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Abstract 

 

Most localization algorithms use a range sensor or vision in a horizontal view, which usually imparts some disruption from a dynamic 

or static obstacle. By using landmarks on ceiling which the vehicle position were vertically measured, the disruption from horizontal 

view was reduced. We propose an indoor localization and navigation system based on an extended Kalman filter (EKF) and real-time 

vision system. A single upward facing digital camera was mounted on an autonomous vehicle as a vision sensor to recognize the land-

marks. The landmarks consisted of multiple circles that were arranged in a defined pattern. Information on a landmark’s direction and its 

identity as a reference for an autonomous vehicle was produced by the circular arrangements. The pattern of the circles was detected 

using a robust image processing algorithm. To reduce the noise that came from uneven light, the process of noise reduction was separated 

into several regions of interest. The accumulative error caused by odometry sensors (i.e., encoders and a gyro) and the vehicle’s position 

were calculated and estimated, respectively, using the EKF algorithm. Both algorithms were tested on a vehicle in a real environment. 

The image processing method could precisely recognize the landmarks, and the EKF algorithm could accurately estimate the vehicle’s 

position. The experimental results confirmed that the proposed approaches are implementable.   
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1. Introduction 

The problem of robotic localization and navigation has been 

widely studied. Autonomous vehicle localization is important 

because when a robot moves through its environment, its ac-

tual position and orientation should be known as a reference. 

Numerous studies of localization and navigation systems have 

been performed [1-24]. Most of those studies were applied 

only to one location. Therefore, when a vehicle moved to a 

new location or different environment, the algorithms should 

be modified or built to identify its environment. One method 

to perform indoor localization is by placing landmarks at 

known positions and using a mounted sensor on the robot to 

measure their bearings [1]. Many positions for landmarks as a 

references have been proposed, including those on floors and 

walls (i.e., a horizontal views) [3-9], and ceilings (i.e., a verti-

cal views) [10-15]. Since the use of ceiling landmarks has an 

advantage, which it has a tolerance of dynamic obstacle, most 

researchers have chosen a landmark on the ceiling as the ref-

erence. Fukuda et al. used an air conditioning device (anemo) 

as a landmark located on the ceiling [15]. Two charge-coupled 

device (CCD) cameras were used as center and front cameras 

to recognize the anemo, and fuzzy template matching algo-

rithms were used to recognize the landmarks. Panzieri et al. 

used ceiling lamps in their experiment as a landmark because 

ceiling lamps have the same shape if placed in a regular way 

[18], and can easily be seen without obstacles between the 

ceiling lamps and the robot vision system. Ceiling light-based 

positioning methods with all lights shining were assumed; 

however, there exists another problem when the light is dam-

aged or turned off. In addition, the light may not appear in the 

view of the camera. Xu used natural features on the ceiling 

[11]. The initial orientation and position of the autonomous 

vehicle was estimated via perspective n-point-based position-

ing method. With the motion of the mobile robot, its global 

orientation was calculated from the main and secondary lines 

feature when the ceiling has parallels. In other cases, its global 

orientation was estimated with point feature on the ceiling. 

Then, its position is recursively computed with the point fea-

tures. Wu and Tsai used attached landmarks on the ceiling 

[10]. An omnidirectional camera was used to take an image of 

a landmark with a circular shape. The circular shape on the 
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ceiling was proposed becomes irregular (ellipse) with no 

mathematical shape descriptor in an omnidirectional image. 

The parameters of the ellipse are then used for estimating the 

location of the vehicle with good precision for navigation 

guidance. Both simulated and real images were tested and 

good experimental results confirm the feasibility of the pro-

posed approach. The aforementioned methods are feasible 

when the area of robot operation is small and the camera can 

obtain the landmark from any position in the room. However, 

when the robot operates in a large room or in corridors, the 

circle on the landmark will be difficult to differentiate from 

the other landmarks. Another disadvantage of this approach is 

that the robot still needs a sensor (such as a compass) for di-

rection knowledge, which is needed to detect the robot’s posi-

tion in a different direction.  

