
Implementation of Provably Stable MaxNet

Martin Sucharal ,2, Lachlan L. H. Andrew l , Ryan Wittl , Krister Jacobsson3, Bartek P. Wydrowski l , Steven H. Low l

ICalifomia Inst. of Tech. 2Princeton Univ. 3Royal Inst. of Tech. (KTH)

Pasadena, CA 91125, USA Princeton, NJ 08544, USA Stockholm, SE-129 32, Sweden

{suchara,lachlan,slow} @caltech.edu, ryan@fastsoft.com, kringlan@ee.kth.se, bwydrowski@gmail.com

Abstract-MaxNet TCP is a congestion control protocol that
uses explicit multi-bit signalling from routers to achieve desirable
properties such as high throughput and low latency. In this
paper we present an implementation of an extended version
of MaxNet. Our contributions are threefold. First, we extend
the original algorithm to give both provable stability and rate
fairness. Second, we introduce the MaxStart algorithm which
allows new MaxNet connections to reach their fair rates quickly.
Third, we provide a Linux kemel implementation of the protocol.
With no overhead but 24-bit price signals, our implementation
scales from 32 bitls to 1peta-bitls with a 0.001% rate accuracy.
We confirm the theoretically predicted properties by performing
a range of experiments at speeds up to 1 Gbitlsec and delays up
to 180 ms on the WAN-in-Lab facility.

I. INTRODUCTION

The aim of congestion control is to adjust source rates

so that they fully utilize link capacities and respond quickly

to changes in network load while avoiding delay jitter. An

additional goal is to share link capacities fairly. The typical

approach of Transmission Control Protocols (TCP) is to con

trol the source rates based on a congestion signal which is

generated by each link and fed back by the network. The signal

can be calculated actively by an Active Queue Management

(AQM) algorithm, or the source can passively observe packet

loss or delay.

Congestion control algorithms which decrease sending rates

with increasing packet loss include TCP Reno [1], CUBIC [2],

or H-TCP [3]. Other proposals that react to queuing delay

include Vegas [4] and FAST TCP [5].

Routers in explicit-signalling protocols mark packet headers

with information about congestion. The Explicit Congestion

Notification (ECN) standard [6] uses a single bit mark; the rate

of sending ECN marks signals the congestion level. Protocols

that use multi-bit feedback include XCP [7], RCP [8] and

letMax [9]. MaxNet [10] differs from these protocols in that

it signals the congestion level of the most congested bottleneck

link on the path, which is used to calculate the source rate.

Using an explicit multi-bit signal instead of packet loss

or delay is advantageous in several ways. The increased

resolution of the signal reduces variability of source rates,

which improves link utilisation and decreases delay jitter.

Explicit signalling can also prevent packet latency or loss:

rates can be decreased before the impairments occur.

As observed in [11], the congestion signal received by a

sender using a TCP scheme based on packet loss, delay,

or ECN marking, is approximately the sum of the signals

generated by each bottleneck link on the end-to-end path. Thus

we call these networks SumNets. MaxNet, on the other hand,

communicates only the maximum congestion level from the

most congested link on the path. In [12] it was proven that

MaxNet has faster convergence properties than SumNets. This

results in low delay jitter and high efficiency.

Another advantage of MaxNet is that it operates with very

low queuing delays as it is able to target a controlled link

utilisation. This results in significantly lower RTIs compared

to loss-based protocols such as Reno which have to fill buffers

to observe losses. Furthermore, unlike delay based schemes

such as Vegas or FAST, the queueing delay does not grow

with load.

MaxNet has also been shown to have desirable fairness and

stability properties. The original MaxNet [10] yields max-min

fairness for a network of homogeneous sources, or general

weighted max-min fairness for heterogeneous sources. How

ever, using homogeneous source functions sacrifices either

performance at low Round Trip Times (RTIs) or stability

at high RTIs. Alternatively, MaxNet can be made stable on

networks of arbitrary capacities, delays and routing by varying

the source function with the RTT [13]. However, this approach

loses the fairness of the original proposal [10]. The theoretical

contribution of this paper is the addition of source dynamics

adapted from [14] to achieve both stability and fairness. We

call the resulting protocol MaxNet 2.0.

The practical contribution of this paper is an implementation

of the protocol in the Linux kernel and the experimental evalu

ation of its properties on WAN-in-Lab [15]. The advantage of

using WAN-in-Lab, a hardware testbed with real carrier-class

networking hardware, is that it offers unprecedented realism

in a laboratory setting. However, using such a complicated

infrastructure necessarily implies our experiments are simpler

than ones typically performed in software simulations.

Our kernel implementation of MaxNet consists of (i) a

Linux router AQM module that marks packets with the explicit

congestion signal, and (ii) a modification to the TCP end-hosts

to control the congestion window in response to the signal.

After a description of the principles behind MaxNet in Sec

tion II, Section III describes the MaxNet algorithm and Sec

tion IV its implementation. Experimental results demonstrating

the stability, fairness and convergence speed are presented in

Section V. Section VI describes how to select provably-stable

parameters that result in rapid convergence. Related protocols

are analyzed in Section VII.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:34:29 UTC from IEEE Xplore. Restrictions apply.

