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Abstract We provide a new characterization of implementability of reduced form
mechanisms in terms of straightforward second-order stochastic dominance. In addi-
tion, we present a simple proof of Matthews (1984) conjecture, proved by Border
(1991), on implementability.
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1 Introduction

In mechanism design contexts, such as those with type-dependent outside options, it is
sometimes more natural and convenient to optimize over reduced form mechanisms—
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2 S. Hart, P. J. Reny

i.e., interim probability assignments and cost functions—rather than the underlying
mechanisms themselves.1 Reduced form mechanisms also play a useful role in the lit-
erature on the equivalence between Bayesian and dominant strategy implementation.2

In contexts such as these, it is important to know when a reduced form mechanism
can actually be implemented. Maskin and Riley (1984) posed and studied this ques-
tion, and obtained a partial solution. Matthews (1984) made further progress and in
addition conjectured that an intuitive inequality constraint is necessary and sufficient
for implementability. Border (1991) finally solved the problem by proving Matthews’
conjecture.

The purpose of the present note is twofold. First, we provide an alternative char-
acterization of implementability in terms of straightforward second-order stochastic
dominance, and second, we offer a simple and direct proof of Matthews’ conjecture.
Reducing the problem to a well-studied concept—in this case stochastic dominance—
puts at our disposal a wide range of tools and insights; see for instance Remarks (b)–(d)
below.

Our work, like all of the work mentioned above, focuses on the classic mechanism
design setting in which there is a single indivisible object to be allocated to one of
n ex-ante symmetric agents, each of whose private information, which may be quite
general, is drawn independently from a common distribution.3

2 Results

The underlying probability space (the “type space”) is4 (T, T , λ). The number of
agents is n. Because the implementability question relates only to a mechanism’s
probability assignment function, we define a mechanism here in these terms only.5

Thus, a mechanism consists of n functions q1, q2, . . . , qn, with qi : T n → [0, 1] for
each i = 1, 2, . . . , n, such that

∑n
i=1 qi (t1, t2, . . . , tn) ≤ 1 for every t1, t2, . . . , tn in

T ; here qi (t1, t2, . . . , tn) is the probability that agent i gets the object when the reported
types are t1, t2, . . . , tn . A mechanism is symmetric if qi (tπ(1), tπ(2), . . . , tπ(n)) =
qπ(i)(t1, t2, . . . , tn) for every permutation π of {1, 2, . . . , n} and every agent i =
1, 2, . . . , n;, i.e., the “names” (1, 2, . . . , n) of the agents do not matter. A sym-
metric mechanism is thus given by a function q ≡ q1 : T n → [0, 1] such that
q(t1, t2, . . . , tn) is invariant to permutations of (t2, . . . , tn) and

∑
i qi ≤ 1, where

qi (t1, t2, . . . , tn) := q(ti , t2, . . . , ti−1, t1, ti+1, . . . , tn) (i.e., interchange the first and
the i th coordinates); q(t1, t2, . . . , tn) is the probability that an agent whose type is t1
gets the object when the other agents are of types t2, . . . , tn .

1 See, e.g., Mierendorff (2009); in the algorithmic game-theoretic literature, see Cai et al. (2012).
2 See, e.g., Manelli and Vincent (2010) and Gershkov et al. (2013).
3 For the case of asymmetric agents with finite-type spaces, see Border (2007) and Che et al. (2013); see
also Mierendorff (2011).
4 There are no requirements on the probability space. All functions will be assumed measurable, and all
statements to hold almost surely.
5 Thus the cost function as well as additional constraints (such as participation constraints), which are not
important for our purposes, are left unspecified.
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Implementation of reduced form mechanisms 3

A reduced form is a mapping Q : T → [0, 1]. A reduced form Q is implementable6

if there exists a symmetric mechanism given by q : T n → [0, 1] such that Q(t) =∫
T n−1 q(t, t2, . . . , tn)dλ(t2) · · · dλ(tn) for all t ∈ T ; i.e., Q(t) is the overall probability

that an agent of type t gets the object. In this case we say that Q is the reduced form
of q, or that q generates Q. Our concern is whether a given reduced form Q is
implementable.7

As will be shown, an important special case consists of the type space ([0, 1],B, λ∗),
withλ∗ the Lebesgue measure, together with the “efficient” mechanism q∗(t1, t2, . . . , tn)

= 1 if t1 > max{t2, . . . , tn}, and q∗(t1, t2, . . . , tn) = 0 otherwise. That is, the agents’
types are each uniformly distributed on [0, 1] and the mechanism gives the object to
the agent whose type is highest. Its reduced form is easily seen to be Q∗(t) = tn−1

for all t ∈ [0, 1] (when n = 2, the distribution of Q∗ is uniform on [0, 1]).
Theorem 1 The following conditions on Q : T → [0, 1] are equivalent:

(i) Q is implementable; i.e., it is the reduced form of a symmetric mechanism.
(ii) Q satisfies, for every8 α ∈ [0, 1],

∫

[Q>α]
Q(t) dλ(t) ≤ 1

n
− 1

n
(λ[Q ≤ α])n . (1)

(iii) −Q second-order stochastically dominates −Q∗.
Remarks.

