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Ros~nbrock formulas have shown promise in research codes for the 
solution of in~tial value problems for stiff systems of ordinary 
differential equatio:u (ODEs). To help assess their practical value, 
the author wrote an item of mathematical software based on such a 
formula. This required a variety of algorithmic and software develop
ments. Tpose of general interest are reported in this paper. Among 
the~ is a way to select automatically, at every step, an explicit 
Runge-Kutta formula or a Ro$enbrock formula according to the stiffness 
of the prob~em. Solving linear systems is important to methods for 
stiff OD~s and is rather special for Rosenbrock methods. A cheap, 
effective estimate of the condition of the linear systems is derived. 
Some numerical results are presented to illustr.A,t.t:> the dcvclopme:u~s. 
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Implementation of Rosenbrock Methods 

1. Introduction 

The most popular codes ~r the numerical solution of a stiff 

initial value problem for a system of ordinacy differential equa·Lions 

(ODEs) are based on the backward differentiation formulas (BDF). There 

is a great need for a better understanding of many fundamental issues 

in both theoretical and practical terms. In addition the popular codes 

have certain w~Rknesses arising from both the formulas and their 

implementation. The situation has stimulated the investigation of 

many alternatives to the BDF. Because rather f'ew have ueen developed 

so far as to result in i.t.ems of mathematical software, it is difficult 

to evaluate the theoretical advances in the field. 

In solving the system 

y' = f(x,y), 

the implementations of the BDF employ the Jacobian matrix f in a 
y 

simplified Newton iteration for the evaluation of the implicit formulas. 

This has suggested to many researchers the possibility of incorporating 

the Jacobian matrix directly into·the formula. One line of development 

has been that of Rosenbrock formulas. For a differential equation in auto

nomous f'orm, y' = f(y), ~uch methods h!!!.Ve th~ form 

= hf(y
0 
+~ ~ 1 .R.) + . ~ . h1' (y ) - y. .lt . 

J = . J J y 0 ~J J 
J= 

::t = l, .•• ,s 

(;L) 

Here the constants y, a ... , y .. , C. define the formula. Each stage k. 
. l.J l.J ~ . J. 

is obtained by solving a system of linear equations with the same matrix. 

'rhe linear combin.g.tion of stages advances the solution y 6 at xo to yl at 

x
0 

+ h = x
1

• 
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These formulas are not implicit in the sense that the BDF are and 

so avoid some implem:.mtation difficulties. It has proved possible to 

derive Rosenbrock formulas which in some respects have better stability 

th~~ the higher order BDF. A price one pays for these and other advan

tages is that one must evaluate partial derivatives of f at every step. 

Ordinarily it is presumed that these partial derivatives are either 

clQ~sy or expensive to obtain, and for this reason the popular BDF 

codes try to evaluate fy as inf'requently as possible. This presumption 

is by no means always true, so Rosenbrock formulas should not be dis

carded for this reason alone. We shall restrict our attention in this 

paper to the class of problems for which the p~tial derivatives of f 

are convenient to obtain and are not a lot more expensive than the 

evaluation off itself. 

Recently Kaps and Rentrop [14] derived some Rosenbro·::!k f'ormulas 

wlth internal error estimators. This was a natural development in view 

of' the history of explicit Runge-Kutta methods and was an import&It 

step in m~~ing th8 methods practical. The computational results they 

present suggest that Rosenbroek methods might be a practical alternative 

to the BDF. Their paper stinmlated the author to develop a piece of' 

mathematical software, DEGRK, based on a Rosenbrock f'ormula. Here we 

report some of the algorithmic and software developments we considered 

necessary. Although these developments were realized in a particula~ 

code, most of the work is generalcy applicable to Rcisenbrock methods. 

At· present, codes are clearly intended for stiff or n,onst:i.ff 

probleuu;, but not both. Deciding the type of the problem is an im

possible task for a user. This author considers the question of how 

to reliev·= the user o~ this decision to be the most pressing question 

in the area of ODE mathematical software. In [23] some p;rogress is 

reported ~~d a fuller discussion o_f the issues is given. Witld.n the 

class of problems we postulate here, the matter is relatively simple. 

We shall describe how to s1ri.tch between an explicit Runge-Kutta 

formula pair and a Rosenbrock formula_pair at ~~y step reliably and 

economically. The implementation of DEGRK uses a Fehlberg F(4,5) 

5 
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pr:t.i..r for the explicit Runge-Kutta formulas. If the problem is unequivocally 

non-stiff, the integration by DEGRK i~ nearly as efficient as that by R~F45 

[24, 25], an effective code for non-stiff problems based.on the F(4,5) 

pair. The class of problems for which DIDRK is intended is easily recognized. 

In this class there is no particular reason for a user even to consider 

the issue of stiffness. 

In this investigation we learned that vi.rtually all of the published 

Ro3enbrock methods have w'l:lat we consider to be a serious defe·:!t for their 

use in production-quality codes. A variety of other one-step formulas 

suffer from the sa:ne defect. We have not seen this ma.t·ter pointed uuL 

before. so we dev~te some spa~e to it. It is the main reason ·we did not 

implement in DEGRK the formulas published by Kaps and Rentrop. 

Rosenbro~k methods solve lin·ear systems ·which may beeuuie ill-cond.ition~d. 

This appe.us to be a matter deser·ving more attention than we give it here. 

We shall present a :practical and cheap approximation of the conditio::J. vrhich 

may be o.f value for other methods as w•=ll. 

With the ad·iitional information available to Rosenbrock codes, it is 

possible to devise a."l exceptio::J.ally robust procedure for the selection of 

the initial step size, at least in the context of a typ.e-insenr~i tive code. 

It is extreme.ly difficult to co:mp.9..re codes for the solutio'..'l of stiff 

O~Es ~"ld this is especially true when comparing codes based on quite 

differ-ent presumptions about the pro~lem class. So:ne numerical resulto 

for IJEGRK will be presented and in a few cases co:r:resp.~nding rcaulte for 

a BD.F code are given. Some researc!l dir2ct1ons are indicated by the 

results of this investigation. 

2. Getting Partial Derivati 1res 

In the solution of 

y' = f(x,y), 

the Rosenbrock methods req~~ire evaluation of the partial d::!rivatives f ~"ld 
y 

f • Here we w~'lt to indicate some problems for which these partial derlva
x 

tives are not inconvenient nor much more expensive to evaluate than f 

itself. In section 7 we describe a softw3.!'e device which may ma'ke this 

ID:)re t r·.le. 
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Perhaps the first observation ought to be that all the problems of 

the well-known test !Jet [8} fall into this class. To be sure, many 

of the problems are artificial, but many are not. The supplementary 

test set of Enright and Hull [16, pp. 45-66] also falls into the class. 

Most of its problems arise from a description of chemical kinetics in 

a homogeneous solution reacting according to the mass action law. Such 

problems are sufficiently important that there are a number of packages 

written for this specific class. One such package is that of Edsberg 

[30, pp. 81-94]. It writes the problems as 

(la) y' = Ap, y(o) given 

where A is an M x N matrix with integer entries and p is an N vector with 

(lb) 
M r .. 

pJ. = k" 7l' Y. J~ 
Ji=l ~ 

Here the r .. ~ 0 are integers describing the reactions and the k. > 0 
J~ J 

are rate constants. This autonomous system has f = o and f is readily 
X y 

computed from the obser~ation that 

op. . p. 
-=..i! = r .. .:l. 
oY.; J~ y. ... . ~ 

This class was a major reason that we began a study of Rosenbrock methods. 

Another cla~s of p1·o1Jlems which may well. be suitable are the linear 

problems 

y' = J(x)y + g(x)o 

The Jacobian J(x) must be evaluated every time f is, so it cannot be 

expensive nor very inconvenient to provide it. The uncertainty lies 

in the f vector. Whether it is convenient and relatively inexp·=nsive 
X 

will depend on the problem. 

7 
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In our e~perience and in reading the scientific literature, we 

have seen many individual problems which were in the class, and many 

which were not. One problem [20] which we use as a munerical e~ample 

in section 13 is 

~ -{ y } dB = (1 + s) 1 - (l + Nf) x + Y + K(l-y) , 

Here r;, Nf' and K are (constant) pa.ra.>neters. This problem eaught our 

eye because the chemical engineers were interested in a range of para

meter values. For some values theproblem is not stiff and for others, 

it is stiff. It illustrates the convenience of a code which does not 

ask the user to decide the type. 

A very popular option in production codes for stiff problems is 

for the code to approximate the necessary Jacobians by numerical 

diffe·.rentiation. This makes life easy for the user, but we do not 

think this option app?opriate to Rosenbrock methods. One objection 

is f~da.>nental. ~~e Jacobian is merely ~1 aid to the BDF codes--they 

will solve the ODE even if the approxim.9.tion is terrible, albeit 

inefficiently. The Rosenbrock formu.la.s are based on the partial 

derivatives and all statements about order ~~d the like depend on an 

accurate Jacobian. 

We are supposing that partial derivatives are n.Jt a lot more 

expensive to evalua.te than the f·~ction. This is because they must 

be evaluated a-t every step with a Rosenbrock method and only infrequently 

with the .1:w~·. Of course if a Rosenbrock method took sufficiently fewr:r 

steps than a BDF method, it could compensate fo:>:> a more expe:asive step. 

Still, it seems that Rosenb.rock methods are not likely to b·= very compet

itive except in the circumstances we postulateo Approximating partial 
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derivatives by numerical differentiation generally results in a rather 

expensive evaluation. Typical schemes for dense Jacobians use N extra 

function evaluations to fonn a Jacobian for a system of N equations. 

Except for N small, this makes a step 1nth a Rosenbrock method much 

more expensive than a typical step with a BDF. If the Jacobian has 

a useful structure, such as banded or sparse, it may be much cheaper 

to form the Jacobi~~ than in the dense case. Even so, it is compara

tively expensive except for ver,y narrow bands or very special sparse 

structure. 

We note t~e successful computations of Kaps ~~d Rentrop [14] 
.. 

using differencing and remark only that all the problems in their 

test set are small. In DEGRK we chose not to provide an option for 

numerical differentiation for the reasons just given. 

3. The Form of the Equation 

Theoretical treatments of Rosenbrock methods have taken the 

differential equation in autonomous form because it is convenient 

to avoid the special role of the independ·:nt variable. The research 

codes have followed the theory in this respect. Of course many 

problems do not arise in autonomous fonn, so users are expected to 

convert their problem. It is usuall,y suggested that if the problem 

arises as 

(1) ~ = f(x,y), y(a) given 

one convert this to 

(2) 

~ = f(x,y), y(a) given 

dx_ 
-~- 1 
dt 

, x(a) = a • 

9 
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We have chosen not to use the autonomous form for a ~umber of reasons. 

0~1e is the conv-enience of the software interface. The typical ODE solver 

accepts the form (1) so that users are accustomed to it. Conversion IlUcy" 

be fairly described as a nuisance to the user and leads "to questions 

about an appropriate error control for the x ~ariableo 

W..'len using a Rosenbrock method, the linear systems to be solved 

constitute a significant fraction of the work. To reduce linear algebra 

costa ODE solvers provide options for various matrix structures. 

Co!lversion to autonomous form obviously affects the structu1·~:::. We, 

for example, provide for banded Jacobians in DSGRK. This structure 

i~ lost on conversion. To retrieve it we would have to ask the user 

to recognize an unconventional structure t'oi' a .I:Jl'ublem i11 a.utonom.:, .. l.i f'r'l'l"m, 

o:r to tell the code he actually started with a banded Jacobian and 

converted it. This kind ot· requ-=~:~L i.! not likeJy t.o be popular with 

users. 