The Kalman filter (KF) and extended Kalman filter (EKF) 

have been used in many areas including automotive, commu-

nications, and simultaneous localization and mapping 

(SLAM). Turnip et al. used an EKF to estimate nonlinear 

model parameters of hydro-mount systems [19]. Kim and 

Hong used an EKF and an unscented Kalman filter for vehicle 

tracking in an automated container terminal [20]. Park et al. 

used an EKF to correct a robot pose in a rough surface envi-

ronment [21]. Myung et al. used a KF to estimate parameters 

under physical constraints using a general constrained optimi-

zation technique [22].  

A vision system or a combination of a vision system and 

sensors has been used in localization and navigation systems. 

Lee et al. used a combination of vision and a range sensor for 

mobile robot localization [7]. Park et al. used a CCD camera 

to calculate the zero moment point that was measured from 

the reference object image (the camera was located on a ro-

bot’s head) [16]. Bui et al. used sonar sensor to avoid obsta-

cles in robots navigation [9]. We propose localization and 

navigation based on an extended Kalman filter and real-time 

image processing on a vision system. A combination of an 

odometry sensor and a vision system was used. The vision 

system was used to change laser range sensor Nav200 in our 

previous work [23].  

The vision system was designed with a simple and imple-

mentable landmark (an arranged circle combination) and at-

tached to a ceiling. A digital camera in the face-upward posi-

tion was mounted on an autonomous vehicle to recognize the 

landmarks. EKF algorithms were used to estimate the vehi-

cle’s position based on image processing information and data 

from the odometry sensors. The contributions of this study are 

the following: i) A low cost digital camera replace an expen-

sive laser range finder as a global sensor. ii) A robust and fast 

image processing algorithm, which has ability to detect and 

recognize the landmark in real-time in areas with uneven light, 

is proposed. iii) The incorporation of an EKF algorithm and a 

vision system improves the correction ability with respect to 

the vehicles’ position when the vehicle moves from one land-

mark to another. We believe that the proposed system will 

help engineers to develop simple and cheap systems without 

reducing the ability of autonomous vehicle guidance (AVG) to 

localize and navigate in an indoor environment. 

The rest of the paper is organized as follows. The configura-

tion of the odometry sensor and vision system is described in 

Section 2. The EKF is examined in Section 3. The landmark 

system and its image processing are examined in Section 4. 

Our experimental results are described in Section 5. Our con-

clusions and possible future improvements are discussed in 

Section 6. 

  

2. System configuration of combined odometry sensor 

and vision 

We built an autonomous vehicle with a digital camera 

mounted on the vehicle. Fig. 1 shows the system configuration. 

A Compaq Presario CQ20 notebook was used specifically to 

handle the image processing routines, with the aim that this 

system can work in real time. The notebook was connected to 

the main notebook using RS232 serial communication. The 

main notebook was used to control vehicle movement and 

estimate vehicle position by the EKF. Two encoders and a 

gyro were used to calculate vehicle speed and angular velocity.  

An AVR ATmega128 microcontroller handled the gyro and 

the encoders. RS232 serial communication was used to con-

nect the AVR and the main notebook. Two direct current 

(DC) motors were used to propel the vehicle. The motors were 
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Fig. 1. Designed system configuration. 

 

 
 

Fig. 2. Vehicle with face-upward digital camera. 
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controlled by the main notebook through a USB DAQ motor 

driver. Fig. 2 shows the vehicle with the face-upward digital 

camera.  

 

3. Real-time positioning system using EKF and a ceil-

ing landmark 

There are two types of areas in the localization system: 

landmark-detected areas and blind areas. A landmark-detected 

area is an area in which the camera can capture the landmark. 

A blind area is an area in which the landmark is not detected 

by the camera. For the blind area case, the vehicle uses an 

encoder and a gyro (local sensors) to predict its position. The 

EKF algorithm was used to correct the accumulative error 

produced by the encoder and gyro, and the vehicle’s position 

was estimated using the EKF.  

 

3.1 Sensor fusion for local and global localization 

The EKF is the nonlinear version of KF which linearizes the 

current mean and covariance. There are two states in the EKF 

system: the prediction state and the measurement updating 

state [25, 26]. The prediction state uses the state estimated 

from the previous time step to produce an estimate of the state 

at the current time step. In the updating state, the current priori 

prediction is combined with current observation information 

to refine the state estimate. Fig. 3 shows the EKF cycle of our 

system. The odometry sensor consists of two encoders and a 

gyro sensor. Data from the odometry sensors were sent to the 

main processor every 100 ms. In addition, data from the cam-

era were sent to the main processor as long as the landmark is 

detected.  

