral nonlinearity (INL) value of −0.30 LSB and di�erential nonlinearity (DNL)
value of −0.24 LSB, of the 
ash ADC.

1. Introduction

Flash ADC has a high data conversion speed, low resolution,
and large chip area along with large power dissipation and is
therefore preferred for providing high sampling rates. Other
architectures like successive approximation register, sigma
delta, and dual slope o�er less data rate and high resolution
compared to 
ash converter [1–4].

�e sparkle or bubble error is caused due to the imperfect
input settling time ormismatching time of inputs of compara-
tor. If the output of comparator is either a logic “1” or logic
“0,” then this condition is known as metastability condition
that can be reduced by usingGray code encoder becauseGray
code encoding allows only 1-bit change in the output at a time
which may improve metastability.

�e typical block diagram of 
ash ADC is as shown in
Figure 1. �e blocks of 
ash ADCs are resistor string, com-
parator’s block, and thermometer to gray and gray to binary
encoder. It plays an important role especially in optical data
recording, magnetic read channel applications, digital com-
munication systems, and so forth that require a high data
processing rate and optical communication systems [5–10].
Generally, multi-GS/s ADCs which have low resolution are

used in high speedmeasurement systems [11].�e 
ash ADC
contains bunch of 2� resistors and 2� − 1 comparators for �
bit ADC. �e resistor string provides reference voltage (��)
to comparators. �ese reference voltages and input signal
voltages (��) are simultaneously activated by the comparators
containing 2� − 1 comparators [2]. If�� > ��, then the output
of comparator goes high and when �� < ��, the output of
comparator records low. Hence, the output of comparator
is known as thermometer code. Flash ADC is designed
for 5 bits (� = 5) and the number of resistors required is
2� = 25 = 32, whereas the number of comparators required
is 2� − 1 = 25 − 1 = 31. �e important role for ADC is per-
formed by analogue blocks. �e design constraints of
conversion speed are de�ned especially by the comparators
used in the design of 
ash ADC [8].

ADCs are used in application areas of camera, digital
TVs, mobile phones, wireless sensor networks, transmitter
and receiver circuits, and the conversion processes of signals
for base band applications [12–16].

�e thermometer code is a good solution for low resolu-
tion and high speed converters; as the error rate increases, the
resolution and the speed also increase [15, 16].
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Figure 1: Block diagram of 
ash analogue-to-digital converter.
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Figure 2: �e proposed 
ash ADC architecture.

�e 
ash ADC requires a more number of comparators
to increase resolution. �ere is an exponential increase
in the number of comparators; hence, the circuit requires
large chip area, high bandwidth, and more power consump-
tion. Another important area of 5-bit 
ash ADC is in the
application of orthogonal frequency division multiplexing
ultrawide band systems [17–21].�ere has beenmuchwork in
implementation of lowpower andhigh speed encoders for the
design of the 
ash ADC. �e ROM-based encoder is simple
and straight forward design, as it is slow and cannot suppress
bubble errors.Wallace tree based encoder counts the number
of bits “1” in the thermometer code. �e disadvantages of
this encoder are large delay and power consumption [22–
24]. In this approach, the thermometer code to Gray code
and Gray to binary code encoders is used, where the gray
code encoder is e�cient in removing metastability condition
and in suppressing the bubble errors. �e encoder in this
paper has the bene�ts of high encoding speed and low power

consumption, as the DCVSL is used to gain high speed. �e
proposed 
ash ADC is designed using encoder as shown in
Figure 8.

�e rest of the paper is endowed with all design steps and
simulation results. �e concluding section of the proposed

ash ADC performance is compared with the similar designs
in the references.

2. Design Steps of 5-Bit Flash ADC

�e proposed 
ash ADC block diagram is as shown in
Figure 2. It consists of comparator block, thermometer to
Gray code encoder block, and Gray code to binary code
encoder block.

2.1. Comparator Structure. �e comparator circuit of the de-
signed 
ash ADC is as shown in Figure 3 and the transistor
aspect ratios are given in Table 1. In this schematic, transistors
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Figure 3: Schematic of comparator.

�1, �2 are the NMOS input di�erential pairs driven by

�5 tail current NMOS transistor. �is di�erential pair is

loaded by PMOS cross-coupled transistors (�3 −�4), which
has a positive feedback loop and diode-connected PMOS

transistors (�6−�7).�e purpose of cross-coupled feedback

loop is to increase the voltage gain of di�erential pair (�1 −
�2) and to load the output resistance.�10 and�11 form a

current mirror and its reference current is provided by the

transistors (�6,�8) together [9].
�e common source PMOS ampli�er (�9) ampli�es the

�rst-stage output of the comparator [21]. �e last stage of

the comparator is current source inverter circuit (�12 −
�13). �is inverter achieves higher voltage gain than CMOS

inverter [22]. �e results of the complete comparator are

shown in Figures 4(a), 4(b), and 4(c). �e o�set voltage

and gain band width product of comparator are 17.2mV and

6.77GHz.