II. MAXNET BACKGROUND

where D i (-) is called the demand function. The demand

function is a convex function that describes the source's

bandwidth requirement. If all sources have the same demand

function, it was shown in [10] that MaxNet achieves max

min fairness. Weighted max-min fairness can be achieved by

scaling the demand function.

Figure 1 illustrates that qi (t), the price communicated to the

source, is the maximum of all link prices Pl (t) on the source

to destination path.

In this section we summarize the key features of MaxNet

introduced in [10], [12], [13]. We describe the control frame

work and highlight the main results concerning the equilibrium

and stability properties.

The MaxNet control loop consists of the traffic source

and the router AQM algorithm. The source rate is controlled

by a congestion signal or 'price', denoted qi(t), which is

communicated explicitly from the AQM algorithms on the

network. The source rate is set according to

gain parameter. MaxNet reacts to the single most congested

bottleneck, hence M i == 1. Let Xmax be the maximal supported

rate for a source. As discussed in [14], condition (4) places a

constraint on the demand function which is satisfied by

Xi(t) == Di(qi(t)) == xmaxe-niqi(t)/Ti. (5)

Whilst (5) satisfies the stability constraints, the rate now

depends not just on qi (t) but also on 7i which means that

sources with different RTTs would not achieve max-min

fairness. The dynamic source algorithm of [14] implements

fairness on slow time scales, separate from the fast time scale

response which determines stability. On a fast time scale the

rate changes are bounded by (4) by setting

Xi(t) == Xmaxe(,i(t)-nqi(t)/Ti. (6a)

On a slower time scale which does not affect stability ~ i is

adjusted to make the equilibrium rate follow the designer's

choice of demand function:

. 0'1] ,
~i == 2(Ui (Xi) - qi), (6b)

7 i

where U; (Xi) is a utility function which relates to the desired

demand function by U'i (X) == D i-I (x), and 1] determines the

rate of convergence to fairness.
(2)

(1)

Fig. 1. Conceptual price communication scheme of MaxNet. The maximum

of the prices Pi, P2, . . . ,Pn at links on the end-to-end path is fed back to

the traffic source.

(7)

which removes the dependence on RTT from (5). In this

discussion of equilibrium properties, we drop the time depen

dence in the variables. By (6a), U; (Xi) used in (6b) is

U;(Xi) == D-I(Xi) == -Tlog(xi/xmax) (8)

- T (~ i - qia/Td. (9)

III. MAXNET 2.0 ALGORITHM

This section describes the MaxNet 2.0 algorithm which

consists of the source algorithm responsible for adjustment of

source rates, the router algorithm responsible for congestion

price calculation, and the MaxStart algorithm which allows

new flows attain high transmission rates quickly.

A. Source algorithm

To achieve stability and weighted max-min fairness, the

source algorithm is based on the dynamic controller (6)

from [14]. The key choice in designing the controller is

selecting a demand function. Consider the exponential demand

function with a constant T

The resulting pseudocode of the source algorithm is shown

in Figure 2. The current implementation performs the window

update on ACK arrivals, at most every dtmin seconds. The

calculation is packet driven, thus the calculation is executed

at most once per packet, but at least every RTT.

B. Router algorithm - virtual queue AQM

The router price update is performed according to (3).

The update occurs only every dtp seconds, to limit the

computational burden. The only per-packet operations are a

6D· a'x,
_1, > __1, _1, (4)
<5qi - M i7i'

where M i is the number of bottlenecks giving feedback to

flow i, 7i is the RTT of source i and ai E (0, 1f/2) is a

where L i is the set of links on source i's path. A single

price field in each packet header is used to communicate the

maximum price. If link l's congestion price pl(t) exceeds the

value qj in the price field of packet j, the router corresponding

to link l overwrites the price field with Pl(t). The receiver

echoes back the final value qj in acknowledgements.

The AQM algorithm calculates the price signal of link l as

Pl(t + dt) = Pl(t) + dtYI(t) ~ /lle
l
, (3)

where Yl (t) is the traffic rate traversing link l, Cl is the

link's capacity and J-Ll is the target link utilisation. Note that

in equilibrium Yl (t) == J-Ll Cl , leaving (1 - J-Ll) Cl of free

capacity to absorb traffic bursts. This makes the buffer empty

in equilibrium and results in very low network latency.

In [16] it was shown that control-theoretic stability is

achieved for a network of any topology, RTT or capacity if

price updates have the form (3) and the slope of the demand

function

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:34:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Pseudocode of the router algorithm.

Fig. 2. Pseudocode of the source algorithm.

Per ACK, if dtmin has elapsed, update (and calculate W:

1) Every dtp seconds:

y_dt ~ y_dt +QITo
p ~ max(p + y_dt/Cl - Jl dtp, 0)

y_dt ~ 0

~ ~ ~ + O~2dt ((~o _1) q _ T~)

W ~ Txmaxexp (~ - q;)

2) On packet arrival:

y_dt ~ y_dt +packet. size

if p > packet .price then

packet .price ~ p

end if

limited by the "ACK clock" and is approximately equal to

the bottleneck capacity; that is yz = Cl. Nonetheless, we can

use the queue size Q = W - (Yl X 7) to estimate that the

(10) attempted sending rate of the source is Yl +Q17, higher than

the measured rate Yl.

For the multiple-flow case, To should be a weighted har

monic mean of the 7 values of the flows. Since this is not

known at the router, a conservative (large) value is chosen.