The Jacobian of (2) is, in partitioned form, 

(3) J= 

Clearly the eigenvalues of the augmented system are those of f plus 
y 

a.n eigenvalue 0. Tl.d,~ ia not imp•Jrt.i'!.nt, ~u~ !!~.~m..'! may br:o m:Jr.;.: seriously 

affected. :tn Ll1e 1
1 

nu.t1n 'Ire n.nA, 

We use the norm of -che Jacobia...'1 as a bound on the spectral rari:ius to 

assure stability of the explicit R~~e-Kutta formula, and for other 

purposeso Increasing the norm l.J,y convcroion :':J.r;:~,s a direct, harmful 

effect. 
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T'nere are a ~0~1ple of conceptual objections to the conversion. 

The typical BDF code" for example, accepts the form (l), and if the 

user provides analytical partial derivatives, he provides only .fy. 

The Rosenbrock methods require f too. This matter is concealed when 
X--

all problem~ are a:!cepted in autonomous form,· but it is a distinction 
.. 

which could be important. Also, the conversion changes a linear to a 

nonlinear problem. It is interesting to note that the fa:nous set of test 

problems [8] did precisely this with the Liniger-Willoughby problem Dl. 

The set carefully collected groups of linear and non-linear problems. 

Dl is in the non-.J,.inear group only beca·1se of the conversion from its 

original form. The conversio:J. of linear proble..ms obscures the fact 

that the Jacobi~~ is immediatelY available in analytical form. It is 

not clear what algorithmic consequences might follow converting a linear 

to a non-linear equation. 

It is about as easy to implement the form (1) in a Rosenb~ock code 

as the autonomous form TJll:len done in the manner of the next section. In 

many p.apers it has been considered obvious that one use the autonomous 

f'orm because of its elegance •. For this reason we felt obliged to state 

a variety of arguments in support of our decision not to use it in DEGRK. 

4. Efficient Representation 

The usual form of the Rosenbrock formulas (1.1) apparently requires _ 

the storage of the Jacobia..'1 matrix and a matrix-vector multiplication at 

each stage. These costs can be avoided by a simple m~1ipulation of the 

for-mula which has been attributed to Wolfbra.n.dt. The re~ru.lting general 

form ·..:rhich we write for :.aon-a,ltonomou,=:; equations is 

(la.) 

(lb) 

E = I - .yh f (x , y ) 
y 0 0 

i-1 

= f(x + A.h, y + h L 
0 1. 0 

j-=1 

i-1 

L: c .. k. 
+ J.J J 

j=l 

a .. k.) + B.hf (x , y ) 
l.J J 1. X 0 · 0 

i = 1, ... ' s 

ll 
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(lc) 

i=l 

m. k. 
~ ~ 

There is another wa;y to sa;tre a significant a'Ilount of' arithmetic 

in the f'orma.tio:':l :)f E. To actually solve the linear systems (la, lb) 

w-2 scale so that we work vrl. th 

1 
f' (x , y ) - yh I y 0 () -

instP.ail. o.f E. For the sol1.:ttion of' stif'f' 00~s we think this is a more 

natural scalill6 a.YJ.yway. Scaling in this way is advocated by Gourlay 

ani Watson [30, pp. 123 133] f'o:r: ~ BDF code a..."ld ie used in A. :=iparse .• 

semi-:LTJiplici t Ru..11ge-Kutta code [ll], but it does not Geem to be well 

known yet. 

Solut:i m1 of' (1) involves the formation and f'actorizatio:I of E and 

then the s solutions f'or the k .• 
~ 

The question that interests us right 

now is whether to keep a copy of the Jaco'l:>ian f'y or to write ov·2r it 

in f'orming and factoring E. Because a Rosenbrock method presumes that 

f'y changes at every step, it is recomputed af'ter every successful step. 

So th~ only obvious reason f'or saving fy is to reuse it whc:m repeating 

a rejected step. (Tl1e:re is a...YJ.ot'!'l.ar reason wa Lake up in the next sect:i.on.) 

Because of the expense o.f a f'ailed step, the step ~lz~ selection a1gorithm 

is rather conservative so .9.s to ma.'l{e ±'a.:Lled_ steps u.uL:uUU'Jlt?n. We c:rxpgct 

Rosenbrock methois to be applied to problems f'or whic~ computation of' f' 
y 

is nJt mach more expensive tha:1 co:nputation of' f'. 'T'hus. recom.p,~tation of' 

f' at f'ailed ,;;teps should not be a very big waste f'or the kind of' code 
y 

and problem we have in mind. In compensation we roughly halve the 

st.'):-n.gc requ:i,red by the code, We deemed this to b·= a bargain in JJEGRK. 
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5. Conditioning 

Tne Rosenbro~k methods require solution of linear systems involving 

matrices E = I - hy f • This is also true of the typical implicit method y . 

for the o30lution of stiff ODEs although it is done for a different purposeo 

It has been :frequzntly commented that these matrices may be ill-conditioned, 

but we have not noticed any arguments to the effect that this must be so. 

We shall argue this here and devise a practical measure of the conditioning. 

The situation is quite. different in the cases of a R)senbrock a..'1d, say, 

a BDF method.o With the BDF and other implicit formulas, linear systems 

are solved to obtain successive iterates approxi.rnating the result defined 

implicitly. As described in [22, p. 109], this is normally arranged so 

that one solves for the change in the przvious iterate. Ill-conditioning 

may slow down the overall iteration because some digits in the change are 

spoiled, but as long as a few leading digits arz obta.ined correctly, the 

process 11 converges." With a Rosenbrock formula, the solutions enter 

directly (and indirectly through the function evaluations) into the 

solution valu;; for the step. The situation for the first stage is 

especially clear. With such for-umlas, inaccurate solution of the 

linear system leads to ina·~curate solution values. Normally one does 

not solve stiff ODEs to stringent (relative) accuracies so -N.ith a 

reasonable computer word length, this is probably not very important 

in practice. However, in this reapect Rosenbroc~ methods and methods 

like the BDF appear to differ :f'anda:nentally. The matter merits more 

attention tha..'1. we give it here. 

By definition cond(E) = IIEII IIE-
111. In general 

where p(M) is the spectral radius of the matrix M. If 'A is an eigen

value of f , then 1 - hy'A is an eigenvalue of E and its reciproc~ a.n 

eigenvalueyof E-1 • At this point we need to put in some infor;nation 

to the effect that the ODE problem is stiff. Stiffness is not a 

13 
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precisely defined concept. Nevertheless, many workers would b·= willing 

to a.:::.:::.ept a statement like the f'ollo•,.;ring: For a step size h yielding 

the r-equired. accuracy in the formula, the eigenvalu·.=s A. of' the Jacobian 

f' f'all into two classes: 
y 

I lhA.l << 1, 

II Re(A.) 5 0. 

It is further assumed that neither class is empty, and that in class II 

there is an eigenvalue A.. with lhA..l >> 1. Notice that we do not take 
J J 

up the conditioning of' a single equation. 

The general r-esult 

if' Re( A.) :s; 0 

tells us that no eigenvalue in class II causes p(E-
1 ) to be greater than 1. 

The assumption class I is not empty then implies that p(E-
1

) ~ 1. The 

assumption about class II says that 

p(E) ~ max lh). l ;;:: lhA..l >> 1. 
k ''k J 

From the general r-elation of spectral radius to norm, we now conclude 

Thus if the problem is stif'f' in the sense we have used, the matrix 

E = I - hyf' must be ill-condition·~d. 
y--

A problem is usually described as non-stif'f' if' all eigenvalues 

of' the Jacobian are in class I. ~~is ignores the important role of' 

the norm, ~1d in these circumstancea 111-conditiol1ing is not precluded. 

If' the stronger conditio:J. that lihf'yiJ is rather less than 1 holds, it 

is easy to see that in this particular norm, I-hyf' is not ill-conditioned. 
. y 
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Because conditioning directly af'f'ects Rnsenbrock methods and 

because we have seen that ill-conditioning is to be expected, we 

considered how to get some id-:=a of the conditioning. A scheme was 

devised [6] f'or LINPACK r.7J ·which tries to compute a large lower 

bound f'or the condition of' a factored matrix. A computable norm is 

chosen f'or !!Ell ·which in LINPACK happens to be the same one we chose 

in DEGRK, namely IIE1!
1

• In general if' one solves Ev = w f'or v, he gets 

a lower bound f'or IIE-
1

11 f'rom 

on dividing by llwll· The. idea of'. [6] is to select a w judiciously so 

as to arrive at a large lower boun:i. We observed that there is a 

cheaper way to get a .la.~rge lower bound in our context. It is perhaps 

a little clearer if' we scale as in section 4 so that 

.E f' l I 
y- hy 

Let ~ be ~~ eigenvalue of J of minimum ~odulus and let v be ~· 

asso::!iated eigenvector. Then 

l 
Ev = (.~-h) v 

~'1.d as above 

yh I 
l-;yh~ 

0 

We shall approxim9.te this lower "bom1d by hyo For stif'f problems, 

I h~ I << l. so this is a good. app:r.oxim.a.tion. Indeed 1'or the chemistry 

problems of (2.1), th:= Jacobian is always sir1aoular bec·a,J.se of' 

conser-vation laws, so that ~ = 0 ~'1.d this is not an approximation 

at all. 

We could evaluate IIEII
1 

directly but this does not seem worth 

the trouble. In ge:i1e:cal 
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= llf' II + C9(h
1

) • y y 

In the particular norm w·e use, \\Ejj
1 

~ \\Jjj
1 

is an excellent approximation 

in the sense of' relative error when hyjjf' II >> 1. 
y 

Finally then 

where the approximation to the low·=r bound should be excellent if' the ODE 

problem is stif'f' in the sense we have used. 

The approximate lower boUnd fu1" the conditl,.:•n :i ,o:, extremely C()mrenient 

because all the p.=rtinent quanti ties are comP'.l, ~ed (cheaply) f'or other 

purposes. For stif'f' problems it can be expected to provide a useful 

indication of' conditio~ing. We have done a variety of' experiments 

comparing the lower bound of' LINPACK to our approximate lower bound. 

When solving the problems of' the. test set [8] it is mostly the case 

that the matrix does not be~ome extremely ill-conditioned. The most 

ill-co.nditioned problem we have noticed was the lntegration of the 

Rosenbrock problem in its original variables to approximate steady-

state o.n Lhe interval [o, 41<'10
8], c,f. Hindmarsh and Byrne [16, pp. 

. lt 
14 7 - 166]. We found lowe1· I.JoUlida u.o 1UB(' .~r: 6. 2xlO • Another 

f'airly ill-conditioned prvblem W~;tl:l tha.t of' B'.li [::?.] on the interval 

ro, 5] f'or which a bound of 4.lxl03 was observed. To provide some 

quantitative comparison, we solved both of these problems at the 
-2 -4 two pure absolute error toler~'l·~es 10 a..Tld 10 • Whenever the 

LINPACK condition estimate COND ~ 103, we computed the ratio 

hyl\f)I/COND. The Rosenbrock p·i:'oblem has a singular Jacobian so 

we expect our assumptions to be well satisfied. The ag:r<!etnent with 

the lower bou.~:i of' LINPA~jK is remarkable. The lower bounds alweys 

agreed to at least 3 digits. The Jacobian of' ~~i's problem is 

not singular and the estimated lower bounds dif'fered more. At the 

.. 
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-2 
tolerance of 10 the ratio ranged from 0.2 to lo4. At the tolerance 

of 10-
4 

the ratio rru1ged from 1.1 to 1.2. Experience with the LINPACK 

lower bound seem~. to show that it is comparable to the actual conditiono 

The limited experiments we have done indicate that our cheap estimated 

lower b01md is equally satisfactory in our very special circumstances. 

