IMPLEMENTATION OF ROSENBROCK METHODS

Lawrence F. Shampine

(14. Candia National Laboratories

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Issued by Sandia Laboratories, operated for the United States Department of Energy by Sandia Laboratories.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

PAGES 1 to 2

WERE INTENTIONALLY LEFT BLANK

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereot. nor any of their employees, makes any
warranty, express or implied or assume warranty. express or implied. or assumes any legal liabitity or responsibility for the accuracy.
completeness, or usefulness of any intornation, apparetus, completeness. or usefulness of any information, apparbius, product. or process disclosed, or
represents thas its use would not infringe privately owned righis. Reference herein to commercial product. process, or senvice by trade name, trademark, Ranufacturer, or othenvise, doces not necessarly constiture or imply its endorsement, recommendation, or favoring by the Unitad Staies Government or any bgency thereof. The views and opinions of euthors expressed herain do necessarily state or reflect those of the United States Government or any gyency thereof.

Abstract

Rosenbrock formulas have shown promise in research codes for the solution of initial value problems for stiff systems of ordinary differential equations (ODEs). To help assess their practical value, the author wrote an item of mathematical software based on such a formula. This required a variety of algorithmic and software developments. Those of general interest are reported in this paper. Among them is a way to select automatically, at every step, an explicit Runge-Kutta formula or a Rosenbrock formula according to the stiffness of the problem. Solving linear systems is important to methods for stiff ODEs and is rather special for Rosenbrock methods. A cheap, effective estimate of the condition of the linear systems is derived. Some numerical results are presented to illustrate the devclopments.

Key Words and Phrases: Rosenbrock method, ordinary differential equations (ODEs), stiffness, software for ODEs.

CR Categories: 5.17

[^0]
Implementation of Rosenbrock Methods

1. Introduction

The most popular codes for the numerical solution of a stiff initial value problem for a system of ordinary differential equalions (ODEs) are based on the backward differentiation formulas (BDF). There is a great need for a better understanding of many fundamental issues in both theoretical and practical terms. In addition the popular codes havc certain wea.knesses arising from both the formulas and their implementation. The situation has stimulated the investigation of many alternatives to the BDF. Because rather few have been devcloped so far as to result in ittems of mathematical software, it is difficult to evaluate the theoretical advances in the field.

In solving the system

$$
y^{\prime}=f(x, y),
$$

the implementations of the $B D F$ employ the Jacobian matrix f_{y} in a simplified Newton iteration for the evaluation of the implicit formulas. This has suggested to many researchers the possibility of incorporating the Jacobian matrix directly into the formula. One line of development has been that of Rosenbrock formulas. For a differential equation in autonomous form, $y^{\prime}=\Gamma(y)$, such methods have the form

$$
\left(I-\gamma h f_{y}\left(y_{0}\right)\right) k_{i}=h f\left(y_{0}+\sum_{j=1}^{i-1} x_{i j} k_{j}\right)+h t_{y}^{\prime}\left(y_{0}\right) \sum_{j=1}^{j-7} \gamma_{i j} l_{j} \quad i=1, \ldots, s
$$

(1)

$$
y_{1}\left(x_{0}+h\right)=y_{0}+\sum_{i=1}^{s} c_{i} k_{i} .
$$

Here the constants $\gamma, \alpha_{i j}, \gamma_{i j}, C_{i}$ define the formula. Each stage k_{i} is obtained by solving a system of linear equations with the same matrix. The linear combination of stajes advances the solution y_{0} at x_{0} to y_{1} at $x_{0}+h=x_{1}$.

These formulas are not implicit in the sense that the BDF are and so avoid some implementation difficulties. It has proved possible to derive Rosenbrock formulas which in some respects have better stability than the higher order BDF. A price one pays for these and other advantages is that one must evaluate partial derivatives of f at every step. Ordinarily it is presumed that these partial derivatives are either clumsy or expensive to obtain, and for this reason the popular BDF codes try to evaluate f_{y} as infrequently as possible. This presumption is by no means always true, so Rosenbrock formulas should not be discarded for this reason alone. We shall restrict our attention in this paper to the class of problems for which the partial derivatives of f are convenient to obtain and are not a lot more expensive than the evaluation of f itself.