Note that in equilibrium, no physical queue exists because

ItC < C, and so this mechanism does not affect the linear

stability of the system. However, it may limit the range over

which the linear model applies.

C. MaxStart - Replacing slow start

TCP Reno utilizes a slow start mechanism [I] that prevents

excessive congestion when a new flow starts by increasing its

rate exponentially. Similarly, explicit signalling protocols need

a mechanism that controls the rates of newly arriving flows and

prevents them starting at the same (high) rate as established

flows. Conveniently, explicit signalling allows designs that

solve this problem and scale faster than slow start. Inspired

by QuickStart [17] which enables sources to determine the

available sending rate, we introduce MaxStart.

MaxStart initiates a new flow at a rate equal to 114 of the

spare capacity of the most congested link on the path, and then

ramps up linearly over two RITs to the "price rate" (the rate

corresponding to the advertised price). The initial rate is thus

calculated as a minimum over all links of (It+ (1 - It) 14)Cl

Yl, where Cl is the link capacity, J.l the target utilisation and

Yl the link load. The initial rate is communicated similarly

to the congestion price: the sender flags the first packet to

indicate that it wants to be informed about the rate instead of

the price, and the routers then mark the packet with the lowest

Parameters: spare capacity. MaxStart terminates as soon as the MaxStart

It target link utilisation rate exceeds the price rate. Until then, the sender increases its

Cl link capacity target sending rate approximately 16 times per RTf, each time

dtp price update interval by approximately 1/32 of ~ , the difference between the price

To timescale in compensation for virtual queue overflow rate and the initial MaxStart rate.

Variables: Fast ramp up time and linear increase of the sending rate

p link price are the main benefits of MaxStart. Short flows which only

y_dt aggregate arrivals in update interval dtp exist for a small number of RTTs increase their rates more

Q instantaneous queue length rapidly and achieve a rate proportional to their fair share, rather

than dependent only on their flow size. Moreover.. when the

equilibrium rate is reached, linear increase of rate causes less

overshoot than exponential increase.

The algorithm could be further enhanced to ensure that

capacity is not over allocated when multiple flows start at

almost the same time. This can be done by keeping track of

the already allocated capacity. Furthermore, rate allocations to

all flows could be made equal when a new flow starts. This

is, however, beyond the scope of this paper.

IV. IMPLEMENTATION

MaxNet 2.0 was implemented as a standalone TCP protocol

in the Linux 2.6.11 kernel. We provide a description of the

source and router code and details of the price communication

scheme.

Parameters:

Xmax maximal supported transmission rate

T parameter that determines speed of convergence

Q overall loop gain

'T/ 'T/lr is the zero of the lead-lag compensator

dtmin minimum update interval

Variables:

(state variable used in window calculation

q price received in the most recent packet

7 minimum RTf measurement of the flow

W congestion window of the source

dt interval since last update

single addition, comparison and assignment. The pseudo code

of the router algorithm is shown in Figure 3.

The increment of y_dt by QITo may seem to deviate

from the virtual queue (3), but for suitable To, it implements

a virtual queue of the target rates of the sources, when the

link is saturated. To understand this, consider a bottleneck link

carrying a single flow.

Under congestion, the rate the flow seeks to achieve, W 17,

exceeds the capacity Cl of the bottleneck, resulting in a

physical queue. However, since MaxNet is a sliding window

protocol, the packet arrival rate at the bottleneck link is

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:34:29 UTC from IEEE Xplore. Restrictions apply.

120

~
Yellow

100

time (sec)80 100 120

.-
Blue

60

optsize

6

(1 byte) (3 bytes) (3 bytes)

40 60 80

Time (sec)

Red to Blue --
Green to Yellow •••••••••
Blue to Yellow, 1 ..
Blue to Yellow, 2 ..

Blue to Yellow, 3 -----
Blue to Yellow, 4 .

lJ.. •~~~~.~",~

I~

Fig. 4. MaxNet option fonnat.

I I

20 40

20

_----------..1 Red to blue
_--------.1 Green to yellow

_---------+1 Blue to yellow, 1
---.1 Blue to yellow, 2

_------+1 Blue to yellow, 3
----. Blue to yellow. 4
I I

Fig. 5. Topology for multi-flow experiments.

Fig. 7. Rates of flows in the two-hop experiment.

en 400a.
.t:l

e
'S 300a.
.£:.
t»
;:,

e
.£:. 200r-

100

0
0

~~
Green Red

600 r---~--~---r---..,-----r-----,

500

Fig. 6. Start times and durations of flows for multi-flow experiments.

A. Multiple flows and links

Internet flows typically contain two congested links, one in

the sender's access network and one in the receiver's access

network. This experiment evaluates how MaxNet responds in a

multi-flow multi-link environment. This demonstrates fairness,

scalability, and behaviour when bottleneck links change.

Figure 5 shows the topology for this experiment. Link 1 is

622 Mbit/s, with a RTT of 29 ms provided by an OC-48 link of

WAN-in-Iab [15], and Link 2 is a 400Mbit/s link with RTI

150 ms provided by a dummynet. The target utilisation was

90% (J-L == 0.9). Figure 6 shows when individual traffic flows

start, dividing the experiment into six intervals.