Because of its generality, the LINPACK estimate is more expensive. 

It does a norm computation which we avoid by the approximation IIEII ~ 

!If II, available from other computations in DEGRK. It does two extra 
y 

solutions of linear systems to form the estimate. The Rosenbrock 

procedure in DEGRK only does four solutions of linear systems in the 

step, so the LINPACK estimate represents a substantial extra expense. 

Because one advantage of the ·Rosenbrock methods may be their low over

head, the cheaper condition estimate is to be preferred here. 

Now that woe have a cheap, useful condition indicator, what do we 

do with it? The trouble is that a large condition number alerts us to 

possible difficulties, but it does not provide very precise information. 

This matter is discussed by the LINPACK project in [7, p. 1.9]. A rule 

of thumb is suggested there that if ·the computer word has about t decimal 

digits and if the coniition is lOk, then the answers are accurate to no 

more than t-k digits. · Even if this were so, what would be the approp!'iate 

action? We could reduce the step size to reduce the conditioning, bat 

this makes the integratio~ correspondingly more expensive. We could 

resort to residual correction. This requires the storage of the 

Jacobian, which we do ·~ot do in DEGRK, and signi:f'lc.antly inerea.::;es 

the number of linear systems to be· solved. we· could turn to another 

version of the code in a higher p~ecision. This is considerably more 

expensive than residual correction because then all computations are 

done in multiple p.t'ecision· rather than the relatively small proportion 

needed to compute the residual. Unfortlrm.tely, on many machines ODEs 

are normally solved in the highest precisio~ p!'ovided by the hardware, 

and the residual c•)mputation has to be done by software multiple precision. 

At the very least this causes portability problems, and it may be 

comparatively expensiveo 
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In DEGRK the quest.ion of ill-conditioning seems not to be serious. 

Because of the low order formulas implemented and. their less than 

optimal stability at infinity, severe ill-conditioning appears to be 

rare. In addition, the low order makes the code inappropriate for 

stringent tolerances. We have chosen to restrict the step size as 

nec!essary to ensure that 

on a machim~ with about 14 decimal digits. Should such a restriction 

be :i.mposed 10 times in a run, the integration is interrupted to waru 

the user of the situation and to luqui:re o.o to whet.h\'!:r' he wlshe.s to 

continue. 

6. Formula Pairs in DEGRK 

In DEGRK we chose to impleme.nt a ( 4, 5) pair of formulas due to 

Fehlberg beca:..1se they pro;r~d very satisfactory in other software,RKF45 

[24, 25], we have written for non-stiff problems. Fehlberg intended 

that the integration be advanced using the fourth order formula. In 

RKF45 we ins~ead advanced the integration with the fifth order for.nula, 

lo:!al extrapolation. The rea3ono giv•?n. tn [24, 25] for doing this 

remain valid in DEGRK, but in one respect 'l:.ht:! :Situation iu qnit.e 

different. The algorithm described i:ri sectluu 8 for ooliict:i.ng meth~":>dr;; 

guarantee:3 that the step size used is st;able for the F(4,5) p.air. 

Indeed, the conservative nature of the algorithm often means that 

when the F(4,5) pair is u.:;ed, the step size is well within the 

stahility region. ~1as the fact that the fifth order formula is 

the JUl'):re stable is not relevant in DEDRK. Further.nore, the 

constraint on the step size greatly increases the likelihood that 

the fifth order formula is significantly more accurate tha..'"l the 

fourth order for"nula. As a result the lo~al error es·(;imate is more 

reliable and lo~al extrapolation is more useful. 

Kaps and Rentrop [14] :1.ave devised (3 ,4) Rosen brock ·formula pairs 

w'i1.ich are fo'r ::;tage fo~::-mulas inv•.).lv:tng three fu·.·1~tio:J e·;r·:~.l,.latio:1s and 

.. 



o'!le partial derivatives evaluation per step. In their Proposition 

(3.19) they give a 5 parameter family of formulas. In proposition (3o20) 

they give a ·:::hoice o:' pararn·~ters leaving one free parameter y which 

results in a fourth ord-er formula satisfying 5 of the 9 equatiqns of 

conditio:J. for a fifth order forinula. The parameter y essentially deter

mines the stability properties of the pairs constru.cted from either 

prop•nition. The author.3 intended that the integration be advanced 

with the fo:1rth order formula. They give two formula pa.irs in [14] 

a~d a related pair in the teKt [27]. 

W·e have not used the p.airs selected by Kaps a'1.d Rentrop for tw.) 

ms.:i_n reasons which are amplified in other sections •. In the section 

on stability we go into the matter more fully, but here we just observe 

that the fourth order formulas they seleeted are just barely stable 

at infinity. In the GRK4T pair and the pair in [27], the companion 

third order formula is not stable at infinity. T'ae GRK4A pair does 

have a third order formula with rea.sonable damping at infinity. For 

this reason we chose first to implement the GRK4A pair, but advancing 

with the third order for1nula. As we report in section 12, this is .a 

better wa;y to proceed for difficult problems. 

We would have been happier with GRK4A if the fourth order formula 

were also strongly damped at.infinity but we were prepared to accept 

this until we ran into what we consider a serious defect. In section 

10 we take up the reason why it is importa~t that a method for stiff 

problems evaluate the differ-ential equa.tion t.hroughout the step. The 

Kaps-Rentrop choices do not satisfy the criterion so we considered 

other choices. Within the fa~ily of Proposition (3.20) there is just 

one possibility which satisfies the design criterion of section 10. As 

it turns out both formulas have the same damping at infinity which i.s 

very ne~rly as eood a~ the third order formula in GRK4A. Furthermore 

both formulas are A-stable. Ka.ps and nentrop gave their formulas in 

decimal form. We went through the tedious computations to obtain this 
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other pai:r· ir. rational fo:~·m. It is pleasing that they turnP.d out to 

b·e so simple. This increases port.abili.ty. The formula pair in the 

eftlcient form (4.1) is 

y' = f(x,y) 

E = I - t h f (x ,y ) 
y I) 0 

f(x ,y ) 
'1 

E.i{l "" + 2 h f (x ,y ) 
0 0 X 0. 0 

Ekf") f(x + h, y
0 

+ hk
1

) 3 f (x ,y ) - l+k
1 

= -- h 
L. 0 2 X 0 0 

24 
f(x +dh + 55 hk2) 

+ 121 h 
f,/xo,yo) 

+ 186 k 6, 
Ek3 Yo + 25 hkl +- •r 

5 ' 50 25 1 5 "2 0 

f(x Ek
4 

= 
0 

3 
+ 5 h, 

y + 
0 

Yo 
24 3 2 9 

+ 25 hkl + 25 hk2) + 250 h fx(xo,yo) 

7. Software Interface 

56 
125 kl 

'c!. '( 

- 125 k2 

R•c;cent:cy the authoY" a1.d H. A. Watts [2ti] p:-esented a design for a 

software interface to a package of ODE solvers called DEPAC. At this 

time the vacka,ze cont~ins t.hree solvers, DZRKF - a Runge-Kutta Fehlberg 

code, DEA.B'-1 - a..11 Ad;:~:.rns-Bashforth-Moulton variable order cod.e, a..11d lJEBDF -

a BDF variable order ~·)de. The generalized Runge-Kutta Fehlberg and 

Rosenbrvck code DID}RK was w.citten to fit into this package. In this 

way it was provided with all the user conv-enience and proteetiun 

1 
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specified in the package. For the most p~rt the interface is an obvious 

mixture of the interfaces for th~ R~e-Kutta ~~d BDF codes along with 

appropriate d·::scriptive eomments. Some matters are pertinent only to . ' . . . 

DEGRK. 0~1e is to discover and report that ill-conditioning is causing 

the step size to be restricted. The p~ckage design was intended to 

in::!orpora'te such add.itional interrupts. We shall mention other minor 

m~tters elsewhere, but there is o~e important difference ·we take up 

here. 

We have chosen a differentform for the partial derivative routine 

than is custom~ry. In part this is necessa.r-.1. A BDF routine needs only 

the Jacobi~1 f ; a Rosenbrock routine needs f too. T.~e difference could y • . X: 

have been ::!O.ncea.led by using, tho:: autonomo'J.S form, but w·~ think it better 

to emphasize the differen~e. Thus the partial derivative routine returns 

with the matrix f and the vector f • We require f to be evaluated in 
y X 

this subroutine at the same time. This is in .addition to providing a 

separate subroutine for the evaluation of f. ~1e device is intended to 

increase the efficiency of' the code a..•d to make it more likely that 

partial derivatives are not a lot .more expensive than a ~nction evalua

tion. It depends on the fact tha.t the code never requires ·~val. uation 

of the partial derivat~ves without also requiring evaluation of the 

function at the sa.:-:ne argument. The gain to be made is that often the 

function evaluation is cheap if co::nbined with the evaluation of the 

partial derivatives. Consider the examples of section 2 ·where o!le 

sees that he almost has to evaluate f in the course of evaluating f 
y 

and f • If the user chooses to program the partial derivative sub-
x 

routine to take advantage of this fact, and if the call list is as 

w·~ take it,· a function evaluation is obtai_ ned at a considerably 

reduced cost. If the user does not w.a.nt to be bothered, or if it is 

not cheaper to combine t'he f ~~d the partial derivative evaluations, 

he c~~ simply insert a c~ll to the f subroutine in his subroutine for 

the partial derivatives. T.lis costs the user some linkage and a. little 

complication in writing the partial derivative subroutine, but the cost 

is not large. When applicable, the de·vice could be quite help:f'ul. 
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8. Stiff or No~-Stiff? 

Within thA class of problems postulated, it .is relativ·.=ly easy to 

::lecide at a..rv step ·11hether to use a."l explicit or Rosenbrock one-step 

m2thod. We shaJ.l describe w!1a.t we did in DEGRK and the reader will see 

that th.e ideas are broadly applicable. Although crude, tl:H~ dec is i.on 

proced·tlXe is remarkably usef'lll. 

We have fou..11.d that a.11. effective co::le for n:m·-stiff problems ca.11. be 

based on a. pair of formulas of orders 4 and 5 .involving 6 stages w:hich 

were d=vised 'by Fehlberg. We ·would like to be able to S\vitch from such 

a co::le to a. procedllre sui table for stiff problems ~11hen it WO'.lld be more 

efficient and back when it would not. Naturally we expect to pay so:ne

thing for the convenienr!e of s:.1ch a type-insensitive code, but we hope 

that the coGt will be almost negligible if the problem .is u.1equivoca.lly 

no:':l·-stiff or stiff. This turns o·•1t ~o be feasible. 

The first question w·.= a:c1swer is when to swltch to a method ,:;;uitable 

for stiff problems, in our case a Rosenbrock formula pair. The explicit 

Ru..l'J.6e-Kutta form'.lla is inefficient only ·when a step .size h suitable 
ace 

for achieving the req"..lested a~c\lra.cy must b·e reduced to h t . 
1 

to keep 
s ao. e 

the computation stable o We can decid·e when to s·witch if we ca...1 estimate 

h and h t bl • On•~' s int.n·ediate reaction is likely to b·e that all 
ace s a e 

gen•=ra.l purpose codes estimate h . , a."ld w·e ·need on.ly consid;er h t: '\..l • 
· a.cc s ,;;~.~· e 

t.Ynf'ortu..l'J.atel.y this is ·not so. W•e have discussed the behavior of Runge-

Kutta codes in the presence of stability restrictions elsewhere [21]. 