Recently Kaps and Rentrop [14] derived some Rosenbrock formulas with internal error estimators. This was a natural development in view of the history of explicit Runge-Kutta methods and was an important step in mairing the methods practical. The computational results they present suggest that Rosenbrock methods might be a practical alternative to the BDF. Their paper stimulated the author to develop a piece of mathematical software, DEGRK, based on a Rosenbrock formula. Here we report some of the algorithmic and software developments we considered necessary. Although these developments were realized in a particular code, most of the work is generally applicable to Rosenbrock methods.

At present, codes are clearly intended for stiff or nonstiff. probleils, but not both. Deciding the type of the problem is an impossible task for a user. This author considers the question of how to relieve the user of this decision to be the most pressing question in the area of ODE mathematical software. In [23] some progress is reported and a fuller discussion of the issues is given. Within the class of problems we postulate here, the matter is relatively simple. We shall describe how to switch between an explicit Runge-Kutta formula pair and a Rosenbroak formula pair at any step reliably and economically. The implementation of DEGRK uses a Fehlberg $F(4,5)$
pair for the explicit Runge-Kutta formulas. If the problem is urequivocally non-stiff, the integration by DEGRK is nearly as efficient as that by RKF45 [24, 25], an effective code for non-stiff problems based on the $F(4,5)$ pair. The class of problems for which DEGRK is intended is easily recognized. In this class there is no particular reason for a user even to consider the issue of stifiness.

In this investigation we learned that virtuslly all of the published Rosenbrock methods have what we consider to be a serious defeat for their use in production-quality codes. A variety of other one-step formulas suffer from the same defect. We have not seen this matter pointed out before, so we devute some space to it. It is the main reason we did not implement in DEGRK the formulas published by Kaps and Rentrop.

Kosenbroak methods solve linear systems which may becuni ill-conditioned. This appearis to be a matter deserving more attention than we give it here. We shall present a practical and cheap approximation of the condition which may be of value for other methods as well.

With the additional information available to Rosenbrock codes, it is possible to devise an exceptionally robust procedure for the selection of the initial step size, at least in the context of a type-insensitive code.

It is extremely difficult to compare codes for the sulution of stiff ODEs and this is especially true when comparing codes based on quite different presumptions about the problem class. Some numerical resulta for DEARK will be presented and in a few cases corresponding rebulto for a BDF code are given. Some research directions are Indicated by the results of this investigation.
2. Getting Partial Derivatives

In the solution of

$$
y^{\prime}=f(x, y)
$$

the Rosenbrosk methods require evaluation of the partial derivatives $f y$ and f_{x}. Here we want to indicate sone problems for which these partial derlvatives are not inconvenient nor much more expensive to evaluate than f itself. In section 7 we describe a software device which may make this more trie.

Perhaps the first observation ought to be that all the problems of the well-known test set [8] fall into this class. To be sure, many of the problems are artificial, but many are not. The supplementary test set of Enright and Hull [16, pp. 45-66] also falls into the class. Most of its problems arise from a description of chemical kinetics in a homogeneous solution reacting according to the mass action law. Such problems are sufficiently important that there are a number of packages written for this specific class. One such package is that of Edsberg [30, pp. 81-94]. It writes the problems as

$$
\begin{equation*}
y^{\prime}=A p, y(o) \text { given } \tag{la}
\end{equation*}
$$

where A is an $M \times N$ matrix with integer entries and p is an N vector with

$$
\begin{equation*}
p_{j}=k_{j} \prod_{i=1}^{M} y_{i}^{\dot{r}} \tag{1b}
\end{equation*}
$$

Here the $r_{j i} \geq 0$ are integers describing the reactions and the $k_{j}>0$ are rate constants. This autonomous system has $f_{x}=0$ and f_{y} is readily computed from the observation that

$$
\frac{\partial p_{j}}{\partial y_{i}}=r_{j i} \frac{p_{j}}{y_{i}}
$$

This class was a major reason that we began a study of Rosenbrock methods. Another class of proulems which may well be suitable are the linear problems

$$
y^{\prime}=J(x) y+g(x)
$$

The Jacobian $J(x)$ must be evaluated every time f is, so it cannot be expensive nor very inconvenient to provide it. The uncertainty lies in the f_{x} vector. Whether it is convenient and relatively inexpensive will depend on the problem.