2.2. Design of the Proposed Encoder. �e conversion of the

thermometer code output of the comparator to binary code is

one of the bottlenecks in the high speed 
ash ADC design [1].

Programmable logic array-read-only memory, exclusive OR

encoder, orWallace tree encoder structures are generally used

for conversion [23, 24]. �e Wallace tree adder technique

is e�ective in removing the bubble errors but it is at the

cost of speed reduction and increased power dissipation [25].

�e metastability condition occurs due to the time variation

between the comparators input and the e�ect of bubble

errors can be reduced by converting the thermometer code

to Gray code. �e truth table corresponding to 5-bit binary

to gray code is presented in Table 2.�e relationship between
thermometer code, Gray code, and binary code is given below

[3]:

�0 = �1�3 + �5�7 + �9�11 + �13�15 + �17�19

+ �21�23 + �25�27 + �29�31,

�1 = �2�6 + �10�14 + �18�22 + �26�30,

�2 = �4�12 + �20�28,

Table 1: Comparator schematic transistor aspect ratios.

Transistor � (�m) 	 (�m)

�1,�2 3.0 0.2

�3,�4,�7,�9 6.0 0.2

�5 2.0 0.18

�6,�8 6.0 0.18

�10,�11,�13 2.0 0.2

�12 0.4 0.2

�3 = �8�24,

�4 = �16,


0 = �0 ⊕ 
1,


1 = �1 ⊕ 
2,


2 = �2 ⊕ 
3,


3 = �3 ⊕ 
4,


4 = �4.
(1)

�e equations are derived from the following truth Table 2 for
this encoder.

2.3. Implementation of the Proposed Encoder. �ere are di�er-
ent logic styles to implement the design of the thermometer
code to Gray and Gray to binary code encoders. To avoid
the static power dissipation and to achieve high speed, the
implementation of encoder is validated using DCVSL [26].
DCVSL gate has speed advantage over pseudo-NMOS logic,
there by the parasitic capacitance of the output node of
DCVSL logic gets reduced and faster response is achieved.
�e static power consumption present in static CMOS logic
is eliminated in DCVSL [9]. DCVSL is a CMOS circuit
technique that has potential advantages over conventional
NOR/NAND logic in terms of circuit delay, layout density,
logic 
exibility, and power dissipation [10].
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Table 2: Binary to gray code encoder truth table.


4 
3 
2 
1 
0 �4 �3 �2 �1 �0 �ermometer code (�31, �30, . . . , �1)
0 0 0 0 0 0 0 0 0 0 0000000000000000000000000000000

0 0 0 0 1 0 0 0 0 1 0000000000000000000000000000001

0 0 0 1 0 0 0 0 1 1 0000000000000000000000000000011

0 0 0 1 1 0 0 0 1 0 0000000000000000000000000000111

0 0 1 0 0 0 0 1 1 0 0000000000000000000000000001111

0 0 1 0 1 0 0 1 1 1 0000000000000000000000000011111

0 0 1 1 0 0 0 1 0 1 0000000000000000000000000111111

0 0 1 1 1 0 0 1 0 0 0000000000000000000000001111111

0 1 0 0 0 0 1 1 0 0 0000000000000000000000011111111

0 1 0 0 1 0 1 1 0 1 0000000000000000000000111111111

0 1 0 1 0 0 1 1 1 1 0000000000000000000001111111111

0 1 0 1 1 0 1 1 1 0 0000000000000000000011111111111

0 1 1 0 0 0 1 0 1 0 0000000000000000000111111111111

0 1 1 0 1 0 1 0 1 1 0000000000000000001111111111111

0 1 1 1 0 0 1 0 0 1 0000000000000000011111111111111

0 1 1 1 1 0 1 0 0 0 0000000000000000111111111111111

1 0 0 0 0 1 1 0 0 0 0000000000000001111111111111111

1 0 0 0 1 1 1 0 0 1 0000000000000011111111111111111

1 0 0 1 0 1 1 0 1 1 0000000000000111111111111111111

1 0 0 1 1 1 1 0 1 0 0000000000001111111111111111111

1 0 1 0 0 1 1 1 1 0 0000000000011111111111111111111

1 0 1 0 1 1 1 1 1 1 0000000000111111111111111111111

1 0 1 1 0 1 1 1 0 1 0000000001111111111111111111111

1 0 1 1 1 1 1 1 0 0 0000000011111111111111111111111

1 1 0 0 0 1 0 1 0 0 0000000111111111111111111111111

1 1 0 0 1 1 0 1 0 1 0000001111111111111111111111111

1 1 0 1 0 1 0 1 1 1 0000011111111111111111111111111

1 1 0 1 1 1 0 1 1 0 0000111111111111111111111111111

1 1 1 0 0 1 0 0 1 0 0001111111111111111111111111111

1 1 1 0 1 1 0 0 1 1 0011111111111111111111111111111

1 1 1 1 0 1 0 0 0 1 0111111111111111111111111111111

1 1 1 1 1 1 0 0 0 0 1111111111111111111111111111111

�e design of CMOS logic with DCVSL has many advan-
tages over static CMOS logic approach, andDCVSLhas speed
advantage over domino logic circuit.�is logic style has both
noninverting and inverting logic implementation, where
domino logic cannot implement inverting logic operational
gates. However, these advantages are achieved at the expense
of the large area and the complexity associated with dual logic
networks including complementary signals [27].