Briefly, if h >> h t bl , the code ·w-lll increase the step size until 
ace s a e 

the comp•.1tation becomes u:o.stable. The gro1dng erro.r is seen by the local 

error estimator and the step size redu~ed unt.il the computation is again 

s ta~Jle. For s·!.leh a step size propagated ·~rror is actually damped o'..l.t 

an::l event1.1a.l.ly thr:! smooth ·oehavio'L· of the true sol11tion R.:£li}"!A,r.s in th1.: 

nu.rnerical solutio:':l. As this behavior is $9J.lif'ested., th: code realizes 

its step size is smaller than h 3.ll'.:l in~rea.ses the step size. The 
ace 

cycle repeats itself. It is gratifying that the error never.gets out 

of ha.1d, but the difficulty we m'..l.st fa .. ~e here is that the step size 



which the code estimates as app!'opriate for the accuracy is ordinarily 

fa:r. smaller tha:.1 h • To obtain a. reasona~le estimate of h .. , We 
.ace a._c 

must force the code to -..rorlc within its r-agion of absolute stability. 

Thus a critical issue is to obtain a go~d estim::tte or a reliable bound 

for h t bl • s a e 
Most explicit Ru:..11ge-Kutta methods ha·;re stability regions which 

contain· ::t (half) disc of radius p. .(Va.:1 der Houven ea.lls p the 

gene:ralized stability bo•.mda.ry [12, p o 83]. ) If A. is a:.'1.y eigenval11e of · 

the Jacobia..TJ. fy with Rr~(A.) :5: 0 a:1d lht.,l:o;p, themethod is absolutely 

stable wlth step size h. We obtain a. coraputa.b.le relation from the 

bou:1d 

I AJ :o;_ llf)l. 

In DEGRK we u.se the L_
1 

n~rl.D. which for a !lla.trlx M=(M .. ) is _ 
~J 

=max 2: IM .. 1 • 
1.J 

j i 

This is a si.mple, cheaj;) computation. BJth the Fehlberg (4,5) formulas 

are stable if we Fe~uire 

(1) . 

This condition is forced on the step size whe.n the explicit Runge·-Kutta. 

method is used so as to gu::trantee the co~putatio~ is stable. Then we 

ca:.1 be sure that the step size estimated by the form~la pair as appropriate 

for the requested. accuracy actually approximates h a.."ld can be used to 
ace 

decide when to switch. 

D&1BK is orga.."lized a.s follrnvs.: There is a step size to l::le attempted. 

which waa estimated in a special mJdl~le for ~he first step (see section 9) 

o~ in the module used to attempt the previc .'.s step. This step size may 

be reduced so as to produce output at desired points. This m.~tter is 
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described in [24,25]. Unlike RK~45, DEGRK does not use the "stretching" 

dt=!Vice, but it does use a "look-a..'I-I·ead." As described in section 5, the 

step size might be reduced to imp~ove the conditioning of the matrix E 

i11 (4 .1). T:1ese a.djU;3tments to the step size a.>:"e do~e before the m•:thod. 

is ;selected hecause the choice is critically dependent on the step sizeo 

In a. moiule it is decided which method to u.s·= and th.e Gtep size is 

possib.ly r.educed fu·rther o Next co~t.r-ol goes to one of the two modules 

fo·r attempting a step by the two metho:is. If the step is a success, 

the module used estimates what step size is a..ppropriat~ f'o!' the next 

step. If the ::; L~.v ls a failtlre, a step size for a..11other Ll'.f lo s:elected, 

After a .ra.tlure C•)i:ltrol is returned to the poin-~ where this ·iescription 

bega..'1. This is l'eii::lnn wP ,'ii\id. 11 t.n n.tbr::·lnpt" Lhr..: pt·~·ifiuu::; ~;;~~ep. 

There are three cases. T:1e firGt step :Ls alw·~3 taken wlth the 

ex-plicit l{IL'lge-Kut ta .m·ethod so as to get O:!l scale. Also it may ";.>e 

neeessa.ry to try several times if the estimated step slze is ba:.Uy 

off, and this is mueh cheap·er to do 'N"i th the eX'p.licit :formula. The 

other tlvo ::ases d•:pend on the method used for the preceding step. 

Suppose the p:re.:!eding step was taken "..rith the Rosenhro::!k m·ethod.. 

If the •3tep size satisfies (1), w•= switch to the Fehlherg 3Chem·e and 

otherwlse co.!ltin".le with the Rosenbrock metho·'l. Thls :i.mplilio th'lt bhe 

explicit Hange-Kutta fonnula ·:vill b·~ 1J.3·~d for all sufficiently sm,9J.l 

step sizes, There ls "" ql.l.'aEtion !13 to how Lo a1..jU.st the step size o::J. 

the ·::!h9.."J.3e of fo.rilll.tla. Her.:- W'i do !lot a.d.j u;:; l:i it at all. The li'ehlberg 

pair is of higher order a..'1d is an ac.::!arate pair of m.Jr.; stages. We 

postulate t~at it' it is .stable, it is mvre a~·~'..lrate tha.n the Ro:Jenbrock 

p.airo Inieed, b·eca.,.lse ·if'= might be 1.v•211 within· the :;;tabilH.y :regio:n of 

the :m8thod, the F(4,5) pair m.ight be a lot more accurate than necess::tr.Y 

with this step size. B-ecause we adjust step size at ev-ery step it is 

not w.:::.:esea... ..... J that we haVC! a go·::>d scheme for a.lteri!lB the step size 

when we change formula.. On the other hand, we do need to prevent 

frequent changes so as to allow the code time to match the step size 

to the accuracy requireU.. 



If the preceding step was taken with the Fehlberg formula, w•= 

reduce the step size as iecessary so that (l) holds. If the step 

size had. to be more th.~1 ~a:lved fo::- this reason, we switch to the 

Rosenbrock m~thod. Our hypothesis when s1vi tching to the Rosenbrock 

method is that the step size is beir13 held back pretty significantly 

because of .sta~ility a...'1d. it, rath·er th~ ac.:!uracy, is pl~obably the 

dominant C·1l1sideration. We e:.Cpect, then, that the Rosenbro·:!k method 

will succeed at this step· s1ze wJLich is half (or less) of wl1at will 

work :for the Fehlberg method.. 

It is not Yery likely 'that a problem ·..rou.ld call fo~ a step size 

h such h\\f li~P .fo:- many steps, but to make frequen~ switches less 
y 

likely, we haNe made it easier to switch to the Fehlherg formula 

than vice-versa. In point of fact, frequent .switches would not 

be importa...'1t at all except for th·e crudity of the "adjustmt~nt" of 

step size on a swit~h. 

To hold dmv.a the overh'ead, esp·ec.ia..lly f'o:i." 11on-stiff p~~oblems, 

we do not evaluate the Jacobia.."l J1nr its iiorm at every step. We 

keep tra:!k of whether the Jacobian :':J..as ~.een · eva.luated at the cm·re:J.t 

step a: .. l'ld whether its norm has b:een evaluated. In the module for 

selecting the method, w·~ eheck if '-che s~ep size is :::lose to the 

critical point, specifically if 

::tf it is, we fonn, if ,':lecessary, a ·~urrent f a.J'ld 'tT'; form, if necessary, 
y 

a current lify\1 fO'i: our d·~eisio:'l. In any event w•= fonn a current value 

o:' \If II every 5 steps. With the Rosenbro:!k scheme, this sa•r•2s a nu:nber 
y 

of matrix noL~ compu·':;ations. With ·':;he Fehlberg sch.emt~, this saves a 

good ma:n:_v un::1er.:-ess.~~y Jaco~l~l'l ~valuations. If the problem :l.s 
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UJ1•~q-.livoeally non-stiff', w·e shall evaluate the Jac.:'lbtan ever:y five 

s·:~eps. Fo:r the six stage F(4,5) m·=thods this rapresents 30 ftm·~tioa 

evaluations. We a:e p::-es:.Dning of thP. class of' problems that evalua

tion of' the :f'unetio:1 a::.1d t'l:le Jaf~o~ia.'1 together is not a lot :more 

expo:!nsive than evaluating the f'thc-tion al:->:1~. •ro get some idea of 

the costs, s·'.l.ppo3e that th= evaluation ·of both fu11!'!tion a.:..'l.d Jacobian 

is 2~ times th·~ cost of evaluati!l6 a functio::::t a.lon-=. In GUeh a case, 

evaluating the Jaeobia.n to test fo'!' stiffness increases the cost in 

f'u:1.~tio:1 .evaluations o:t' solving an unequivocally non-s·~iff' problem 

by only 5'%. We consider this to b·= a negligible cost for the co:rrcnience· 

of a type-ins.en;:;itive code. We remark that, roughly spca!dng, DEGBK 

bel1.•l''f.:!S lll\.t: the c:ff':i.I'Ji~ta!<·. ,--.,·,1e liJQ!li5 w~1e:1 it io co-:lfr•)nt-.P.d wlth an 

'L'L.r:lequ.tvo-~ally .~10:1-stiff pro'1:)1em. 

Clca.rly ·~hr:> r?•)~~r. of -yesting goes ·up ·11£1en ·the C·)d•~ is workih;s close 

to the S\v:i tching :9oint. On•:! might eva .. lua.te th·e Jacobian at ev~ry .st~p, 

e·ven tho•.l8h the integ:catio::::t is ca.!'ried out with the explicit formula 

pa:~ 't'. On the other :!:J.a..nd, the •:!o::::tservati V'.:! ::::tature of the algori tb."ll 

~ni~a!'lS that a j?::'Ob.letn ma.y be t:::-eated. as s·~if'f' when it WOUld actually be 

more efficient to use thG explicit RIL16e-Ku·tt.<J. scheme. T;1ls strikes 

us as a.."l unavoidable price w-hich sho·.lld not b·e a large· o.ne. 

W·::. :Jha.ll. C0:':1.8i r'ler a few •=.xa:.rn;ples to il.lust:-a.Lt: the ·uscf!lln~=as nf 

switching, First let us cunl:iider th~ prvb1em R?. of the test set [8]. 

This is van der POl's equf.:l.t:ion, b'J.t it· i.s ~ U:..1iergoing relaxation 

oscillatio!ls and ·v:re consider it not to b·e stiff'. A~cord.ing to the 

a.Tchors , .... f the ·test set, the ma.:dmum ma.gni tllde of' a1. ·~igenv-alue is 

at most 15 ani the length of the interval is o::::tly L 't-rn:m .solVe(\ 
-2 

with DEGRK at a pure absolute erro<: tole.t'an:!e of 10 the problem is 

::na.rgina.L Fo'.lr of the 6 (!) steps n-eeded to solv·= th~ problem 'N'•=re 

ta..~en with the F(4,5) p.air. The ma..x:iniu:m value o:r· h!lf II enoou.'lter8d. 
y 

wa.s abo'.lt 4. TJ1e Jacobian -ivas evallitt'ted at every step '1:)ecaus·= this 
·-4 

is a borderline problem. At the toleran~e 10 a.ll 10 ateps •tT·=ra 

ta...~en with th..; F(4,5). The maximu:n value of' a!l:ryll was about 2 and the 

,Ja~o'Ylan had to be eva.lua·ted at 7 of the 10 step3. At t11e tolerance 
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all 19 steps w•=re ta'ken with the F(4,5) pa.iro The ma:dmum value 

of nllfyll was again about 2 a:~:i the Jacobian had to be evaluated at 

7 of tl:le 19 steps. At the cru.:i~st tolerance when the problem 'vas most 

ambiguous, the code mad•:! 36 funetion evaluations so that the 6 evalua

tions of the p.Ytial derivatiYes (the associated f evaluation is included 

in the 36 reported) ~.;.as a significant but acceptable cost. At the most 

stringent tolera:.1ce there were 121 f evaluations and the nu::nber of partial 

derivative evaluations approaches the 5"/o ·;re expect in a clear-cut case. 