In our experience and in reading the scientific literature, we have seen many individual problems which were in the class, and many which were not. One problem [20] which we use as a numerical example in section 13 is

$$
\begin{aligned}
& \frac{d x}{d \theta}=(1+5)\left\{1-\left(1+N_{f}\right) x+\frac{N_{f} y}{y+K(1-y)}\right\}, \\
& \frac{d y}{d \theta}=\frac{1+\xi}{5} N_{f}\left\{x-\frac{y}{y+K(1-y)}\right\} .
\end{aligned}
$$

Here ξ, N_{f}, and K are (constant) parameters. This problem caught our eye because the chemical engineers were interested in a range of parameter values. For some values the problem is not stiff and for others, it is stiff. It illustrates the convenience of a code which does not ask the user to decide the type.

A very popular option in production codes for stiff problems is for the code to approximate the necessary Jacobians by numerical differentiation. This makes life easy for the user, but we do not think this option appropriate to Rosenbrock methods. One objection is fundamental. The Jacobian is merely ail aid to the BDF codes--they will solve the ODE even if the approximation is terrible, albeit inefficiently. The Rosenbrock formulas are based on the partial derivatives and a.ll statements about order and the like depend on an accurate Jacobian.

We are supposing that partial derivatives ara not a lot more expensive to evaluate than the function. This is because they must be evaluated at every step with a Rosenbrock method and only infrequently with the BLH'. Of course if a Rosenbrock method took sufficiently fewer steps than a BDF method, it could compensate for a more expensive step. Still, it seems that Rosenbrock methods are not likely to be very competitive except in the circumstances we postulate。 Approximating partial
derivatives by numerical differentiation generally results in a rather expensive evaluation. Typical schemes for dense Jacobians use N extra function evaluations to form a Jacobian for a system of N equations. Except for N small, this makes a step with a Rosenbrock method much more expensive than a typical step with a BDF. If the Jacobian has a useful structure, such as banded or sparse, it may be much cheaper to form the Jasobian than in the dense case。 Even so, it is comparatively expensive except for very narrow bands or very special sparse structure.

We note the successful computations of Kaps and Rentrop [14] using differencing and remark only that all the problems in their test set are small. In DEGRK we chose not to provide an option for numerical differentiation for the reasons just given.
3. The Form of the Equation

Theoretical treatments of Rosenbrock methods have taken the differential equation in autonomous form because it is convenient to avoid the special role of the independent variable. The research codes have followed the theory in this respect. Of course many problems do not arise in autonomous form, so users are expected to convert their problem. It is usually suggested that if the problem arises as

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y), y(a) \text { given } \tag{1}
\end{equation*}
$$

one convert this to
(2)

$$
\frac{d y}{d t}=f(x, y), y(a) \text { given }
$$

$$
\frac{d x}{d t}=1 \quad, x(a)=a
$$

We have chosen not to use the autonomous form for a number of reasons. One is the convenience of the software interface. The typical ODE solver accepts the form (1) so that users are accustomed to it. Conversion may be fairly described as a nuisance to the user and leads to questions about an appropriate error control for the x variable.

Waen using a Rosenbrock method, the linear systems to be solved constitute a significant fraction of the work. To reduce linear algebra costa ODE snlvers provide options for various matrix structures. Conversion to aldonomous form obviously affects the structure. Wc, for example, provide for banded Jacobians in DGGRK. This structure is lost on conversion. To retrieve it we would have to ask the user to recognize an unconventional structure for a prublem in autonomous form, or to tell the code he actually started with a banded Jacobian and converted it. This kind of requesl is not likely to be popular with users.

The Jacobian of (2) is, in partitioned form,

$$
J=\left(\begin{array}{ll}
f_{y}, & f_{x} \tag{3}\\
0, & 0
\end{array}\right)
$$

Clearly the eigenvalues of the augmented system are those of f_{y} plus ga eigenvalue 0 . This is not importint, but norma may be more seriously affected. In lie L_{1} nurn we we,

$$
\|J\|_{1}=\max \left(\left\|f_{y}\right\|_{1},\left\|f_{x}\right\|_{1}\right) .
$$

We use the norm of the Jacobian as a bound on the spectral radius to assure stability of the explicit Range-Kutta formula, and for other purposes. Increasing the norm by converoion has a direct, harmful effect.

There are a coxple of conceptual objections to the conversion. The typical BDF code, for example, accepts the form (l), and if the user provides analytical partial derivatives, he provides only f_{y}. The Rosenbrock methods require f_{x} too. This matter is concealed when all problems are ascepted in autonomous form, but it is a distinction which could be important. Also, the conversion changes a linear to a nonlinear problem. It is interesting to note that the famous set of test problems [8] did precisely this with the Liniger-Willoughby problem Dl. The set carefully collected groups of linear and non-linear problems. D1 is in the non-linear group only becalse of the conversion from its original form. The conversion of linear problems obscures the fact that the Jacobian is immediately available in ana.lytical form. It is not clear what algorithmic consequences might follow converting a linear to a non-linear equation.