To predict the state or time update, the state and error co-

variance are estimated from the previous timestep k-1 to the 

current timestep k. The prediction state is given by  

 

1( , ,0)k k kf −=x x u ,  (1) 

1 1
T T

k k k k k kk − −= +P A P A W Q W   (2) 

 

where xk is a state vector, Pk and 
k%

P  are the a posteriori and a 

priori estimate of error covariance, and Vk and Wk are the 

Jacobian matrices of the partial derivatives of f at step k with 

respect to x and process noise w, respectively, Q is the process 

noise covariance at step k. 

The measurement updating equations correct the state and 

covariance estimates with the measurement zk. The measure-

ment update equations are defined by 
 

1( )T T T
k k k k k k kk k

−= +K P H H P H V R V ,  (3) 

( ( ,0))k k k k k= + −x x K z h x ,  (4) 

( )k k k k
= −P I K H P   (5) 

 

where Kk is the Kalman gain, Hk and Vk are the measurement 

Jacobian matrix of partial derivatives of h at step k with re-

spect to x and measurement noise v, respectively, and Rk is the 

measurement noise covariance at step k. 

 

3.2 Movement model 

To implement the EKF to our system, the proposed motion 

model is defined by 
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where p
kx , p

ky
 
and p

kθ are the (x, y) vehicle position and the 

heading at step respectively; p indicates that x, y, and θ come 

from odometry sensor; θk-1 is the robot heading at step k-1; ωk 

is the angular velocity produced by gyro sensor; and v is the 

vehicle speed as follows: 
 

2

l rv v
v

+
=   (7) 

 

where vl and vr are the speed of the left and right vehicle wheel 

produced by the left and right encoders, respectively.  

The time update of vehicle movement in the EKF model is 

defined by 

 

1 1( , , ) T T
k k k k k k kf θ− −= = +x x u A x W u  (8) 

 

where Ak is the Jacobian matrix of partial derivatives of f with 

respect to x, given as 
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Fig. 3. EKF cycle. 

 



952 A. Rusdinar et al. / Journal of Mechanical Science and Technology 26 (3) (2012) 949~958 

 

 

      

1 0 sin( )

0 1 cos( )

0 0 1

k k k

k k k

v

v

θ ω
θ ω

− +⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

.  (9) 

 

Wk is the Jacobian matrix of the partial derivative of f with 

respect to driving function u, given as 
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To support the measurement update, the measurements zk 

and Hk are defined as 
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where xvision and yvision are the vehicle positions produced by the 

camera, and dist is the measured position error between the 

estimated position from the odometry sensor and the camera. 

 

4. Landmarks 

Landmarks are images that consist of some circles arranged 

to form the code information representing identity and direc-

tion [27]. Identity and direction are used to mark the position 

of landmarks and determine the robot's head, and act as a 

guide to position the next landmark so the vehicle can follow 

the direction of the landmarks. 

 

4.1 Landmark direction and identity 

Landmark identity is defined by the circle arrangement in 

the image. To recognize the identity, the circle coordinates of 

head (H), tail (T), and right (R) must first be defined. H is 

defined as a meeting point between two lines formed from the 

coordinates of T and R, where the two lines have equal length 

and a line perpendicular to each other. Fig. 4 shows the land-

mark schemes. Which are; (a) show H, R, and T positions, 

where l is the distance between H and R, (b) and (c) show the 

dimension of the landmarks in 3×3 and 4×4 types of size. The 

landmark direction is determined by the position of T and H. 

If we assumed that the line formed between T and H is a line 

of arrows, then the heads of the arrows are H and the tails are 

T. The direction of the landmark is obtained by the angle 

formed between the arrows and the y-axis in the positive di-

rection. To calculate the direction, T is shifted into the center 

of the landmark 'T (0, 0). The coordinate of H is also shifted 

into the new coordinate 'H . The new coordinate of 'H  is 

defined by Eq. (14), and the direction is defined by Eq. (15) 

 

'xy xy xyH H T= −  , (14) 

1 '
tan ( )

'

x

y

H

H
θ −= . (15)  

 

The landmark identity is defined by the arrangement of a 

circle in the image. Fig. 6 shows the bit position in landmark. 