For the sake of variety w.::! sha.ll 't'eport some results with the Kaps

Ren~rop pair GRK4A advanced with the thir:i order formula. The co:ie is 

DSGRK with the pair given in section 6 replaced by GRK4A. The B family 

of prob.lem.s in tho= test set [8] are 1 i.n•=ar with no:1-real P.igenvalues. 

B'2-B5 is a family o:f one pa't'am.eter with the eigenvalues g(-=ttinB larger 

a.nd movi!l6 closer to the imaginar-.{ a.'l{is as o:1e goes from B2 to B5. B5 

is a trap :for higl:l' o:!.~der BDF formulas which suffer a stability restriction 

wi.th this pro'!:>lem. The Ro3enbrock formulas we hav·e :Lrnplemented are s..l.l 
-2 -4 

A-stable. We solved B4 a.:.fl.d B5 at the p~lre absolute tolerances 10 , 10 , 
-6 

10 a...n:i m:!a;sured the ce~":.ral processor .time for the solutio::J. .:)f each 

problem. W'.1.en we forced the code to .. so,lve E+ witho,~t using the Fehlberg 
' . . . -~ : ' 

formulas, it cost 1.489 time. units to do the integration at all three 
' 0 0 • 0 A. 

to.lera.'1•:!es. With t.he Fehlb·erg formulas, this fell to 0. 527. 
~. t . ' .. , . 

The corresponding 

figures for B5 a't'e 4. 366 a..'1d Oo5:).50 respectively. Wnen the Fehlberg 
·-4 

formulas were used., more f'u.nctioi~ evaluations were made, e.g., at 10 

on B5 the function evaluations increased fro.:n 652 to 768, but the 

mmib·er \)f' P·'ll·~i:u dcri ~:21-U.,ve evaluations dropped as did the .LU d·=com.

p:)sitions a.nd solutio:1s of linear systems. The real t:im·e considerations 

ma .. ~e it impossible to define a.• optimal switc'hing point between fo:C"mula8, 

but o~J.r .results sugge.3t that w·= h.9:ve ma.:'l:e an .adequate choice. By -way o'!'.: 

indicatil16 the possibilities of tl:l·e kind of code we investigate, we ma·i'~ 

the sa:.:n•= comp·~taUons with the BDF code of the NA.G library [17] given 

a..'1~yti.~al Jacobia.."l an•l the sa::1e tolera."1·ces. All the n·~erical results 

ol:>tained. w·ere of aecuracy com:,;J.arable to DEGRK. The cost of solving :s1+ 

was 1.301 tLrn·= units a;nd. of r~o.lv~Lng B5 ·' 18o639 ·~mits. 
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.Lest ·she r.ea.der ::hLnk th:~.t the result,:; ~-:-eported for Bl~ and B5 

be somehow j::.le solely to the oscillator-y na.t'.l.re of the solu·tio:J.s and 

the non-real eigenvalues, we mention similar results for the A family 

of linear problems with real eigenvalu•~s. Wnen solving A3 w·ith the 
-2 -4 -6 . 

pure absolute error to.lerances 10 , 10 , 10 the total cost w:ts 

1.141 time units if the F( 4, 5) fo-.rm·.llas were not used in the 

Rosenbrock co1e and Oo83.1 if they w·~re. The BDF code requ.tred 1.025 

u:..'lits. Wnen solvlng A4 the cost was 1.509 if the F(4,5) formul9.s ·w-ere 

n·:>t used in th.:= Ro~:;e!1broek co1·a f.k11 1.101~ :i.f th·e.v were. Th-e BDF co1e 

req-.1ired :2 o 791 units. 

Evidently swltchin..s :t'orili'Ulas to ~·::-:::o:mt for a. la:-k nf stiffness 

is of sign.t fie ant valu·e :for these example problems, even though they are 

cow:;idered ·:.o b·e "st:i..ff" test problems. 

A 'f"LJ.:rtll·er fa.rnily of stiff and non·-::;t:iff problems 1tfill be a..•1alyzed 

in section 13o 

9. Initial Sc;ep Size 

Thee in:ttia.l step size is a c:dtica.l on·~ b·eca.us·= it d·.etermin•es whether 

wh·ether th•e code "see.:;" the scale o:f the pro!Jlem., Tne algorithms 

for esti.mnting local erro·r a.:..I'J.d 9.jju,stment o:f step size d•) • ..,,~11 pro-

vid:tnG that o:1ly small a:jju.:;tments a:re ·need•ed at each s·~epo 

w~ h.\·•n lo~g f'dlt lt. im;port!)ll.t that the codr:! select the initial 

step ~ize e;.l~.:.;Wl.!.~ic::l.lly. 'l'his ·i R o'bvio;.l.i?lY a co:nvraniene.e for the user. 

A s·u.itable initial step size dep·ends on the fo:r-m1~la a.nd the pro!Jlem so 

that :Lt is not easy fo1~ a user to obta.i.n th.: infor·mation ·:ll:~eded to ma..'ke 

a gqod seleetion, e·ven if he kn·e·w ho•N'. It .is coin-~10::1. that u.:;er.:J s.olve 

a :f~n..i.ly of problema. Experience with an. initial step she a~Jpli~:i "to 

o:J.e m·em'Jer of a fan..i.ly 111-:t::f pro"ride valu.~ble information :~.bo'.lt the 

integ:cation •).f another. For this l't:aso:'l a:'ll'i 'beo~:tus•; even the /U•)St 

c.aref"Lll a·.lJ~OtTh~tir:! pro·~ed.ure can b~ea.k dow·a, we :iid provide thoa u.ser 

a ·rtf.3:J to s·:1.pply a guess in DEi?AC. T:1ts ls done by lim:tting the first 

s·sep so that it does no·~ go pa.';t the first o'1.t.put p·:>int;, 



In DEDRK w·:·insist that the first step be taken -rlth the explicit 

Ru..113e-Kutta ::nel:ihod F(4,5 ). We red1.1•::e the step size as needed so th3.-G 

bot "h. o:' the fo.rmulas o::' this pair arc stable. T:1is is an effective 

device fo~ assuring ourselves that w-e sha.ll "see" ho1v fast th·~ solution 

ca.11 chang-a at the initial po~nt. ,It is accomplished by ev:J.lu3.ting the 

Jacobian at th·= initial point and insis·bing that the step size h satisf'y-

(1) llhf 11
1 

~ 2.4 
Y-

As explained in s:=ction 8; this implies th·= step size h is stahle for 

both F(4, 5) formulas. We note that (1) may be -mu::h ~no~e stringent tha:1 

necesa::l.!'"y. Th:i.s if fin·~ beeause \v·: are ·mainly interested in a step 

size whic!l is small en:)'Jgh that we ca:.1 trast the start of the integ·:ca.tio::~. 

Ha•rine evalua:te::l f, fy' fx' a··~ the initial p~?inl:i, we are in a posi

tio::~ to ta:-ce a. "virtual" step rv.lth a Taylor series ·r(l,2) pair: . 

h2 n h2 
~l = Y

0
· + hy' + -

2 
y

0
. ~ Y + hf(a,y ) + -

2
- [f (a.,y ) + f (a,y ) f(a,y )] 

0 0 0 X 0 y 0 . 0 

As usual, the error control m9.l.tes ·!:;his an a.'1noyin5ly co::np.licate::l :matter. 

The error est.im3.ted in solution component i i.s 

(2) 

2 . 

lest. I = l-
2
h [f (a,y ) +. f (a,y ) f(a,y )] .1 

~ X 0 y 0 0 ~ 

DJD1RK allow·.;; tYtTO erro.c- .::ontrol pa.ran,~ters rtol. and atol. to be ;Pecified 
~ ~ ./:.' 

for a m.ixed relative--absolute test o~ each soliltion co.mpon•ent. T:1e matter 

is handled a little differently in the start tha.'1 .9.t a general step. 

For t!le first step vre try to take t:q·e error relative to the s'olution 

at the beginnin;s of the step: 

(3) wt .. 
~ 
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In the normal case wt. > 0. 
]. •.) 

The weight wt. is f'ixed, as is all of' est. 
]. ]. 

except f'or th~ f'actor h~. Thus we can iw~ediately deduce the largest h 

su,:!h that ( 3) holds. In the usual er .cor control of' the c ·:>de, the average 

magnitude of the solution at the two ends o:' the step is used. This 

protects against a solution comp-::>:1ent vanishing "accidentally," but it 

is inconvenient f'or the first step. In ,Particular, the w·:=ight th·2.n 

depends on the step size h and selection of' h is no longer so simple. 

It is all too common ·that a user ask for P'lre relative error, 

atoli = o, even though the Jolution ~o:mp·:ment y o,i = 0 at the initial 

point. Of cou:r.se then wti = 0 in (3). In such a case we take the 

error relative to the solutio:J. at th 1: -2nd of the str:p: 

wt. = rtol. lhf'(a,y ) I 
.l ]. 0 

Again we ca..'1 see the largest h such that I est. l s: wt. , but notice thaL 
].· ]. 

the order is r.educed in -~his situatio:J.. 

It can happen that the solutio:! eomp::>nent h9.s a double ze·co at the 

initial point, f'(a,y ) . = 0, in which ca,::;e b::>th choices o:f weight vanish. 
0 ]. 

The f'irst order Taylor series method p::-oduces a .numerical solution which 

is identically zero fo:r such a component so pure relative error control 

is nnt p.'Jsslble. We simply say- sllCh a '.!'Jlllp·:.nent p:!>OVides n-:1 ::;:::ale infor.ma

tioi1. 

Except :for- thc;o Pxt,.Y.~maly :ra:r2 c9.se that the user specifies pure rel~t

ti ve error f'or every sol11tiqn component aiJ.d ever-y co:mpo:1ent has (a-~ least) 

a double zero at the initial point, w·~ f'ind a step size suitable for th•:! 

T(l,2) pair. We do not give up in the ext:rem2 case beca1lse it is q•1i.te 

possible we shall be able to integrate it. It is just that ~his part of 

the step selection pru:.!e:lilre provides no us-2f'ul step size information, 

The local error of the !~irst or:.h::l' method. bt~h::l.ves J.i.ke ... h 2 ~ in general 

a..11d that of the f'ourth order m•:!tho:l like -h5 *. As a E_~istic to go 

fro.:n a scale suitable :for"T(l,2) to a scale suitable ·to F(4,5) w·.= assum-= 

that the error of the .fourth order m:thod is eq'.lal to. that of' the f'irst 

order method raised to the 5/2 po\'1\=r o Fro:n this we dedu·~e the largest 

step size ·which w::nld apparently sacceed with the fo"J.r.th order method. 



Finally we increase the step size as necessa-ry so that it be meaning

ful in the precision b·eing used. Specifically in DEHRK, we insist it .be 

at least as large as 26 units of roundoff in the initial point a. 

10. D·=sign Criteria for One-Step Methois 

R10ge-Kutta and R.)senbro::!k methois -evaluate the differential equation 

several times. in the course of a step of length h from x to x +h, say at 
. . n n 

X + A.h, i = 
n ~ 

pointed. out in 

desirable that 

1,2,. o. • The author and :his colleague H. A. Watts ~:1a.ve 

connection with explicit Runge-Kutta method.s that it is 

the evalua.tions span the interval C~ iKn+ l]. This is so that 

discontinuities can be "seen" by the formula. Some computational results 

brought to the authm:-' s atte:::1tion the fa.::t that the Kaps-Rentrop Rosen brock 

formulas do not sp'3...."1 the interval. On subsequent investigation it was founi 

that this is cot11.110:::l for formulae aimed at stiff problem;:;. Unfortunately 

it is with stiff problems that tr01.1ble is most likely. 