It is about as easy to implement the forin (1) in a Rosenbrock code as the autonomous form when done in the manner of the next section. In many papers it has been considared obvious that one use the autonomous form because of its elegance. For this reason we felt obliged to state a variety of arguments in support of our decision not to use it in DEARK.

4. Efficient Representation

The usual form of the Rosenbrock formulas (1.1) apparently requires the storage of the Jacobian matrix and a matrix-vector multiplication at each stage. These costs can be avoided by a simple mavipulation of the formula which has been attributed to Wolfbrandt. The resulting general form which we write for non-autonomous equations is

$$
\begin{align*}
& E=I-\gamma h f_{y}\left(x_{0}, y_{0}\right) \\
& E k_{i}= f\left(x_{0}+A_{i} h, y_{0}+h \sum_{j=1}^{i-1} a_{i, j} k_{j}\right)+B_{i} h f_{x}\left(x_{0}, y_{0}\right) \\
&+\sum_{j=1}^{i-1} c_{i j} k_{j}
\end{align*} \quad i=1, \ldots, s
$$

(1c)

$$
y_{1}=y_{0}+h \sum_{i=1}^{s} m_{i} k_{i}
$$

There is another way to sare a significant amount of arithmetic in the formation of E . To actually solve the linear systems (la, lb) we scale so that we work with

$$
f_{y}\left(x_{o}, y_{c}\right)-\frac{I}{\gamma h} I
$$

instead of E. For the solution of stiff ODEs we think this is a more natural scaling anyway. Scaling in this way is advocated by Gourlay and Watson [30, pp. 123-133] for a BDF codc and is used in a. sparse, semi-implicit Runge-Kutta code [ll], but it does not seem to be well known yet.

Solution of (1) involves the formation and factorization of E and then the s solutions for the k_{i}. The question that interests us right now is whether to keep a copy of the Jacobian f_{y} or to write over it in forming and factoring E. Because a Rosenbrock method presumes that f_{y} changes at every step, it is recomputed after every successful step. So the only obvious reason for saving f_{y} is to reuse it when repeating a rejected step. (There is anothar reason wa lake up in the naxt section.) Because of the expense of a failed step, the step size selection algorithm is rather conservative so as to make tailed steps uncumon. Wo expect Rosenbrock methods to be applied to problems for which computation of f_{y} is not much more expensive than computation of f. Thus recomputation of f_{y} at failed steps should not be a very big waste for the kind of code and problem we have in mind. In compensation we roughly halve the stornge required by the code. We deemed this to be a bargain in $ل E G R K$.

5. Conditioning

The Rosenbrock methods require solution of linear systems involving matrices $E=I-\ln \gamma f_{y}$. This is also.true of the typical implicit method for the solution of stiff ODEs although it is done for a different purpose。 It has been frequent.ly commented that, these matrices may be ill-conditioned, but we have not noticed any arguments to the effect that this must be so. We shall argue this here and devise a practical measure of the conditioninis.

The situation is quite different in the cases of a Rosenbrock and, say, a BDF method. With the BDN and other implicit formulas, linear systems are solved to obtain successive iterates approximating the result defined implicitly. As described in [22, p. 109], this is normally arranged so that one solves for the change in the previous iterate. Ill-conditioning may slow down the overall iteration because some digits in the change are spoiled, but as long as a few leading digits are obtained correctly, the process "converges." With a Rosenbrock formula, the solutions enter directly (and indirectly through the function evaluations) into the solution value for the step. The situation for the first stage is especially clear. With such formulas, inaccurate solution of the linear system leads to inaこcurate solution values. Normally one does not solve stiff ODEs to stringent (relative) accuracies so with a reasonable computer word length, this is probably not very important in prantice. However, in this respect Rosenbrock methods and methods like the $B D F$ appear to differ fundamentally. The matter merits more attention tham we give it here.