(a) Condition (ii) is due to Matthews (1984);9 Border (1991) shows the equivalence
of (i) and (ii).10 Condition (iii) is new.

(b) Condition (iii) means that for every increasing and concave function u :
[−1, 0] → R we have11 E [u(−Q)] ≥ E

[
u(−Q∗)

] ; equivalently, for every

6 We follow the literature in referring to this property as “implementability”; it is in fact only a feasibility
requirement (and has nothing to do with incentive constraints and game-theoretic notions of implementa-
tion).
7 The symmetry requirement here, though natural, is somewhat more demanding than that in Maskin
and Riley (1984) and Border (1991), who do not require the invariance of q(t1, t2, . . . , tn) with respect
to permutations of (t2, . . . , tn). But this strengthening has no effect on the implementability of a
reduced form Q, since, for any mechanism q, averaging all its n! permutations π yields a mecha-
nism q̃ that is symmetric in our sense and has the same reduced form (specifically, q̃i (t1, . . . , tn) :=
(1/n!) ∑

π qπ−1(i)(tπ(1), tπ(2), . . . , tπ(n))).
8 [Q < α] is short for {t ∈ T : Q(t) < α}; similarly for the other events.
9 The fact that it suffices to consider the inequality (1) only on sets of the form [Q > α], rather than on all
measurable sets as in Matthews (1984), is immediate (see Proposition 3.2 of Border 1991).
10 When there are only two agents (i.e., n = 2), the implementability of Q can be restated as the existence
of a joint distribution with density that is bounded (by 1/E[Q]) and has given marginals (namely, the
distributions of appropriate rescalings of Q and 1 − Q). See Lorenz (1949), Kellerer (1961), and Strassen
(1965) for a general solution to such problems, which can then be proved to yield Matthews’ condition
(ii). Gale (1957) and Ryser (1957) deal with the related problem of the existence of matrices with entries
0 or 1 that have given row and column sums; interestingly, the resulting condition can be stated in terms
of majorization, the discrete version of second-order stochastic dominance. While this result is restricted
to only two agents, it may nevertheless be interesting to explore the connection further. We thank Benny
Moldovanu for referring us to this literature.
11 E denotes expectation (with respect to the appropriate probability measure: λ for Q, and λ∗ for Q∗).
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increasing and convex function v : [0, 1] → R (take u(x) = −v(−x)), we have
E [v(Q)] ≤ E

[
v(Q∗)

]
, or

∫

T
v(Q(t)) dλ(t) ≤

∫

T ∗
v(Q∗(t)) dλ∗(t) =

∫ 1

0
v(tn−1) dt. (2)

In terms of distributions, this amounts to Q∗ being obtained from Q by increasing
values (pointwise) and applying mean-preserving spreads (see Hadar and Russell
1969; Hanoch and Levy 1969; Rothschild and Stiglitz 1970; and the book of Shaked
and Shanthikumar 2010).

Equivalently, there exists a probability space (�,F , P) and two random variables
X and Y defined on it, such that X and Q have the same distribution, Y and Q∗
have the same distribution, and12 E [Y | X ] ≥ X; this is a standard construct, which
translates stochastic dominance into pointwise (a.s.) dominance, known as coupling
(see Strassen 1965, Theorem 9; Machina and Pratt 1997, Theorem 3′; Shaked and
Shanthikumar 2010, Theorem 4.A.5).

(c) An immediate consequence of condition (iii) (see (2) above) is that, for each
increasing and convex function v, the maximum of E [v(Q)] over all implementable
Q is attained at Q∗ and equals

∫ 1
0 v(tn−1) dt.