It is typical of stiff proble:ms th.at they exhibit small r2gio:o:1s in 

which the solution cha...'1ges so fast that it is almost discontinuous on a 

time scale suitable for the rest of.the problem. We shail describe these 

bo'mdary layers o:!:' tra."lsition regions here a;:; quasi-discontinuities. 

Relaxation oscillations are a fa..•niliar exanple.. Another kini of example 
! • • • 

comes f:r.o:n a forcing function •. Hindmarsh _at'ld Byr;.1.e have considered. a 

couple of .mockups of photocatalyzed ~tmosph•=ric r~actions. (see, e.g. 

[5]) W1.1ich are illustrative. The simpler ha.s the f'orin 

(1) by + aE_(t). 

The forcing function .E( t) is zero during the 1?. hoU:r i'light. At su~.rrise 

it increases in seconds to a value almost constant during the day and 

reverts to J at sunset. The p.r-oblem is so stiff tha.t the solution is 

nearly alW·3\fS in steady state, in particular it has the co~ste.nt value 

d/b a·'3 night. Thus the forcing func"!tion E(t) and the solution y(t) 

are nearly square -wa::res. 
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With the more familiar methods we expect a code to locate a qu9.8i

discontinuity nry sharp.ly. D:J.ring a period. of slow variation a cod.·e 

for stif'f problems will ta:~~ very large time s tep•3. .On such a time scale 

a bounda.!"".f layer "looks" like a discontinu.t ty. We expect, and find in 

the 1.-ridely used cod.es, that cod .. e;3 will have rep•:ateu step failu:ces at 

sw~h a quasi-discontinuity until th·e. step size is reduced to the point 

that the solution is not cha..."lging rapidly on the new time scale. Of 

com·s-: this means that the bo'.lnd.ary layer is located accurately and. 

resolved to t'h.e degree necessar"J. 

If .the method does not evaluate ~he differential equation 9.t tn+l' 

it can dn a.n exceedingly poor job of' locating a qua.;;i-diccontinuity. 

To ·expose the trOUble let 1.13 COU$irlP.r a _slmple CJC(l.:nple, t.he implicit 

midpoint rule: 

solve Yn·ti -= Yn + ~ f(tn + 
h 

2' y n+~J' 

a:ivance + h f't 
h 

Y n+t) • Yn+l = y + 2' n \ n 

Suppose the local error is estimated by doubling. In order to d.·escribe 

aimply what is going on, let us consider t'h.e problem (l) and speaK. 

looGely as Lhough the ±'un~t1CJ:A~;; E(t), y(t) w·~:re actu:W..ly discontinuous. 

We take the time origin at suu::;et !l.nd ouppoc::A :.r(t) has attained its 

stea•ly state v:::~.lue d/b. L~L u.s 'b:l!'y a st~?p l'lize gf ,just less than 8 

hours. In t'h.e first step we evaluate the ±Lfferential equation af'ter 

4 hours and we find the numerical solution to be d/b. In the second 

::.; L~!::p ·!f·::1. GJlral1JR.1-.e. just short of' 12 hours a:1d the fo.rmula 9.gain says 

that the solu~ion is d/b. In the double step of 16 hours the ev:j,lua

tion is done at 8 hours where the interm.~diatc .-;;olutio::-~ is d/b ani s0 

.3,pparently confirms the "mo.re aGCUrate" solution to be u/bo Of C!)'.lrse 

the formula do·3S ·not "see" th1~ discontinuous change at mmrise. The 

result is th9.t the location of' sunrise has b·3en missed by 4 hours~ 



Q;uasi~disco:iltinu.l.ties cannot be reg~ded as pathological f.or stiff 

prublems and it ·is clear that serio'!.ls errors in their solutioci are 

possible with az1y formu..la vrhich do·~s not. evaluate at tn+ 1• Sp·ecifically, 

if du't'ing a sm,:>oth portion ·of' a.>'l integx-at'ion' a. method niight use a step 

size of h, a quasi-disco:J.tinuit.y could b·e located impruperly by as· mu·.::h 

as (1 - A. )n -w':lt:re t + A.h is the point closest to t 
1 

at which the 
J n J n+ 

differential equation is evaluated. 

T..'le example of thoe midpoint ·r-J.le is n:>t at all contri v2d. Among 

th·~ fully implicit Runge-Ku'!ita methods, corisidel~able attentio:J. has been 

di.rected at tho.'3e based on the Gaussia11 points· b·=~~ause they achieve 

maxims.l order a11d A-sta::,ility. ~'ley a.=e all defective in the -way we 

have p:::>inted: out with the midpoint r-u.le · b<=ing the W•.)rs t case. Hulmt~ 

a11d Da.ni.el [13] hav•.:! a code implementing both Ga11ssian and Rai.'l.u 

formulas with do~bling as an en•or est:i.!n.itora OJ..t' observa·;ion applies 

directly.· It is intere3ting to ::1ote that· in the re·:!e:J.t derivation of 

some fonnulas by Butcher [4] (a11:i implemented by But'rage, Butcher, and 

Chip:na..."l) the defect is not co~1sider.ed .s.:..1d it is quite possible. However, 

th1~ additional constraints applied to achiev·a better .stability p:copertie3 

had the side effect of av·.Jiding the defect. 

Lindberg [30, pp. 201-215] ·has ba.;;ed an extrapolation code on a 

modi fleJ. m:id:poin t r-<1lP. 

h. Yn+l+yn 
Y 1 = y + hf(tn. + -

2
, -.::::--_ ) • n+ n ., 

IL l::; luLe("el:l'Llug Uu:t;b there has been some d.iscuss'io::1 [10·, p. i65] as 

to wheth.:=r the basic formula :::>l~ht to be this· rule or the trapezoidal 

ru.le 
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One argument advanced in favor of' the midpoint rule is that .it is 

u_rmecessary to evaluate f'(tn+l'Y n+l). In the present context we 

see that this is an .argu.ment agai!!,~~ the midpoint rule. 

The midpoint rule is an ex'3.!nple of' a semi-implicit fonnula. 

Some comput9.tiom.lly interesting exarrrples of· such fo!'illulas considered 

by c:·ro1.1Zei:x:, A1e:Xat1der [1], a:.11.d Norsett exhibit one or more defeets 

arising f'rom a.n attempt to 9.~hieve vat>ious other comp;.ltationa~ly 

desiraole properties. Crou.zeix 1 s (2,3) A-s·;:;able DIRK formula do::!s 

not evaluate at t +l" The (3,'-1·) formula evaluates in the f'ub~<:_ as. 
n 

do·es Norsett 's formula. It is interesting that Alexa:J.der increased 

th·= nu:nber of' stages to get better stab~li ty pro,;;:>erties. As a 

·~O:lseq'.lence of the desired stability properties, he had to eval1,1ate 

at t 
1 

and so avoided the defect .• 
n+ 

The defect ~tr·~ have .noted is practically st9.ndard with Rosenbro•::!k 

formulas, see f'or ex:1.nple the f'orinulas u;:;ed in the codes of Bui [3], 

of Villadsen a.n.d Michelsen [29], ·and of Kaps and Rentrop [14]. 

In the course of these studies ·w·e noted that a num'?er of codes are 

ba.3ed on :me-step m•ethods ·w~uch evaluate outsid·= the. step, either in 

the pa::;t, some A. < 0, o:.~ in the f'u.ture, some A. > l. This h:'l.,:; 
L L 

tradi tiooally been avoided w·ithout a.ny special comment, but in yiew 

of th.= re·::!e:lt use ot' su:::h formulas, a feiv remar6:s seem to b·e in order. 

If a problem arises in a.uto:1omous f'orm~ ther~ is n::> •:>ostacle to 

evaluating out:;;ide ·~he st~p. As we h;~..ye ;:ommented earlier, mo~t 

theo!'e tical wo:~·k is do:1e with the auto~1omous f'orm a:.1d it is easy 

to u..rJ::ierst9.nd h•Ttr a re:3earcher might overlook an evalu9.tion outside 

the interval. se·r·.=ral of Bui 1 s Rosenbrock formulas evalu~te in the 

pa.;; t. This is :1ot greatly -lif'f'erent from a method with memory. 'E'lere 

is an obvious difficulty with starting and after (effectively) 

restarting d·.1e to discontinuities. Bli 1 s code app9.rently ass·Qrnes 

that evalu9:~ion in the p.ast will c::ause no problem, but thi~ is not 

always true. Alexa.'1:ier [1] notes that a semi-implicit formula of 

Crouzeix evalu9.tes in the f'u:ture. Norsett 1 s pair as implemented by 



Houbal{ a:nd Thomsen [11] does this too. There is not then a starting 

problem, but there is a termination pro!:>lem. It is not uncommon that 

it is not possible to evaluate the differential eq·J.ation p.ast some 

point, or its definition changes there. The DEPAC [26] software design 

sp.ecifically p~ovides users a way to warn the code that this is the case. 

Any formula which evaluates in the future needs to take special action 

in such a :!ase. 

We have not thought of any.easy and reliable remedy for the defect 

of not evaluating at the end of tht:= step when solving stiff problems. 

Perhaps we should remark is that it is tho:= combination of formula a.'1d 

error estimator th~t counts. If the formula did not evaluate at the 

end but the estimator did, there would oe no difficulty. We take 

a serious view of this defect. Evaluatine outside the step is not 

so serious. For many problems no special action is needed. Easy 

remedies seem feasible because the difficulty is similar to a familiar 

one, but; this do·es get awey from the (relative) simplicity of one-step 

metho1s. We :feel that as a.TJ. absolute minimum of protection to the user, 

the prolog of a...'ly code based on suc:!:l a formula should warn the user of 

the situation so that he can recognize when the C·::>de is n·ot applicableo 

11. Ad,justment of Step Size 

The principles of the adjustment of step size for explicit Runge

Kutta methods are discussed at length in [24,25]. We have followed 

the:m in the portion of DEGRK concer:11ed with th·e F( 4, 5) formul~ts. However, 

if a step size Fl11t:"~Uld fail more th<':IJ:l once, we reduce the step size by 

the fixed factor 0.2. This is because the asymptotic behavior exp·ected 

is not evident, else we would no"; have multiple failures. With no other 

information we resort to the fastest reductio~ ordinarily allowed. 