Bit positions are defined by circle coordinates. To define the 

coordinates, the n-th coordinates must be determined; this 

point is called 'E  and is defined by 

 

' ( )xy xy xy xyE T R H= + −   (16) 

 

 (a) H, R and T position      (b) 3X3 type       (c) 4 X 4 types 
 

Fig. 4. Landmark schemes. 

 

 
 

Fig. 5. Landmark direction. 

 



 A. Rusdinar et al. / Journal of Mechanical Science and Technology 26 (3) (2012) 949~958 953 

 

  

where 'xyE , Txy, Rxy, and Hxy are the coordinates of 'E , T, R, 

and H respectively. Then, the coordinate of each circle is de-

fined by  

 

1 ( )
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j xy xy

j
b R H

n
= −

−
 2 1j n= − , (17) 
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Each coordinate of bit is defined by the circles position, 

which its coordinate were searched by using image processing. 

The bits were defined by “1” for any position indicated by a 

black circle, and by “0” for the empty position. Then, the re-

sult is arranged into a binary code format. l =B  

( 1) ( 2) 1 0b bbit bit bit bit− −⎡ ⎤⎣ ⎦  is an obtained binary 

code from the image processing. The binary code is changed 

into decimal code by 
 

. T
lid = B d   (22) 

 

where id is the identity number of a landmark and d is defined 

by 
 

( 1) ( 2) 1 02 2 2 2b b
MSB LSB

− −⎡ ⎤= ⎣ ⎦d   (23) 

 

where b is the number of the bits, it defined by 2 4b n= − , 

then the id is used to mark every coordinate point in the navi-

gation.  

 

4.2 Image processing of the landmark 

Speed and noise are the main problems in image processing. 

Complicated algorithms make image processing run slowly, 

and uneven light during robot motion in the hallway causes 

much noise. Thus, the image recognition process becomes 

difficult. To solve this problem, we propose a simple and fast 

algorithm to recognize the circle and its arrangement. To 

make the recognition process work perfectly, the color image 

is changed into a black and white image. By changing color, 

the threshold search algorithms should have the ability to 

adapt to uneven light. 

 

4.2.1 Threshold searching 

In preprocessing, the image was divided into 16 regions, 

and the processes of threshold searching and noise removal 

were performed in each region. Noise was removed in three 

stages. First, the minimum and maximum value of pixels were 

searched. Then, the threshold was calculated as  

 

max min
1 ( )

2
thr RGB RGB= + . (24) 

 

Using Eq. (24), the threshold in each region was defined, 

where thr is the threshold in every region, and maxRGB  and 

minRGB  are the maximum and minimum RGB pixel values 

in every region, respectively. The RGB pixel was changed to 

black or white based on the threshold. Second, the black area 

calculation was performed in every region. The black area, 

which was more than thirty percent of the region size, was 

assumed as noise. Third, we performed a black pixel spread-

ing calculation. On this stage, a grid was built in each region 

with a distance of five pixels, and the number of black pixels 

was calculated. If the spreading of a black pixel by more than 

half of the region size occurred, then the pixel was assumed to 

be noise. Fig. 7 (when the light is on) and Fig. 8 (when the 

 

 

Fig. 7. Landmark on ceiling in light condition. 

 

 

 

Fig. 8. Landmark on ceiling in dim light condition. 

 

 
 

Fig. 6. Bit position in landmark. 
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light is off) show the results of preprocessing. 