In this paper DCVSL circuit is proposed, which does
not require complementary inputs. �e proposed DCVSL
simpli�es the logic tree complexity, reduces dynamic power,
and improves the performance of the circuits. �e proposed
DCVSL is as shown in Figure 5.

To reduce the power consumption and to increase the
performance, many clocked versions of DCVSL gates have
been introduced. �e reduction of parasitic capacitances at
the output node provides a faster response and the static
power consumption is eliminated [28, 29]. �e operation of

DCVSL is as follows. During precharge (clk = 0) phase,
transistors�4,�5 are turned ON; the output node is charged
to ���. �e input is given to the NMOS logic tree and the
logic of operation is implemented using n-channel MOSFET.
A diode �3 works as a dynamic current source to limit the
amount of charge transferred from one output node. For the
implementation of fast error-correction logic in memories,
this DCVSL logic can be used [10].�e schematic of the Gray
code encoder for each bit is designed using proposed circuits
shown in Figure 6.

�e circuits of Gray code bit-0, 1, 2, 3, 4 are shown in
Figures 6(a), 6(b), 6(c), 6(d), and 6(e). �e logic of these
circuits is designed from (1) using the DCVS logic, and a
CMOS inverter is used at the output stage of the circuit.

By using the XOR gate, the Gray code will be converted
into binary code. �e schematic of 2-input XOR gate is as
shown in Figure 7. �e design of complete encoder is as
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Table 3: Summary of proposed encoder.

Results Proposed Encoder

Resolution 5-bit

Worst case delay 30�s
Technology 180 nm

No. of Transistors 156

Supply Voltage ±0.85V
Current 3.56mA

Power Dissipation 6.06mW

shown in Figure 8. �e results of the proposed encoder are
presented in Table 3.

3. Simulation Results

�e complete design of 5-bit 5-GS/s 
ash ADC circuit as
shown in Figure 1 is simulated using Cadence and the model
parameters of a gpdk 180 nm CMOS process. As resolution
increases, the maximum frequency of operation will get
decreased. �e encoder in Figure 8 is simulated by providing
thermometer code as input which is presented in Table 2
and the results of encoder are as shown in Figure 9 and it is
veri�ed using truth Table 2.

A ramp-shaped analogue input signal between −0.45
and 0.75V, at 1MHz, is applied to the ADC input for
transient analysis and the simulation results of 5-bit 
ash
ADC obtained are as shown in Figure 10. Figure 11 shows the

Table 4: Transistor count of the designed system blocks.

Name of the block Transistors count

Comparator block 403

Gray code encoder block 96

Binary encoder block 60

Total 
ash ADC blocks 559

following linearity plots of di�erential nonlinearity (DNL)
and integral nonlinearity (INL). Transistor count of the
designed system blocks is shown in Table 4.�e RC extracted
layout of the complete converter is shown in Figure 12. �e
advantages of this 
ash ADC are as follows: power consump-
tion is at minimum, errors in the design are minimized, and
the proposed con�guration is designed at the high sampling
rate 5-GS/s. �e performance summary and its comparison
with similar works in the literature are listed in Table 5 given
below.

4. Conclusion

A 5-GS/s 5-bit 
ash ADC is designed in 180 nm CMOS
technology using Cadence tools. In this 
ash ADC, the
proposed encoder uses a logic style called DCVSL structure
that improves the performance in terms of power consump-
tion and speed. �e proposed 
ash ADC is highly linear
with worst-case DNL of −0.24 LSB and INL of −0.30 LSB
and also has a low power consumption of 46.69mW. �is
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Figure 12: RC extracted layout of 
ash ADC.

Table 5: Comparative performance analysis of candidate design.

References

Proposed ADC
simulated results

Simulated results
[8]

Simulated results
[11]

Simulated results
[18]

Simulated results
[19]

Technology 180 nm 180 nm 500 nm 180 nm 180 nm

Resolution 5-bit 5-bit 5-bit 5-bit 4-bit

Supply voltage ±0.85V 1.8 V 2.5V 1.5 V 1.8 V

Analogue input voltage
range

−0.45V to 0.75V
di�erential input
range ± 0.4V — — 1Vpp

Power (mW) 46.69 63 83 68.63 70

Sampling rate GS/s 5 1 1.5 — 5.0

Maximum DNL (LSB) −0.24 0.175 0.43 0.0012 0.34

Maximum INL (LSB) −0.30 0.261 0.32 0.0015 0.24



Active and Passive Electronic Components 11

circuit can be expected to �nd wider applications in many
applied electronics, communications, instrumentation, and
signal processing applications.
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