There are some new issu.es when solving stiff pro!:>lems that. we have 

n.o~, seen discusaed. One is losing the scale of th·e problem. For some 

particularly :-1i_fficult problem;:;, the l:<osenbrock formulas w·= have imple

mented have need·:=d to restart rep·eatedly. The code would be integrating 
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a smooth soltltio"Q. ~..rith a very large step size a.ncl suddenly f'ind it 

necessary to reduce the step size to the point that the problem is 

no!.1-stif'f'. It wo'.lld then move back to the smooth solution at which 

time it \vou.ld begin to increase the step size rapidly. We believe 

this is p9.rtly due to the stability properties which we ta.'ke \lp in 

section 12. It wo'.lld not be pa..!'ticularly inef'f'icient except f'or 

another phenomena~. We observed several cases when the algorithm 

f'or step size a.djustm·ent a.pp:!:'opriate to the F(4,5) f'ormula.3 required 

more tha..11 25 reductions of step size to f'inally obtain a. su~cessf't.1l 

The problem ·;.;rith the results m•entio::1ed is a. general ow~. When 

solving stiff probl~ms the observ-::!d or-1.er may not be that of the 

f'or.mula applied to :1onstif'f' p::-oblems. Prothero .and Robinson [19] 

have ta.'ken up this matter. Ueberhuber [28] has tried to cope with 

it in a..11.other context. It is easy to see that there is a ~ifficulty 

by considering a one-step ::netho:i applied to the specif'ic scalar equa

tion 

I 
y = ),y • 

If' a.t x w'= haw~ A. computeQ. solutio~ Y, 1 the typical one-step ::nethod 
n -~ 

leads to 

X. = R(hA.)y · u+l · n 

whAr~ R is ~ rational fUnction. The lo~a.l error 

le = y(xn + h) - yn+l = (exp(hA.) - R(hA.) )y
11 
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When !hA. I << 1, we h9;V"e 

so 

as a co~dition that the method. be of order p. However, when solving stiff 

systems we ar-e interested in this differential equation for Re(A.) < 0, 

!hA.I >> 1 ani the situation is raiically different. First we no'.:;e that 

lr:_ ~ - R(hA.) 
Yn 

~~e behavior of R in the neighborhood of infinity m<lst be investigated 

anywa;y because of the stability implications as 'Ln section 12, but here 

T.rTe are interested in the i.lllplications for accuracy. For method;:; stable 

at co, IR(co) I ~ 1. Writi!l6 

R(h'A) = c 
0 

c . c . 
+ ..1 + _g_ __ 

h)... (h>..)2 
+ 

we see that if the lo·::al error is n·'Jt acceptable, it may require large 

changes of step size to redu.:!e it significan-tly. Th~ Rosenbrock methud:s 

W8 lmpletttented all hav·e c 
0 

.; 0. 3. One of the problema we integrated had 

lh>..l 10
10

, so it is not surprising that the local error did not behave 

like a third O!'der formula. Ma..11y co::.nmon formulas' have c -- 0, b'.lt none 
0 

of the popular on•es have c
1 

= Oo ~~u.s this difficulty with the asymptotic 

behavior is of some gen·:;ralit.y. It 'is surprising to many that the local 

error ·(aay w·ell be a de':_~si~g· fun::ti6n of h ·for 1:~1.'>-. I >> 1. This illus

trates that ou:c u.ndersta!lding of the control of· error by a•1justment of 

step size is not complete. 
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We h3.''T'::"! responded. to th•= si tu-"'.t:lon in two way;.:,. On a failed. 

.step we a!'e pessismistic about the assumed. asymptotic behavior. Because 

of th•= work involved it is better to attempt a stepsize too small and 

succeed, tha:..1 O:':le too large a.'1d fail. 0~1 a first :fa::i.lure, we simply halve 

the step size" Should this fail, we reduce the step size attempted by 

a factor of 0.2. Should this step si~e fail, we, in effect, res.ta.r:·t by 

reducing the step size so that lihf ll = p, thus for~ing the coie to -::!ha.'1ge 
y 

to the explicit RuTI5e-Kutta formula. T".ais drastic action is beca·,1se we 

hav~~ a..~cu."!lula·~ed evid-ence that the scale of the problem hn..J been .lostn 

For r-a~if.l,:··d li.t-y w•= red.u~e the step ci,ze to the point -that 'fJ.t.lY integ.r.•al 

c·;.n ... ve can b·e resolved. 

On a s·!l,:!cessful st~p we ~::; l.;int~tc U-'1 ap:pr·:'l.[lr:i.ate step siz2 :for 

continuing, but li."llit it depeniing on how stiff th-= problem is. The 

explicit for.nula for :.non--stiff regions permits a step size inerease 

as large as a factor of 5. The larger i!hfyll is, the more co:1servative 

we choose to be b·2cause vr~= are working in a region ·where o"..lr theoretical 

underpinnings are shaky. Specificalzy in DEGRK, we limited the increase 

of step size to 

3.8 
+ -~-rrhCIT 

l CJ + "'""'_]!-
• 50 

'rhus if the problem is barely stiff, the increase is limited ~~o a factor 

of 5, and if it is extremely stiff, to a facto~ of 1.2. 

1?. Stability Properties 

The stability of method:~ for th'= solutio.:1 or stiff 1JL'(iblem,3 ha.o 

b-een the •3Ubject of intensive ~·~search. Neverth-?.less, our i.l!ld·::rstanding 

of the matter is far fro:n answe:ting Lh2 li.t~M.o u.r p~·ao:ti P.r.. Earzy wor!-~ 

rigorously applies only to problems of the form y' = Jy with a constant 

J w~1ich can be di13gonalized by a similarity tra.'1sformation. Th: common 

num-erical metho:is ca~'1 ":>e cwl::~.lyzed by tha s-~'1\t~ transformation so that 

one can test stability by considering the method as applied to y' = ~ 



for A a (complex) eigenvalue o~ J. Rosenbrock methods applied to this 
. . 

test equatio::1 lead to a ratio::tal f\.tn.-:!tion R(hA.) of th·=c! step size h and 

A..· If .IR(hA.) I ~ 1, the computation is stable a.'1d otherwise, m1stable. 

Ttl•:! appli.catio:1 of this analysis to more C•:>mp.licated problems is heuristic. 

Although experience shortTs it to be useful, one should not put too much 

faith in it. 

Tb.e reason we giv·a this backgro'.lnd. is that the Kaps-Rentrop formula 

pairs have I R( co) I ~ 1 "for the form'.lla th.ey intended for adYa .. 11cing the 

solution. When solving stiff problems 'tle are ve.r-:1 inte·rested in step 

sizes h such that for some eigenv~lue A of the. Jacobia1, lhA. I >> 1. 

The autho:t~ ·lmich p:!:'efers to u.se formulas for which the stability is not 

so margin~, so as to be a little more co::1fident that they will be 

applicable to :tn~oblem.s less artificial tha.'l ~h·~ te~t equ.3.tion. 

B:sides the matter of stability~ there is the related m~tter o:f 

h<YtT accurate formulas are for lhA I >> l. At least for the test equation, . 

this can oe st,.ldied in detail in terms of h01tT "tl•=ll R(hA) approximates 

exp(hA). If IR(co) I =~ 1, there is no qualitative agreement for lhAI >> 1. 
I 

If I R( co) I is significantly less tha.'l 1, the nillllerical solution is at 

least dampt;d. 

We preferred to ·3.•ivance the solution with the third order fo.:."lllula 

of the GRK4A pair beca:ise it ha.s IR(co) I ,;, 0.31~ We a·.:!tually tried 

pro~eeding with both formulas. Kaps has told 11s that in the tests 

o.~ [1~ it wa.s more e:ff'icient to use the fo'J.:t:'th order formula. This is 

easy to understa:n:i becau:3e the test .~et [R] is not p.~ticularly dema.:tlding 

and rewards high orde:r. Our experience was som•ewhat different hecanse 

O'.lr code used the Fehlbarg scheme part of the time. Wnenever the Fehlberg 

scheme could be used, o.n.e would ex:p·ect tha.t the highr~r order formula of the 

Rosenbrock pair woul:1 be adva11tageo'.ls. In o'.l:r co-:nputation.s with the test 

set [8] there was no important distinction du•:: to ll'hich formula .'Jf the 

R:>s.e:ahrock p-9.ir was used. The matter was different when ha:-de:r problems 

w·=r.e tried. 
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A good example of our experience, 'though not the most dra;na.tic, 

is the problem of Bui [2] integrated to x=-=5. We made r-uns in which 

the solution Nas advanced ·with the third order formula and corresponding 

runs with the fourth order formula of the GRK4A pair. With the p'..l.re 
-2 -4 

absolu~e error tolerances 10 , 10 there was no striking difference. 

T11e number of steps gives a ~air impression of the relative work. Tt1e 

numbers of steps at the two tolerances were 24, 90 ~...rith the third order 

form'..lla <tnd 28, 1l4 with the fourth order formula. Altho'..lgh not negligib;Le, 

the difference does not compare to that observed when pure relativ·2 error 

-2 -'+ 8 tolerances of 10 , 10 ·were used. Then the munbers of steps were 15· , 

769 and 253, 922 respectively. Considering the cost of a step,. this 

represents ~1 important difference in the perfor.na.·:1ce of the formulas and 

caused us to prefer the more damped formula.. 

We would prefF>:r t.h~tt both fqrmulas of the (3,4) pair be strongly 

da..•nped at infinity. Also, we would prefer to adva.n·~e the solution 'N"i th 

the fourth order form·~.la to take advanta.,:se of the higher orde.r. This is 

partly ·why '...re made a different selection of fOL"mula pai.r in section 6 

than did Ka:.;>s and Rentrop. With O'~r choice both formulas are A-stable 

and both have I R( o::) I ~ 0. 33. T.a:ts is very nea:dy the sa.L'le damping at 

infinity as that of the thit'd order formula of GRK4A, but now we ca..'1 

a.ivancc thG soluti..nn w.Lth the higher order formula (whit:h by C•5natructiO!l 

i.R a relatively a.~cura.Le .Cu.L'1illllel. of ord·ijr .4), 

13. More Numerical Results 

As we said in the introduction, it is not o'..l:r. object to co:npare the 

perfor.nan.~P. of the code DEGRK to popular- BDF codes. So:ne results were 

reported in s-et!tions 8 and 12. We shall present here a fe;.r a:id.i tional 

results intended to say something a"IJ.:.m~. the algorithms used i.n DEGRK 

a..'ld to s'..lggest that Rosenbrock meth::>d.s mignt be co:11petitive in sui tahl r. 

cir.:::umstan~es" 



In sectio~ 2 ·we stated a problem from the chemical engineering 

literature which depends on three para'lleters K, s, Nf. In the article 

referenc.ed. a set of computations is reported for the nine problems 

resulting from the choices K = 5; s = 0.1, 5, 500; Nf = 0.1, 5, 50. 

The solutions are well S(!a.led· so an a:Jsolute e:r-:cor test is reasonable. 

W•e solved all nine problems at a given tolerance with DEGRK a..11d then 

with the BDF code of the NA.G librar-.f r17]. At tolera.11•~e 10-
2 

the 

respective central processor t.ilnes 1vere 0.205 and 0.497 units. A.t 
-4 . 4 .. -6 

tolera..11ce 10 they were 0. 75 and 1.02. At toleranee 10 they were 

4.34 a11d 1.67. Spot checking of the apparent accuracies suggests that 

DEGRK is producing a somewhat mo!'e accurate res•.1lt, but that the 

accuracies are ro~gbly comparable. These results and others of the 

kind shmv that DIDRK may be m~re efficient in a real time sense for 

suitable problems provided. -::me does not ask for a great deal of 

accuracy. Kaps and Rentrop ca:ne to a s.imila..r conclusio:1 in [14]. 

Th·e parameter choice K = 5, s =. 0.1, Nf = Ocl results in the 

least stiff' problem. At all three tolera:.v~es the F(4,5) for1nulas are 
-2 

used a·~ every step. A.t tolerance 10 there are only 3 steps, and 
-4 

3 Jacobian evaluations were mg,de. At toleranee 10 the de(!ision 

is less ambiguous becau.se of the smaller step size needed to get the 

accura.-~y. There were then only 6 steps and 2 Ja·:!obia..'1 evaluations. 
··6 

At tolerance 10 there w·are 12 steps and 3 Jacobia...'l evaluations. 