 

4.2.2 Landmark recognition 

A region of interest (ROI) was built to limit each circle dis-

tance. In this ROI, the circle and landmark shape recognition 

processes were performed. The position of the ROI changed in 

every frame of the image if the landmark was not detected, 

otherwise, the ROI moved to follow the landmark position. To 

recognize the circle, the searching method of Ho and Chen 

was used [28]. The center of the recognized circles and their 

radii were saved into the memory array. Then the positions of 

the circles were classified into four categories: highest (top), 

lowest (bottom), left-most, and right-most positions. By calcu-

lating and comparing the distance between these positions, the 

circle coordinates of H, R, and T were defined. As explained 

in Section 3.1, after the head of the landmark was found, the H 

position was used as a landmark coordinate. The H position 

was defined by Hxy, where Hxy is the (x, y) position of the 

landmark head. Since the circle positions were in the ROI, the 

landmark position in the image can be described as  

 

xy xy xyl H f= +   (25) 

 

where fxy=(fx, fy) is the ROI position. The ROI position was 

used to track the landmark image when the vehicle was mov-

ing, and the ROI position was updated at every time step as 

long as the landmarks were captured and recognized by the 

camera. The new region of interest position is given by  

 

1 1(( ) / 2,( ) / 2)xy x x y yf f H wd f H hg− −= + − + −  (26) 

 

where (fx-1, fy-1) is the landmark’s position in the previous 

frame, and wd  and hg  are the width and height of the ROI, 

respectively.     

The tracking speed of the landmark position increased using 

the small window processing methods. When the vehicle 

moved, the head landmark position was held in the center of a 

small window and updated every time a new frame was re-

corded. This makes the window position follow the landmark 

image in the frame. Fig. 9(a) indicates the position of the vehi-

cle and the landmarks with respect to the image frame (0, 0). 

Let (rx, ry) be the center of the vehicle position in the image 

frame (i.e., / 2xr fc=  and / 2yr fr= , where fc  and fr  

are the column and row dimensions of the image). (Lx, Ly) is 

the landmark’s position with respect to the center of the 

vehicle, and its coordinates were calculated as ( , )x yL L =   

(( ),x xl r− ( )),y yl r−
1

2 2 2( ) ,x yL Lρ = + β = 1tan ( )x

y

L
L

− ,  

α β θ= − . Then, the vehicle’s position with respect to the 

landmark is calculated as cosxRv ρ α= , sinyRv ρ α= . Fig. 

9(b) shows ROI frame coordinate and landmark pose in frame. 

Fig. 9(c) shows the robot pose.  

The results of the recognition process were verified by plac-

ing the vehicle under both light and dim lighting conditions. 

Fig. 10 shows the image processing that was performed to 

detect and recognize the landmark under the light condition. 

The rectangular line that connected the top, bottom, left-most, 

and right-most of circles indicated that the landmark was rec-

ognized. The empty circle indicates the position of the bit in 

the landmark. Fig. 11 shows that when the lights are turned off, 

the image processing algorithm directly detected the land-

marks. The changing of the intensity of the light can disrupt 

the threshold value that was used to change the color image to 

black and white. By separated threshold searching in regions, 

the threshold was able to adapt according to the intensity of 

the light. Thus, the recognition processing was successful.  

 

5. Experimental results 

Two experiments were performed. First, the vehicle was 

   

(a) Vehicle and landmark position with respect to image frame 

 

     (b) ROI frame coordinate             (c) Robot pose 
 

Fig. 9. Vehicle and landmark coordinate system. 

 

 
 

Fig. 10. Landmark recognition result in light condition. 
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moved between two landmarks at a distance of 3100 mm. 

Second, the vehicle was moved in the corridors of our build-

ing. In the first experiment, the vehicle moves from the first 

landmark to the second landmark. When it reached the second 

landmark, it made 180 degree turn and move back to the first 

landmark. The vehicle move in one and two round trips, and 

the results were analyzed. Figs. 12 and 13 show vehicle 

movements for one round trip. Fig. 12 shows the vehicle tra-

jectory with vehicle position based on image processing and 

data trajectory from the gyro. Because of the gyro error, the 

distance of the real position from the vehicles position became 

large. Fig. 13 shows the trajectory result from the EKF al-

gorithms, and vehicle position based on camera processing. 

The EKF had an ability to correct the accumulative error pro-

duced by the gyro. Figs. 14 and 15 show the vehicles trajec-

tory in two round trips from the gyro. Fig. 14 indicates that the 

farther the vehicle moved, the greater the resulting error ob-

tained. Fig. 15 shows the corrected position error of the vehi-

cle using the EKF algorithm. 

The second experiment was performed in the corridors of 

our building with the five landmark position map is given in 

Fig. 16. In the first trial, the vehicle was moved from land-

marks 1-2-3-4-5-2-1. While the vehicle moved, the position 

data determined by the gyro, EKF algorithms was saved, and 

the EKF position data was used for vehicle movement control.  