(d) When Q takes only finitely many values (which happens in particular when T is
a finite set), say the values r1 < r2 < · · · < rm with probabilities ρ1, ρ2, . . . , ρm > 0,

respectively (so
∑m

k=1 ρk = 1), we may replace in condition (iii) the function Q∗ with
another function Q# that takes the m values s1 < s2 < · · · < sm with probabilities

ρ1, ρ2, . . . , ρm, respectively, where sk := (nρk)
−1

[(∑k
�=1 ρ�

)n −
(∑k−1

�=1 ρ�

)n]
for

1 ≤ k ≤ m. The resulting condition is

(iii#) −Q second-order stochastically dominates −Q#,

which can be expressed as

m∑

�=k

ρ�r� ≤
m∑

�=k

ρ�s� = 1

n
− 1

n

(

1 −
m∑

�=k

ρ�

)n

for every 1 ≤ k ≤ m. (3)

This inequality is the “weighted majorization” of the sequence (rk) by the sequence
(sk), relative to the weights13 (ρk).To see that (iii#) implies (iii), use the fact that Q# has
the same distribution as the conditional expectation of Q∗ when [0, 1] is partitioned into
m intervals of lengths ρ1, ρ2, . . . , ρm (the partition points being ρ1, ρ1 + ρ2, . . . , ρ1

12 I.e., P [X ≤ α] = λ [Q ≤ α] and P [Y ≤ α] = λ∗ [
Q∗ ≤ α

] = α1/(n−1) for every α ∈ [0, 1]. The
change from X to Y can be understood as increasing values pointwise (from X to E [Y | X ]) and applying
mean-preserving spreads (from E [Y | X ] to Y ).

13 When all the weights are equal, i.e., ρk = 1/m for all k, this is the classical majorization—see
Hardy et al. (1952, Theorem 46); their proof of Theorem 46 easily generalizes to arbitrary weights. An
alternative simple proof for the equivalence of (iii#) and (3) is obtained using Theorem 3.A.5 in Shaked
and Shanthikumar (2010).
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Implementation of reduced form mechanisms 5

+· · ·+ρm−1 = 1−ρm), and so −Q# second-order stochastically dominates14 −Q∗.
Conversely, taking α converging from the left to rk in (1) gives (3), and so (ii) implies
(iii# ).

Proof of Theorem 1. 15

• (i) implies (ii). As in Matthews (1984) and Border (1991, Lemma 5.1), using sym-
metry and then

∑
i qi ≤ 1 yields for any measurable A ⊂ T, in particular for16

A = [Q > α],

nE
[
Q(t)1[t∈A]

]=E

[
n∑

i=1

Q(ti )1[ti ∈A]

]

= E

[
n∑

i=1

qi (t1, . . . , tn)1[ti ∈A]

]

≤ E

[
n∑

i=1

qi (t1, . . . , tn)1∪ j [t j∈A]

]

≤E
[
1∪ j [t j∈A]

]=1−(λ[T \A])n .

• (ii) implies (iii). Put p := λ[Q ≤ α]; we have17

∫

T
[Q(t) − α]+ dλ(t) =

∫

[Q>α]
Q(t) dλ(t) − α(1 − p) ≤ 1

n
− 1

n
pn − α + αp

≤ 1

n
− α + n − 1

n
α

n
n−1 =

∫ 1

0

[
tn−1 − α

]

+ dt

=
∫

T ∗

[
Q∗(t) − α

]
+ dλ∗(t), (4)

where the first inequality is (1), and the second is equivalent to αp ≤ (1/n)pn +
((n − 1)/n)αn/(n−1), which follows easily by concavity after taking the log of
both sides.18 Hence

∫
T [Q − α]+ dλ ≤ ∫

T ∗
[
Q∗ − α

]
+ dλ∗ for all α ∈ [0, 1],

which is equivalent to (2) since every increasing convex function v (with v(0) = 0,

which does not affect (2)) lies in the closed convex cone generated by the functions
φα(x) := [x − α]+ for all α ∈ [0, 1].19,20

14 Since E
[
Q∗] = E

[
Q#

]
this is the same as Q# second-order stochastically dominating Q∗. Also,

stochastic dominance is a transitive relation.
15 Showing that conditions (ii) and (iii) are each necessary for the implementability of Q is quite straight-
forward; the difficulty lies in proving that these conditions are sufficient (cf. “(iii) implies (i)”).
16 1W denotes the indicator of the event W.