Figures 7 and 8 show the rates of the flows, and the queue

sizes of the links, respectively. The rates are averaged over

one second intervals. On a faster timescale, there is noticeable

burstiness because the implementation is window based not

rate based; this can be overcome by better pacing of window

increases, without the expense of packet pacing.

A. Communicating and Representing the Price

TCP options are used to carry the price. The MaxNet option

format is depicted in Figure 4. As a packet propagates from

the source to the destination, routers overwrite the price field

with their calculated congestion price if the price advertised in

the packet is lower. The echo field is used to return the price to

the sender in ACKs. During MaxStart, the price field is used

to communicate the desired transmission rate. The highest bit

of the 24-bit price field is 0 if the renlaining 23 bits contain

a price or 1 if they contain a MaxStart rate.

The demand function and price encodings explicitly deter

mine the range and precision of the achievable rates. Hence,

the protocol must be designed to scale. MaxNet is able to scale

over a large dynamic range with high precision. Let B i and

B f be the number of bits allocated to the integer and fractional

part of the price. To achieve Xmax == 1015 (1 peta-bit/s) and

Xmin == 32bit/s with the demand function (7) and T == 0.4, it

suffices that B i ~ flog2(Tlog(xmax /xm in))l == 4. To achieve

a relative precision of E == 10-5, B f ~ f-10g2(Tlog(1 +
E)) l == 18. This analysis shows how to represent the price

within the 23 available bits.

B. Implementation of the Source Algorithm

The main component of the sender code, the window calcu

lation, is implemented in the tcp_cong_avoid function in

net / ipv4 /tcp_input . c. Parameters are implemented as

system control variables and set using the sysctl interface

to Xmax == 1015 bit/s, T == 0.4 seconds, 0' == 0.66, TJ == 0.06

and dtmin == 1 J-ls to update on every ACK.

Being an equation-based algorithm, MaxNet frequently

manipulates fractional values. Linux kernel code cannot use

floating point operations, and so MaxNet uses fixed-point

arithmetic. The exponential function in (6a) is implemented

by a lookup table; this can be optimised using interpolation

and bit shifting.

Prices were averaged at the traffic sources over one RTT.

The average was weighted by the interval since the previous

price signal, to reduce the impact of burstiness. The update

for ~ in (10) is a discrete time approximation for (6b). This

discretisation can overshoot the equilibrium value given q,

namely ~ == aq/Ti - q/T, although (6b) cannot. This is

prevented by clipping ~ to this value if (10) overshoots.

c. Implementation of the Router Algorithm

The router code is implemented as an iproute2 dynami

cally loadable module for Linux. The parameters dtp == 1 ms

and To == 130 IDS are set through the t c interface.

According to (3), when links first become bottlenecks, their

prices have to rise gradually from O. During this time, sources

would be told to transmit at almost Xmax == 1015 bit/so To

prevent this, routers' prices are clipped below at Pmin,l ==
D-1(CL), with D given by (7).

V. EXPERIMENTS

The performance of MaxNet 2.0 in two scenarios is de

scribed. The first demonstrates its fairness, convergence speed

and scalability, and the second its response to cross traffic.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:34:29 UTC from IEEE Xplore. Restrictions apply.

................................· .· .· .· .· .· .· .· .· .· .· .
i i MaxNet--
i iCross traffic ••••••••.

1e+09

ge+08

8e+08
en

7e+08Q.

.0

~ 6e+08

"S 5e+08Q.

.c:
CJ) 4e+08::::J

e
3e+08.c:

~

2e+08

1e+08

0
0 5 10 15 20

Time(s)

25 30

Fig. 8. Queue sizes in the two-hop experiment.

This simple experiment illustrates many important prop

erties of the protocol, many of which are not tested by the

traditional "dumbbell" (single bottleneck) topology.

1) Convergence speed: Due to MaxStart, MaxNet shows

rapid convergence to full utilisation. These results show that

the initial rise time of each flow is less than the 1 s sampling

interval, which is consistent with the nominal rise time of two

RTIs.

2) Fairness: Reno is known to give significantly unfair

rates to flows with different RTTs [18], and many proposed

TCPs for large bandwidth-delay product networks are even

less fair [2]. In contrast, interval 2 shows that MaxNet con

verges to fairness within 20 s (after a fast convergence to full

utilisation), for flows with RTTs differing by a factor of 6.

Even protocols such as H-TCP [3] and FAST [5] which

do not suffer from RTT unfairness give higher rates to flows

traversing fewer bottlenecks, because the congestion measure

(delay or loss) is summed over all links on the path. Interval 3

shows that MaxNet converges within 20 s to fair allocation

between the flow from Green to Yellow. traversing two bot

tlenecks, and that from Blue to Yellow, traversing one.

3) Queueing: MaxNet's virtual queue mechanism gives an

equilibrium queue size of zero. This both improves the perfor

mance of real-time services and reduces memory requirements

of routers. When the number of flows is very small, transient

queues exist when flows arrive, but the magnitude of these

queues decreases rapidly as the number of flows increases.

To quantify this, note that if there are already N flows in

equilibrium bottlenecked at a link, then a new flow will

transmit at rate at most JLel / N causing overload of at most

((1 + l/N)JL - l)Cl for up to the longest RTT of any flow

using the link. The overload drops to zero for N > Jt / (1 - J1).