By definition cond $(E)=\|E\|\left\|E^{-1}\right\|$. In general

$$
\rho(M) \leq\|M\|
$$

where $\rho(M)$ is the spectral radius of the matrix M. If λ is an eigenvalue of f_{y}, then 1 - hy is an eigenvalue of E and its reciprocal an eigenvalue of E^{-1}. At this point we need to put in some information to the effect that the ODE problem is stiff. Stiffness is not a
precisely defined concept. Nevertheless, many workers would be willing to accept a statement like the following: For a step size h yielding the required aecuracy in the formula, the eigenvalues λ of the Jacobian f_{y} fall into two classes:

I

$$
\begin{aligned}
& |h \lambda| \ll 1, \\
& \operatorname{Re}(\lambda) \leq 0 .
\end{aligned}
$$

II
It is further assumed that neither class is empty, and that in class II there is an eigenvalue λ_{j} with $\left|h \lambda_{j}\right| \gg 1$. Notice that we do not take up the conditioning of a single equation.

The general rasult

$$
\left|\frac{1}{1-h \gamma \lambda}\right| \leq 1 \text { if } \operatorname{Re}(\lambda) \leq 0
$$

tells us that no eigenvalue in class II causes $\rho\left(\mathrm{E}^{-1}\right)$ to be greater than 1. The assumption class I is not empty then implies that $\rho\left(E^{-1}\right) \doteq 1$. The assumption about class II says that

$$
\rho(E) \doteq \max _{k}\left|h \lambda_{k}\right| \geq\left|h \lambda_{j}\right| \gg 1
$$

From the general relation of spectral radius to norm, we now conclude

$$
\operatorname{cond}(E)=\|E\|\left\|E^{-1}\right\| \geq \rho(E) \rho\left(E^{-1}\right) \gg 1 .
$$

Thus if the problem is stiff in the sense we have used, the matrix $E=I-h \gamma f_{y}$ must be ill-conditioned.

A problem is usually described as non-stiff if all eigenvalues of the Jacobian are in class I. This ignores the important role of the norm, aind in these circumstances ill-conditioning is not precluded. If the stronger condition that $\left\|h f_{\mathrm{y}}\right\|$ is rather less than 1 holds, it is easy to see that in this particular norm, I-hyf is not ill-conditioned.

Because conditioning directly affects Rissenbrock methods and because we have seen that ill-conditioning is to be expected, we considered how to get some idea of the conditioning. A scheme was devised [6] for LINPACK [7] which tries to compute a large lower bound for the condition of a factored matrix. A computable norn is chosen for $\|E\|$ which in LINPACK happens to be the same one we chose in DEGRK, namely $\|E\|_{1}$. In general if one solves $E v=w$ for v, he gets a lower bound for $\left\|E^{-1}\right\|$ from

$$
\|v\|=\left\|E^{-1} w\right\| \leq\left\|E^{-1}\right\|\|w\|
$$

on dividing by $\|w\|$. The idea of [6] is to select a w judiciously so as to arrive at a large lower bound. We observed that there is a cheaper way to get a large lower bound in our context. It is perhaps a little clearer if we scale as in section 4 so that

$$
E=f_{y}-\frac{l}{h y} I .
$$

Let λ_{N} be an eigenvalue of J of minimum modulus and let v be an associated eigenvector. Then

$$
\mathrm{Ev}=\left(\lambda_{\mathrm{N}}-\frac{l}{\mathrm{hy}}\right) \mathrm{v}
$$

and as above

$$
\left\|E^{-1}\right\| \geq\left|\frac{\gamma h}{1-\gamma h \lambda_{N}}\right|
$$

We shall approximate this lower bound by hy。 For stiff problems, $\left|\mathrm{h} \lambda_{\mathrm{N}}\right| \ll 1$ so this is a good approximation. Iudeed for the chemistry problems of (2.1), the Jacobian is always singular because of conservation laws, so that $\lambda_{N}=0$ and this is not an approximation at all.

We could evaluate $\|E\|_{I}$ directly but this does not seem worth the trouble. In general

$$
\|E\|=\left\|f_{y}\right\|+\theta\left(\frac{l}{h y}\right)
$$

In the particular norm we use, $\|E\|_{I} \doteq\|J\|_{I}$ is an excellent approximation in the sense of relative error when $h \gamma\left\|f_{y}\right\| \gg 1$.

Finally then

$$
\left.\operatorname{cond}(E) \geq \frac{\gamma h}{\left[I-h Y \lambda_{N}\right.}\|E\| \right\rvert\,
$$

where the approximation to the lower bound should be excellent if the ODE problem is stiff in the sense we have used.