17 [x]+ := max{x, 0}.
18 Alternatively, the second inequality follows by maximizing the left-hand side over p (this is an instance
of the classical Young inequality).
19 While for each α the inequality in (4), which can be written as

∫
[Q>α] Q(t) dλ(t) ≤ 1/n + ((n −

1)/n)αn/(n−1) − αλ[Q ≤ α], is strictly weaker than inequality (1), our result implies that “(4) for all α ”
is equivalent to “(1) for all α” (this equivalence can also be proved quite directly). Of course, our purpose
here is to provide a simple and self-contained proof of the equivalence of (i)–(iii).
20 In the special case of a finite type space T , condition (ii) generates a polymatroid (i.e., polytopes whose
efficient frontier is the core of a convex game); see Vohra (2011, Section 6.2). In this case, an indirect proof
of “(ii) implies (iii)” can be obtained by, first, characterizing the extreme points of the polymatroid in terms
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• (iii) implies (i). Assume that −Q second-order stochastically dominates −Q∗.
Applying coupling (see Remark (b)) yields a probability space and two random
variables X and Y defined on it, such that X and Q have the same distribution, Y
and Q∗ have the same distribution, and E [Y | X ] ≥ X .

Let (Xi , Yi ), for i = 1, 2, . . . , n, be n independent pairs of random variables,
all identically distributed and with the same distribution as the pair (X, Y ). For each
(t1, t2, . . . , tn) ∈ T n define the event

A(t1, t2, . . . , tn) := [X1 = Q(t1), X2 = Q(t2), . . . , Xn = Q(tn)] ,

and put21

q̃(t1, t2, . . . , tn) := P
[

Y1 > max
j �=1

Y j | A(t1, t2, . . . , tn)

]

.

Then22 ∑
i q̃i (t1, . . . , tn) = ∑

i P
[
Yi > max j �=i Y j | A(t1, . . . , tn)

] ≤ 1 (these
n events are disjoint), and so q̃ : T n → [0, 1] yields a symmetric mechanism.
Moreover, integrating over (t2, . . . , tn) ∈ T n−1 (recall that (Q(t2), . . . , Q(tn)) and
(X2, . . . , Xn) have the same distribution) gives the reduced form Q̃ of q̃:

Q̃(t1) = P
[

Y1 > max
j �=1

Y j | X1 = Q(t1)

]

. (5)

Now P
[
Y j ≤ y

] = λ∗[Q∗ ≤ y] = y1/(n−1) for every y ∈ [0, 1] (since Y j

has the same distribution as Q∗), which implies that P
[
max j �=1 Y j ≤ y | X1

] =
∏n

j=2 P
[
Y j ≤ y

] = (
y1/(n−1)

)n−1 = y (we have used here the independence over
j). Thus max j �=1 Y j is uniformly distributed on [0, 1], and moreover independent
of X1; hence (5) yields

Q̃(t1) =
∫ 1

0
P [Y1 > y | X1 = Q(t1) ] dy = E [Y1 | X1 = Q(t1) ] ≥ Q(t1)

(recall that E [Y1|X1] ≥ X1). It only remains to rescale: put

q(t1, . . . , tn) := q̃(t1, . . . , tn)
Q(t1)

Q̃(t1)

(where we take 0 · 0/0 as 0); then q yields a symmetric mechanism (since q ≤ q̃),

and its reduced form is precisely the given Q. �

Footnote 20 continued
of “priority rules,” and second, using this characterization to show that these points satisfy condition (iii).
We thank Ricky Vohra for pointing this out.
21 We write P for the probability measure on the space on which all Xi and Yi are defined.
22 Recall that q̃i is obtained from q̃1 ≡ q̃ by interchanging ti and t1.
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Implementation of reduced form mechanisms 7

Finally, consider symmetric mechanisms that are maximal, in the sense that∑n
i=1 qi = 1. If Q is the reduced form, then E

[∑
i qi

] = nE [Q] . It follows that
an implementable reduced form Q is the reduced form of a maximal mechanism if
and only if E [Q] = 1/n; in this case we will also call Q maximal. Clearly, for any
implementable Q there is a maximal implementable Q̃ with Q̃(t) ≥ Q(t) for all23 t.
We have:

Corollary 2 The following conditions on Q : T → [0, 1] with E [Q] = 1/n are
equivalent:

(i-Max) Q is the reduced form of a maximal symmetric mechanism.
(iii-Max) Q second-order stochastically dominates Q∗.

Proof E [Q] = 1/n implies that E [Q] = E
[
Q∗] (since Q∗ is maximal), and in

this case condition (iii) is equivalent to (iii-Max): indeed, for the coupled random
variables X and Y of Remark (b), when E [X ] = E [Y ] the conditions E [Y | X ] ≥ X,

E [Y | X ] = X, and E [Y | X ] ≤ X, are all equivalent.24 �
Thus, Q∗ is obtained from an implementable maximal Q by mean-preserving

spreads; that is, Q∗ has the same distribution as Q + Z for some “noise” Z that
is uncorrelated with Q (i.e., E [Z | Q] = 0).
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