Note that the memory requirements of large multi-port

routers with shared memory are governed by the average

queue size, rather than the peak size, since memory can be

statistically multiplexed between different ports. Thus isolated

spikes occurring when a link is carrying few flows do not

negate MaxNet's benefit of reducing buffering requirements.

4) Switching bottlenecks: Max-min protocols, such as

MaxNet, RCP and JetMax, undergo discrete transitions when

the bottleneck link for a flow changes. At 40 s, the bottleneck

for the flow from Green to Yellow switches from Link 1 to

Fig. 9. Rates of MaxNet and 400 Mbit/s CBR flow with a target rate of

940 Mbit/s.

Link 2. Significantly, this does not cause instability in the

form of "ping-ponging" between bottlenecks as the prices

stabilise. However, it does result in the highest queueing in the

experiment, 5 MByte or 900/0 of the bandwidth-delay product

of the flow from Green to Yellow before the switch.

5) Increase and decrease in available bandwidth: As the

load on Link 2 increases, the bandwidth available to the flow

from Red to Blue increases. MaxNet quickly increases its

window to use the extra bandwidth within around 2 s.

B. Cross traffic

MaxNet was run for 30 s on a single 1Gbitls link with 29 ms

RTT and target utilisation 94% (JL == 0.94). From 10 s to 20 s,

a 400 Mbit/s constant bit rate (CBR) flow shared the link.

Figure 9 shows the rates achieved by each flow. Note that

this is a heavier CBR load than most encountered in practice,

and provides an arduous test.

At the start, MaxNet again converges rapidly to the target

94% utilisation. When the CBR flow starts, the MaxNet flow

relinquishes bandwidth almost immediately, because of the

ACK-clocking inherent in window-based protocols. After a

few seconds, the target rate drops to the available bandwidth

and the total utilisation drops back to 94%, observable as a

slight dip in the MaxNet flow's rate.

When the CBR flow ends, the dynamics of (6) can be

observed. Over two thirds of the spare capacity is reclaimed

by the MaxNet flow within 0.3 s due to the rapid drop in price.

The remaining rate increase is slower due to the interaction

between the price and the variable ~ used to ensure stability,

but the target utilisation is still reached within a few seconds.

VI. STABILITY AND TRANSIENTS

MaxNet 2.0's stability will now be proved using the theory

developed in [14]. Subsection VI-D at the end of this section

is aimed at designers wishing to change MaxNet's parameters.

A. Background

Let us now review the relevant results of [14], adapted to

the case of MaxNet. These results apply to general multi-link

networks with heterogeneous RTIs.

Stability in the presence of delay requires that the loop gain

be sufficiently low. The loop gain is determined by the slope of

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:34:29 UTC from IEEE Xplore. Restrictions apply.

(11)

the demand function, which places restrictions on the family of

(static) demand functions which are stable [14]. It was further

shown that the stability of network using lead-lag controllers,

such as MaxNet, can be determined from the function

e- STi
S + Z

F(s,Tija)=a + /'
STi S Z"'i Vi

where S is the complex frequency, Ti is the RTI of the ith flow,

"'i == ll:iXOi /7i is the slope of a static demand function which

would result in stability, and Vi is the slope of the ("true")

demand function, D i , at the operating point. This function

appears as the elements of a diagonal matrix in the loop gains

of the system. The triangulation approach of [13] shows that

this result also applies to MaxNet.

The stability proof for MaxNet is based on the following

result, which follows easily from the results of [14], [19]:

Lemma 1: Let H(w;a) == Co{F(jw,Ti;a)} be the convex

hull of F evaluated at the RTTs of the individual flows, at a

given frequency w. The system will be stable if the trajectory

of H (w; a) for w E lR+ does not intersect the negative real

axis to the left of -1 + OJ. 0

The trajectory of H is a generalised form of Nyquist curve.

In [14], the speed of dynamics was matched to the flow with

the longest RTT, by setting Z == 'r}/t, for a sufficiently small

'r}, where t is an upper bound on Ti. The stability proof

considered the system at two timescales. It was shown that

for frequencies w < 1/maXi (Ti), the convex hull H (w; a) lies

entirely below the real axis, while for larger w, it is contained

in a particular spiral which is bounded away from -1 +OJ.

B. Choice of demand function

The dynamics depend heavily on the ratio "'i / Vi. This

depends on the demand function and the operating point.

The reason [14] added a lead-lag compensator was to ensure

the stability when "'i / Vi < 1. In this case, the resulting "lag

compensator" yields a resonance peak, causing very slowly

decaying oscillations, which are unacceptable in practice.

A key observation of this research is that the compensator

provides "insurance" against extreme RTTs, but does not

extend the range of practically feasible demand functions.

Since MaxNet's equilibrium is independent of the demand

function, the demand function can be chosen to improve

the dynamics. In particular, the ratio "'i / Vi can be made

independent of the operating point by using a demand function

x(q) == xmaxe-q
/

T
, (12)

giving "'i / Vi == aT/ Ti. This ensures that the rate of conver

gence will not depend on the capacity of the bottleneck link.

In contrast to [14] which uses a lead-lag parameter, z,

dependent on the largest RTT in the network, Zi == 'r} / t, the

current implementation of MaxNet adapts Z to each flow's own

RTf, setting Zi == 'r} / Ti. This yields

e- STi STi + TJ
F(s 'f... a) == a-- (13)

, ~, STi STi + 'r}aT/Ti

In this case the stability proof of [14] needs modification,

1) Find ~ == wo(t) by (14).