The approximate lower bound fur the condllion is oxtremely ennvenient because all the pertinent quantities are comprised (cheaply) for other purposes. For stiff problems it. can be expected to provide a useful indication of conditioaing. We have done a variety of experiments comparing the lower bound of LINPACK to our approximate lower bound. When solving the problems of the test set [8] it is mostly the case that the matrix does not become extremely ill-conditioned. The most ill-conditioned problem we have noticed was the lntegration of the Rosenbrock problem in its original variables to approximate steadystate or the intcrval [$0,4 \times 10^{8}$], c.f. Hindmarsh and Byrne [16, pp. 147 - 166]. We found lower luunds au large an 6.2×10^{27}. Another fairly ill-conditioned pirsoleul was that of Bui [?] on the interval $[0,5]$ for which a bound of 4.1×10^{3} was observed. To provide some quantitative comparison, we solved both of these problems at the two pure absolute error toleranes 10^{-2} and 10^{-4}. Whenever the IINPACK condition estimate COND $\geq 10^{3}$, we computed the ratio $h^{\gamma} \cdot\left\|f_{y}\right\| / C O N D$. The Rosenbrock problem has a singular Jacobian so we expect our assumptions to be well satisfied. The agreement with the lower bound of LINPACK is remarkable. The lower bounds slways agreed to at least 3 digits. The Jacobian of Bui's problem is not singular and the estimated lower bounds differed more. At the
tolerance of 10^{-2} the ratio ranged from 0.2 to 1.4 . At the tolerance of 10^{-4} the ratio rariged from 1.1 to 1.2 . Experience with the LINPACK lower bound seems. to show that it is comparable to the actual condition. The limited experiments we have done indicate that our cheap estimated lower bound is equally satisfactory in our very special circumstances. Because of its generality, the LINPACK estimate is more expensive. It does a norm computation which we avoid by the approximation $\|E\| \doteq$ $\left\|\mathrm{f}_{\mathrm{y}}\right\|$, available from other computations in DEGRK. It does two extra solutions of linear systems to form the estimate. The Rosenbrock procedure in DEaRK only does four solutions of linear systems in the step, so the LINPACK estimate represents a substantial extra expense. Because one advantage of the Rosenbrock methods may be their low overhead, the cheaper condition estimate is to be preferred here.

Now that we have a cheap, useful condition indicator, what do we do with it? The trouble is that a large condition number alerts us to possible difficulties, but it does not provide very precise information. This matter is discussed by the LINPACK project in [7, p. I.9]. A rule of thumb is suggested there that if the computer word has about t decimal digits and if the condition is 10^{k}, then the answers are accurate to no more than t-k digits. Even if this were so, what would be the appropriate action? We could reduce the step size to reduce the conditioning, but this makes the integration correspondingly more expensive. We could resort to residual correction. This requires the storgge of the Jacobian, which we do not do in DEGRK, and significantly increases the number of linear systems to be solved. We could tura to another version of the code in a higher precision. This is considerably more expensive than residual correction because then all computations are done in multiple precision rather than the relatively small proportion needed to compute the residuail. Unfortunately, on many machines ODEs are normally solved in the highest precision provided by the hardware, and the residual computation has to be done by software multiple precision. At the very least this causes portability problems, and it may be comparatively expensive。

In DEGRK the question of ill-conditioning seems not to be serious. Because of the low order formulas implemented and their less than optimal stability at infinity, severe ill-conditioning appears to be rare. In addition, the low order makes the code inappropriate for stringent tolerances. We have chosen to restrict the step size as necessary to ensure that

$$
\left\|\mathrm{h} \gamma \mathrm{f}_{\mathrm{y}}\right\| \leq 10^{10}
$$

on a machine with about 14 decimal digits. Should such a restriction be imposed 10 times in a run, the integration is interrupted to warn the user of the situation and to Lnquire ad to whether he wishes to continue.
6. Formula Pairs in DEARK

In DEGRK we chose to implement a $(4,5)$ pair of formulas due to Fehlberg becaldse they proved very satisfactory in other software, RKF45 [24, 25], we have written for non-stiff problems. Fehlberg intended that the integration be advanced using the fourth order formula. In RKF45 we insiead advanced the integration with the fifth order formula, losal extrapolation. The reasono given tin [24, 25] for doine this remain valid in DEGRK, but in one respect the situation io quite different. The algorithin described in sectlun 8 for oolesting methods guarantees that the step size used is stable for the $F(4,5)$ pair. Indeed, the conservative natixa of the algorithm of ten means that when the $F(4,5)$ pair is used, the step size is well within the stability region. Thas the fact that the fifth order formula is the more stable is not relevant in DEARK. Furthernore, the constraint on the step size greatly increases the likelihood that the fifth order formula is significantly more accurate than the fourth order formula. As a result the local error estimate is more reliable and losal extrapolation is more useful.