Bcca1.lse so few steps are made in solving this problem the nu..11ber 

of Jac.:>'!::>ian evaluatio:1.s is relatively large. As we would expect, 

the morP. stringent the tolera.!lC:e, the less stiff the problem looks 

a..11d the fewer Jacobian.s are needed in our test. It is n~ surprise 

that DEGRK is more efficient than the BDF code in terms of function 
··2 

a.rJ.-i Jacobia..rJ. evaluations. At tolerance 10 DEGRK required 21 

f'u:.1ction evaluations along with th~ 3 .Jacobia."l evaluations wher.;.'3.s the 

B.Dli' cod.e needed 35 f'u:1ction e·:raluations and 8 .Ja~obian evaluations. 

~1e di:f.fere.nce of performance iu this measure increases rapicily as 

the tolerance becomes more s-cringent for a no:-1.-stiff pro:,lem. 
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The p.a.rameter choice K = 5, s = 500, Nf = 50 results ln the stiffest 

problem. The maximum value of hy\Jf;ll encourrt.ered by DEGRK in the integra

tions at tolerances 10-
2

, 10·-
4, 10- are respectively, 7353, 41.1-78, 173l+. 

According to ~he results of section 5 this implies sam·~ fairly ill

con:iitioned systems in the ev~uation of the RosenbroC!k formula. As is 

typical, more stringent a~curacy requests lead to smaller step sizes a.ni 

better conditioned systems. T"n.11s, in a way, we can expect more accurate 

solutions when 'ile really n•eed them. A significa!lt n~.l!nber of steps were 
. . . -2 

taken ·with the explicit method at each tolera..."lce. At tolera!lce 10 -, 2 

of the 21 steps were taken with the F(4,5) pair; at toleran•:!e 10-
4, 1?. of T7; 

-6 ,.. , ,.. 
8/Jd a.t toleran.ce 10 , 3o o:f b3o. Notice the rapid i!l::!rease in the number 

of steps as the tolerao.·~e is made mo.re stringe!it. T..'lls is cha:t.•a.:~teri3tic 

The :cesults slJ6gest the code quite ln~pp~opriate of a fixed ord·~r me thad. 

at the tolera..."lee lo-
6 . This is also suggested by the nu.nbe:c of rejected 

steps which were respectively 0, 8, a...'1:i 111. At the cr..ld·::st tolera..1•~e 
' 

D'SGRK is soc1ewha.t competitiv·= even in te:c-ms of funetio~ and ,Ja:!obian 

evalu.a.tions. Then it needed 90 funC!tion a..11d 21 Jacobian =·iTa luations 

whereas the BDF code needed 78 function a.rld 1) .Ja·~obia..YJ. evaluations. 

Th•e difference of performance in this m-ea3ure increases rapidly ·9.6 

the tolerance be·::!·Jmes m,')re st!'ingent fo!' a stiff p~oblem. 

It is especially hard to cornpa .. r·<= codes on difficult problems; hut 

we shall present one exa..~ple which has its interesting points. ~dott 

a!ld Wa.tts fl6, pp. 197-227] report a :iifficult initial value probl~m 

ax·ising from the solution by shooting methods of a boundary value problem 

describing a kid...11ey f\mction. 'I'h'= systetn or 5 equa:tions showc a :ira.nati~ 

difference in eost when using the Adams suite ODE/STEP, IIITTRP on va.ria~ 

tio~ of o::1e initi~l value from 0.99026 to 0~99000. In large measure the 

di ff"P.rf!nca in behavim· iR due tt;> stiffn:=ss, although i.n an.oth:!r study 

w•:: found that both problems are stiff. The integrations are very sensitive 

so hig~1 accura·::y was nec.es,sary in th; application. SuC!h high a,~curacy 

ma..~es DEGR'< inappropriate, but we thought it interesting to explore the 

problem at relatively crude tolerauces beca•1se of the differin.s 3tiffness. 



For each of th~ t•tlo different .initiaJ. values cited, we solved the 

problem at the tw•.) pure rel~t-:i ve error tolera.'1.ces 10-
2

, 10-
4 

D:Ei}Ri( 

rn"J.st take the first step of an integration with the explicit Runge

Kutta pair, but for these integrations the problems were so st.iff that 

it took no other steps ·w:ith the explicit fo!'Illula. The pro'Jlem with 

initial vaJ.ue 0.99000 is significa:1tly stiffer. We computed in every 

case the maximu:n value of tl'VIIryl\ as a..'1. indication of the stiffness. 

For the initial value 0.99000 this ma.ximu:n TtJ'a.s abou~:; 4000 at tolerance 

10-
2 

a.1d. 7000 at tolera...r1ce 10 _!+. For the initial v.alue 0. 99026 this 
··2 -4 

. ma.:d ... 111u:m "tl·3.3 about 50 at tolera..'1.ce 10 a..'1.d 20 at tolera.nee 10 • 

We also solved the probleiM with the· BDF code from ·the ~1\.G 

library. A diffic;llty is that the comp'.lted results are of differing 

a:::!cura·~ies. We :::!O.:np'.lted solution::.; at the. pu:re relative error tolerance 

of 10-
6 

wj_th the BDF code and regarded tha-n as the "true" solutions 

in 1vhat follmv.s. In the application it is the value of the solution 

at the end. o:' the integration which is critical, so we conc:entrated 

on it. 

For the problem ·;yith initial vaJ.ue 0.99')00, the BDF code comp'.lted 
-2 1 

a solution cheaply at tolera..'1ce 1:) , 0.0•+9 units of centraJ. processor 

time, but it was ·worthless. Foi_" ~xamp.le it reported the first two 

8 
0 . -1 

solution components to be about l. 9 x. 10 , 5.81 x 10 when they 

in .fact are about 1.38 x.10
2 

a..11d 7.21 x 10-3. At the tolerance 10·-4 

the cost was 
·-1 

1.3 X 10 • 

tim,~, 0.100 

0. 295 units a,n.d the maximwn rela·~ive erro.~ was abo~.lt 

When DEG-RK wa.:.; given the tolera.n.ce 10-
2 

it took mo:r; 

un.i ts, but it produced a :~zsult almost as good as that 

with 

When 

-4 -1 
tolerance 10 in the HDF code, na:.n·e ly a m.aximum. error of l. 7 x 10 • 

DEGRt<: was given the toleran:::!e 10.:.
4 

it took les~ time, 0.248 units, 

tha...'1. the BDF code and. got a lot more a.-!•:!Uracy, namely a maxim·..t.n error 
-3 

of 2.0 x 10 • The situation w~,;; simil.a:, tho'.lgh ;;·ather less dramatic, 

for the initial condition 0.99)26. The cost in central proce::,sor time 
•~2 w4 

at Lh= tolerances 10 , 10 were 0.054, 0.221 with tht~ BDF co1e and 

0.148, 0.223 with DEGRK. T..1e resu.lt at tolera....'1.ce 10-
2 

was not so bai 
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with -the BDF code as with the other problem, but one component was off 

by a factor of more tha...• 3 so th!:! solution was not v·~ry helpful. At 

toler an·~ e 10-
4 

the m~x:imum error ·wi t"h the BDF code was 4. 0 x 10 -l. T'ne 

-2 . . . 8 6 -1 
error at tolerance 10 was not very good w~th DEGR,l\: e~ther, • x 10 , 

. -4 -2 . 
altho~Jgh closer J.n performance to the toleran·~-= 10 ths..11 10 ·w~ th the 

-4 . - -3 
BDF co::le. The error at tolera."'"l.ce 10 w~th DECRK was 7.1 x 10 • 

The kind of results seen on this problem did not surprise the author 

b<acal.1.13P. he adopted rather conservative tactics in Dill.RK and f'urthermore 

some of the algorithms have a tendency to result in m::>re a~curaey than 

requ:tred. The line of BDF codes starting with JIFSUB [9] a!'e n::>t so 

conservA.tive. The situation .ma.'~es it hard to compare DSGRK directly 

to BDF co::les, but this is not the object of tlu::' p::.'e.sent papar. WP :io 

thin~ ~he results presented shcNr that .Rosenbroek codes a . .r-= competitive 

with BDF co::les in appropriate circumstB.-"'"l.ces and that DSGRK, in :.;>articular, 

is in some respects successful. 

11.1. A Personal Assessment 

In the course of this investigatio~ the author has form~d some 

opinions abo:.1t pro::luction codes based on Rosen'oro·::!k metho'is. A ft=w 

··will be mentioned because they suggest certain lines of development. 

'fi1'i' mn::1t straightforward imp:tovemerJt to DECR'K vrould; he th~ 

deve],.op:n·=~t of a Rosenbroek fonnula ':vith b-et-ter prop-=::rtie::;. 3pedf.i.ca.lly, 

it seems that maxim9.1 dam.ping at infinity (R(co) = 0) ctwl a. higher l)rder 

arc needed. Higher order, maximally dru11ped. formulas ·b.:'l;.re alreaiy been 

given [15]. Unfortu:1ately they are not acco:np9.."'1ied by B-'1 error esti.TI!.s.

to:.c. The general principle of doubling in applicahle, but d•.")•?S not 

strikr.: the aut.hor a.B promising. It involves tw•.J matrix facto!'iza.tions 

!:t.nd. a. coTialdl:l.r.·abl<':' mrrnber of st.A.ges pE!;r step. Very reeent work [1.8] 

suggests that perhaps the approach is practical. T'.n-2 history of 

explicit Runge-Kutta methods suggests that too much emphasis is being 

plo.~ed 0:1 a minimal nu:.nber of stages. In view of ~he significa11t 

linear algebra .:!OS~8 and the pa.:r.tial derivatives evaluation at every 

step, it appears b·=tter to aim for fe-;ver steps with ~nore sta.:ses. 



In some circurn;; t9.n::es the Rose:.1.brock methods ap;>::ar to enjoy an 

advantage wit.h respect to the BDF in te·rms of _overhead. The author 

suspects that this is partly due to the different ass1Lrnptions made about 

the problem class addressed rather than bein.s intrinsic. The Rosenbrock 

meth:;,ds are being implemented. as fixed order codes while the BDF are 

usually imp.lemented as variable order cod-es. · The distinction h9.s 

i."~trpo·.:-tant i.'llplicat ions indep.en:ient of· the underlying methods. The 

situ9.tio:I is a..l'la.logous to the relative merits of explicit R'mge-Kutta 

a'1d variable order A'iam.s methods. 

We hav·.= seen that a cr-.J.de, but useful, way· to recognize an:i respond 

to stiffness automatically is poGsible. The autho.:' believ·.=s that otho=:c 

techniques he is currently developing wlll p:-.:-ove at least as effe·.::tive 

for the BDF. 

The Rosenbrock m.ethods ha..11dle gracefully stiff problems with 

Jacobians that cha..11ge pretty often. It is not clea.r at this tim;~ the 

practical significa!lce of this difference. Part of t.he difficu .. lty is 

th'3.t th-ere is not enough inforw.ation a;r9.ilaql2 abo~.1t "typical" problems. 

Just ho~tT •.::onsta..YJ.t are the Ja·:!o'!:>ians? Do ~tle foeus our atte!ltion on 

problems ·with nearly constant Ja,:~o'!:>ia!ls b·eea.use O'.lr ·theoretical lm:ier

stan±ing of them is better, or are they truly representative? Another 

difference difficult to evaluate is the different role of ill-con:iitioning 

in th;.= lin.ear. systems to be solved. This appears a 'tl.::>rcisom•e matter for 

accurate integrations with high o.~der Rosenbrock metho:is, but it is 

P';)££1blc that self8r'e ill-cond.i tio:':'ling is not co.:nino:1 or, for some reason 

'lOt taken ~..rp in this paper, does n·:)t greatly affect th•2 results. 
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