2) Using (13), construct the Nyquist spiral

S == {F(jw, t; 1) : w > ~}.

3) Similarly, construct the tail T == {F(j~, T; 1) : T < t}.
(This is not the tail of any Nyquist plot, as w is fixed.)

4) Construct a line entirely to above each curve, and

denote the point at which this intersects the real axis

by -l/omax. That is, construct {, == {x + jy : y =:;

,(x+1/nmax)} with amax and,.., such that (X+}Yl) E £

and (x + jY2) E S u T imply Yl ~ Y2.

Algorithm 3. Detennining stable parameters.

since spiral used in that proof no longer encloses the Nyquist

curves for all frequencies w > 1/t. However, the same

principle of studying the system at two timescales can again be

used. There is again a threshold frequency ~ (depending on T

and TJ) such that the convex hull H (W; a) is below the real axis

for w < ~. It is also possible to choose a small enough such

that H(w; a) is strictly below a slanted line through -1 + OJ
for w > w. The theoretical complication arising from adapting

Z to eachflow's RTT is that, unlike in [14], ~ 1= l/f.

Using this approach, it can be shown that MaxNet is stable

for all RTTs up to T == 1000 seconds using the parameters

of Section V, namely T == 0.4 s, a == 0.66 and 'r} == 0.06.

If Z were independent of Ti as in [14], ensuring stability for

T == 1000 seconds would require Z < 10-3
, and it would take

a quarter of an hour for flows to achieve their equilibrium

(fair) rates, in contrast to the 20 s shown in Figure 7.

c. Determining stable parameters

The first step in choosing suitable parameters is finding the

provably stable combinations. Following [14], the system will

be designed to be stable for all RTTs T < t.

For a given value of aT, and a given lead-lag coefficient 'r},

the following is a method to find the range of overall gain a

which gives stability. Define

Wo (T) == min{w : Im(F (jw, T; 1)) == O} (14)

to be the lowest frequency at which the spiral for T crosses

the real axis. A given wand T are said to be "in the tail" if

w < Wo (T), and "in the spiral" otherwise.

Given aT E (0, of] and TJ > 0, the steps to choose a

yielding a stable system are given in Algorithm 3. Figure 10

shows the construction.

Proposition 1: Under the construction of Algorithm 3,

MaxNet is stable for any a < a max for any number of flows

and any network topology with maximum delay t. 0

For a maximum RTf of T == 1000 seconds, the parameters

of Section IV satisfy this proposition with £ having slope

,.., == 0.3504, and ~ == 0.001525.

The proof of Proposition 1 is in two parts. The first shows

that for w < ~, all Nyquist curves are below the real axis. The

second has two subparts. The first shows that the spiral for T <
f is within S (the spiral for f) by showing that the magnitude

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:34:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 11. Plots of T and S (solid lines), and Nyquist curves for varying T.

(a) T, T E (0.006,0.6). Curves (b) S, T E (0.001,10 = r). Dotted

truncated to W > f:!L. Note the curves line completes the convex hull. Note

are within T in the bottom left curves "in the spiral" are within S.
quadrant.

o-5 -4 -3 -2 -1
real

-1

~
m
c:

'g> -0.5
.5

Fig. 10. Spiral S, Tail T, and line £ together with resulting arnax for the

illustrative case of r = 3s "l = 0.7 and aT = 0.1 s.

Ot-------~-___Hlt_+_t

-1/a /"",",
m a ~ ; : ~ \

0.5 ,-------r------.--.........---~____:_.........,

of F is a decreasing function of T for a fixed argument. The

second shows that the portion of the tail with w 2 ~ is within

the convex hull of T by showing that the magnitude of F is

a decreasing function of w for a fixed argument.

The proof involves studying the functional relationship

between F and several variables. With the obvious abuse of

notation, these functions will all be called F, but with different

argument lists. Let ¢ == WT and

O(T, ¢) == Arg (TJ + j¢) - ~ - ¢ (15)
TJaT/T+j¢ 2

so that F(j¢/T, T; 1) == IF(j¢/T, T; 1)1 exp(O(T, ¢)). The

following lemma is proven in [20].

Lemma 2: For any given W > 0, T > 0, ¢ > 0 and 0 < 0,

1) ~o(T)/dT < 0

2) dIF(O, ¢)I/d¢ < 0 if 0 < -7r/2

3) dIF(O, T)I/dT > 0 if 0 < -7r/2

4) d I F (O , w) I / ~ < 0

5) darg(F(¢, T))/dT < 0

6) d/F(¢, T)I/dT > 0

where the derivative of arg(·) is defined modulo 27r. 0

Proposition 1 can now be proved.

Proof· By Lemma 1, it is sufficient to prove that, for

any w, H (w; a) does not intersect the real axis to the left of

-l+jO. Since a merely scales F, this is equivalent to H(w; 1)

not intersecting the real axis to the left of -1/a, which is left

of the intercept of £.

For any wand T in the tail, F(jw, T; 1) is below the real

axis; this follows from l i m w ~ o arg(F(jw, T; 1)) == -7r/2, the

continuity of F and the definition of the tail.