Fig. 17 shows the vehicle trajectory obtained by ground 

truth and the data from the gyro sensor. It shows that the ac-

cumulative gyro error made the vehicle trajectory far away 

from the real vehicle position. The vehicle trajectory based on 

EKF algorithm is given in Fig. 18. It shows that the EKF is 

able to correct the vehicle position.   

In the second trial, the vehicle was moved through land-

marks 1-2-3-4-5-2-3-4-5-2-1. Fig. 19 shows the vehicle trajec-

tory based on ground truth and gyro sensor. It shows that the  

 
 

Fig. 11. Landmark recognition result in dim light condition. 
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Fig. 12. One round trip trajectory of data from gyro. 
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Fig. 13. One round trip trajectory of data from EKF. 
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Fig. 14. Two round trips trajectory of data from gyro. 
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Fig. 15. Two round trip trajectory of data from EKF. 
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position errors based on gyro compared to the real position are 

large. Fig. 20 shows the result of the EKF algorithm. The re-

sults show that although the vehicle moved two laps and the 

error position from the gyro continued to increase, the EKF 

algorithms were able to correct the position. Fig. 21 shows the 

zoom in image of vehicle’s trajectory between two landmarks. 

It shows that the error of vehicle position estimation can be 

tolerated. Fig. 21(a) shows the trajectory of vehicle and data 

position from EKF, when vehicle move from the first land-

mark to the second landmark. Fig. 21(b) shows the trajectory 
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Fig. 20. Plot of trajectory of vehicle and EKF in two laps.  
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(a) Trajectory from the first landmark to the second landmark 
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(b) Trajectory from the second landmark to the first landmark 
 

Fig. 21. Zoom in image of the vehicle’s trajectory between two land-

marks. 

 

 
 

Fig. 16. Experimental environment map. 
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Fig. 17. Plot of trajectory of data from gyro and vehicle in one lap. 
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Fig. 18. Plot of trajectory of data from EKF and vehicle in one lap. 
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Fig. 19. Plot of trajectory of vehicle and data from gyro in two laps. 
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when the vehicle move from the second landmark to the first 

landmark.  

 

6. Conclusions 

We proposed localization and navigation based on an ex-

tended Kalman filter and real-time image processing on a 

vision system. According to the results, it has been confirmed 

that the combination of an odometry sensor, a vision sensor, 

and an EKF system can localize and navigate a vehicle in 

indoor environments. 

We proposed an identifiable landmark recognition by image 

processing and navigation system algorithms using only single 

low-cost digital cameras and odometry sensors. The landmark 

recognition method makes the system easy to implement in 

any new indoor environment otherwise without many algo-

rithms changing the vehicle can operate in other operation 

area. Using ceiling landmarks, every disruption from static or 

dynamic obstacles was eliminated. The system and the pro-

posed algorithms movies can be viewed at Ref. [26].  

In future work, natural landmark detection will be imple-

mented to improve the prediction of position and to calculate 

the vehicle’s position when vehicle unable to detect and select 

the artificial landmark in blind area. 
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Nomenclature------------------------------------------------------------------------ 

EKF : Extended Kalman filter 

Pk : Posteriori estimate error covariance 

Q : Process noise covariance 

Ak : Process Jacobian of partial derivatives of f with re-

spect to x 

Wk : Process Jacobian of partial derivatives of f with re-

spect to w 

Zk : Measurement noise at time k 

Kk : Kalman gain 

Rk : Measurement noise covariance at step k 

h : Non linear measurement function 

Hk : Measurement matrix 

ROI : Region of interest 

H : Head of landmark 

T : Tail of landmark 

R : Right side of landmark 

Id : Identity of landmark 

r : Radius of circles 

l : Distance between H and R 

Bl : Binary code of landmark 

θ : Heading angle of vehicle to landmark 

thr : Threshold of pixel 

fc : Frame column 

fr : Frame rows 

RGB : Pixel number of red, green blue 

Lxy : Landmark position when vehicle as reference 

Rvxy : Vehicle position when landmark as reference 

wd : Width of ROI 

hg  : Height of ROI 
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