It will now be shown that (i) for any w < ~, H(w; 1) will be

entirely below the real axis, and (ii) for any w 2 ~, H (w; 1)

will be entirely below the oblique line £.

(i) Consider an w < ~. By Lemma 2(1), for all T < f,

w < WO(T) whence wand T are in the tail. Thus F(jw, T; 1)
is below the real axis for all T, implying H (w; 1) is also.

(ii) It remains to show that, for all w 2 ~, H(w; 1) is below

£ if T < T. The cases of T and w being in the tail and in the

spiral will be considered separately.

If T and w are in the tail, then F (jW, T; 1)) is below the

real axis, and will be below £ unless it is in the bottom left

quadrant, corresponding to 0 E [-7r, -7r/2]. In that quadrant,

F(jw, T; 1) will be in the convex hull of T U {O + jO} by

lemma 2(4), which lies completely below £ by construction.

This is illustrated in Figure 11 (a), and establishes the result of

this paragraph.

Conversely, if T and w are in the spiral, then F(jw, T; 1) is

within the convex hull of 5, by lemma 2(3). This is illustrated

in Figure II(b). Since Co(5) is entirely below £, it follows

that F(jw, T; 1) also is.

For a given w > ~, F(jw, T; 1) is in the convex region

below £ for all T < T, and thus their convex hull is also

within that region. This establishes case (ii). •

It is not necessary to construct the complete sets 5 and

T. It is only necessary to construct the outermost arc of 5

in the upper left quadrant. Determining how much of T is

required is more complex. Given a line £' == {x + j y : y ==

--y'(x + x')}, and a bounded subset T' ~ T, it is desirable to

know whether £' is above T. A sufficient condition is provided

by the following result.

Proposition 2: Consider a line £'. Let T' == T n {x + jy :

y > 'Yx} be T truncated to T > T', where T' is the largest

value in the tail for which the line between the origin and

F(jw, T'; a) is parallel to £'. If £' is above T' then £' is also

~ o ~ T . 0

Proof· This follows from the fact that arg(F(j¢/T, T; a))
increases as T decreases, by lemma 2(5). •

D. Parameters for rapid convergence

The parameters used in Section V are suitable for most

networks. Networks with unusually high RTTs, or the need

for particularly fast dynamics, may require other parameter

sets. The following empirical procedure considers practical

performance, as well as theoretical stability.

1) Let T be the maximum RTT, T, for which rapid conver

gence is required. Set o.T == T.

2) For TJ ~ 0.1, use (13) to select 0. to give a phase margin

of 45°; that is, Arg(F(jw,T;o.)) > -37r/2 for all w

such that IF(jw, T; 0.)1 > 1.

3) Empirically adjust TJ to balance the initial rise time for

a single flow against convergence to equilibrium; lower

TJ reduces the initial rise, but increases the settling time.

4) For the selected parameters, use Algorithm 3 to verify

stability for a sufficiently high T.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:34:29 UTC from IEEE Xplore. Restrictions apply.

VII. COMPARISON WITH OTHER PROTOCOLS

In this section we compare MaxNet with other prominent

explicit signalling protocols: XCP, RCP and JetMax. As none

of the protocols appear to have released implementations ca

pable of operating at 1Gbitls, we do not perform experimental

comparisons.

XCP and MaxNet differ in several regards. XCP only

achieves constrained max-min fairness [21] where sources

may claim an arbitrarily small fraction of the max-min fair

rates, contrasting to MaxNet's bound of J-Ll. Furthermore,

linear stability of XCP has only been proven for a single

link with sources of homogeneous RTIs, and [22] indicates

that XCP can exhibit oscillatory behaviour under more diverse

circumstances. In this paper we prove the linear stability of

MaxNet for arbitrary network topologies. In terms of imple

mentation, XCP is more complicated, requiring 12 operations

per packet at the router compared to 2 for MaxNet, and 16

bytes compared to 6 bytes in the packet header.

RCP [8] has a similar structure to MaxNet, but differs in

how equilibrium queues are avoided. MaxNet uses a virtual

queue with capacity marginally below the true link capacity,

while RCP has a parameter {3 which, when non-zero, explicitly

reduces the sending rates in the presence of a queue.

The relationship between RCP and MaxNet is clearly seen

by considering a network with homogeneous delays, T, and

setting (3 == 0 for RCP, and the virtual queue capacity to the

true link capacity for MaxNet. In this case, RCP updates the

advertised rate every small dt by

R(t) = R(t ~ dt)(l + dt Q(C;/j(t))). (16)

Taking the log of (16) and using log(l + x) ~ x gives

log(R(t)) = log(R(t - dt)) + dt Q(C;/J(t)). (17)

Changing variables using demand function R(t) == e-n-p(t)/T

yields MaxNet's price update law (3) with J-Ll == 1.

More fundamentally, RCP and MaxNet differ in how they

trade off speed of convergence with stability. Delayed feedback

systems need to scale their feedback down for long RTIs. In

MaxNet, this is done at each source, since the sources know

their RTIs. In RCP, this is done by the routers based on the

traffic-weighted average RTT advertised in the packets.

The drawback of MaxNet's approach is that a global pa

rameter, aT, must be set to ensure acceptable performance

for high-RTT flows, which limits the speed of response for

low-RTT flows. The drawback of RCP's approach is that it

can be unstable. This is described in [20].

In JetMax [9], routers calculate a target rate by estimating

the number of flows bottlenecked at that link, and estimating

the capacity used by non-bottlenecked flows. For this, it uses

four 32-bit fields to signal current rate and congestion infor

mation, and three 8-bit fields to identify the bottleneck router

explicitly. This does not include fields to communicate the

control information back from the receiver to the sender. It is

not clear how JetMax estimates which flows are "responsive".

VIII. CONCLUSION

Explicit signalling allows flow control to maintain high

utilisation with small average queues, to rise to full line

rate within one or two RTIs and share bandwidth fairly.

MaxNet is such a protocol which has been designed to be

easily implemented and provably stable, while minimising

signalling overhead. Experiments on an initial implementation

of MaxNet 2.0 in the realistic environment of WAN-in-Lab

confirmed that it can achieve the above goals.

IX. ACKNOWLEDGMENT

This research is part of the WAN-in-Lab project, supported

by NSF grant no. 0303620.

REFERENCES

[1] V. Jacobson, "Berkeley TCP evolution from 4.3-tahoe to 4.3-reno," in
Proc. 18th Internet Engineering Task Force, Aug. 1990.

[2] I. Rhee and L. Xu, "CUBIC: A new TCP-friendly high-speed TCP
variant," in Proc. PFWnet, Feb. 2005.

[3] D. Leith and R. Shorten, "H-TCP: TCP for high-speed and long-distance
networks:' in Proc. PFWnet, Feb. 2004.

[4] L. Brakmo, S. O'Malley, and L. Peterson, "TCP Vegas: new techniques
for congestion detection and avoidance," in Proc. SIGCOMM, Sep. 1994.

[5] C. Jin, D. Wei, and S. Low, "FAST TCP: motivation, architecture,
algorithms, performance," in Proc. IEEE Infocom, Mar. 2004.

[6] K. Ramakrishnan and S. Floyd, "Proposal to add explicit congestion
notification (ECN) to IP," RFC 2481, Jan. 1999.

[7] D. Katabi, M. Handley, and C. Rohrs, "Congestion control for high
bandwidth-delay product networks," in Proc. SIGCOMM, Oct. 2002.

[8] N. Dukkipati and N. McKeown. "Why flow-completion time is the right
metric for congestion control," ACM SIGCOMM Computer Communi

cation Review, vol. 36, pp. 59~2, Jan. 2006.
[9] Y. Zhang, D. Leonard, and D. Loguinov, "JetMax: Scalable max-min

congestion control for high-speed heterogeneous networks," in Proc.

IEEE Infocom, Apr. 2006.
[10] B. Wydrowski and M. Zukerman, "MaxNet: A congestion control

architecture for MaxMin fairness," IEEE Commun. Lett., vol. 6, pp. 512
514, Nov. 2002.

[11] F. Kelly, "Charging and rate control for elastic traffic," European

Transactions on Telecommunications, vol. 8, pp. 33-37, Jan. 1997.
[12] B. Wydrowski, L. Andrew, and I. Mareels, "MaxNet: Faster flow control

convergence," in Proc. Networking, 2004, Springer Lecture Notes in
Computer Science LNCS 3042.

[13] B. Wydrowski, L. Andrew, and M. Zukerman, "MaxNet: A congestion
control architecture for scalable networks:' IEEE Commun. Lett., vol. 7,
pp. 511-513, Oct. 2003.

[14] F. Paganini, Z. Wang, J. Doyle, and S. Low, "Congestion control for
high performance, stability and fairness in general networks," IEEEI

ACM Trans. Networking, vol. 13, pp. 43-56, Feb. 2005.
[15] G. Lee, L. Andrew, A. Tang, and S. Low, "WAN-in-Lab: Motivation,

deployment and experiments," in PFLDnet, 2007.
[16] F. Paganini, 1. Doyle, and S. Low, "Scalable laws for stable network

congestion control:' in Proc. IEEE CDC, Dec. 2001.
[17] A. Jain, S. Floyd, M. Allman, and P. Sarolahti, "Quick-start for TCP

and IP," Internet draft, Jul. 2006.
[18] T. Lakshman and U. Madhow, "The performance of TCPIIP for networks

with high bandwidth-delay products and random loss," IEEElACM

Trans. Networking, vol. 5, pp. 336-350, Jun. 1997.
[19] G. Vinnicombe, "On the stability of end-to-end congestion control

for the internet," University of Cambridge, Tech. Rep. CUEDIF
INFENGffR.398, Dec. 2000.

[20] L. L. Andrew, K. Jacobsson, S. H. Low, M. Suchara, R. Witt, and B. P.
Wydrowski, "MaxNet: Theory and implementation." [Online]. Available:
http://netlab.caltech.edulmaxnetIMaxNet_Implementation_TechReport.pdf

[21] S. Low, L. Andrew, and B. Wydrowski, "Understanding XCP: Equilib
rium and fairness," in Proc. IEEE Infocom, Mar. 2005.

[22] L. Andrew, B. Wydrowski, and S. Low, "An example of
instability in XCP." [Online]. Available: http://netlab.caltech.edu
rIachlanlabstractlxcpInstability.pdf

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:34:29 UTC from IEEE Xplore. Restrictions apply.