Kaps and Rentrop [14] aive devised (3,4) Rosenbrock formula pairs which are form stage fommlas involving three furction evinations and
one partial derivatives evaluation per step. In their Proposition (3.19) they give a 5 parameter family of formulas. In proposition (3.20) they give a choice of parameters leaving one free parameter γ which results in a fourth order formula satisfying 5 of the 9 equations of condition for a fifth order formula. The parameter γ essentially determines the stability properties of the pairs constructed from either proposition. The suthors intended that the integration be advanced with the fourth order formula. They give two formula pairs in [14] and a related pair in the text [27].

We have not used the pairs selected by Kaps and Rentrop for two main reasons which are amplified in other sections. In the section on stability we go into the matter more fully, but here we just observe that the fourth order formulas they selected are just barely stable at infinfty. In the GRK4T pair and the pair in [27], the companion third order formula is not stable at infinity. The GRK4A pair does hare a third order formula with reasonable damping at infinity. For this reason we chose first to implement the GRK4A pair, but advancing with the third order formula. As we report in section 12 , this is a better way to proceed for difficult problems.

We would have been happier with GRK4A if the fourth order formula were also strongly damped at infinity but we were prepared to accept this until we ran into what we consider a serious defect. In section 10 we take up the reason why it is important that a method for stiff problems evaluate the differential equation throughout the step. The Kaps-Rentrop choices do not satisfy the criterion so we considered other choices. Within the family of Proposition (3.20) there is just one possibility which satisfies the design criterion of section 10. As it turns out both formulas have the same damping at infinity which is very nearly as good as the third order formula in GRK4A. Furthermore both formulas are A-stable. Kaps and Rentrop gave their formulas in decimal form. We went through the tedious computations to obtain this
other pair in rational forn. It is pleasing that they turred out to be so simple. This increases portability. The formula pair in the efricient form (4.1) is

$$
\begin{aligned}
& y^{\prime}=f(x, y) \\
& E=I-\frac{1}{2} h f_{y}\left(x_{0}, y_{0}\right) \\
& E k_{1}=f\left(x_{0}, y_{0}\right)+\frac{1}{2} h f_{x}\left(x_{0}, y_{0}\right) \\
& E k_{2}=f\left(x_{0}+h, y_{0}+h_{1}\right)-\frac{3}{2} h f_{x}\left(x_{0}, y_{0}\right)-l_{1} k_{1} \\
& E k_{3}=f\left(x_{0}+\frac{3}{5} h, y_{0}+\frac{24}{25} h k_{1}+\frac{3}{25} h k_{2}\right)+\frac{121}{50} h f_{x}\left(x_{0}, y_{0}\right)+\frac{186}{25} k_{1}+\frac{6}{5} k_{2} \\
& E k_{4}=f\left(x_{0}+\frac{3}{5} h, y_{0}+\frac{24}{25} h k_{1}+\frac{3}{25} h k_{2}\right)+\frac{29}{250} h f_{x}\left(x_{0}, y_{0}\right)-\frac{56}{125} k_{1}-\frac{2}{125} k_{2}-\frac{1}{5} k_{3} \\
& y_{3}\left(x_{0}+h\right)=y_{0}+h\left(\frac{97}{108} k_{1}+\frac{11}{72} k_{2}+\frac{25}{216} k_{3}\right) \\
& y_{4}\left(x_{0}+h\right)=y_{0}+h\left(\frac{19}{18} k_{1}+\frac{1}{4} k_{2}+\frac{25}{216} k_{3}+\frac{125}{216} k_{4}\right) \\
& y_{4}\left(x_{0}+h\right)-y_{3}\left(x_{0}+h\right)=
\end{aligned}
$$

7. Software Interface

Recently the autho: an:l H. A. Watts [26] pwesented a design for a software interface to a package of ODE solvers called DEPAC。 At this time the package contains three solvers, DIRKF - a Runge-Kutta Fehlberg code, DEABM - an Adiams-Bashforth-Moulton variable order code, and 1 EBDF a BDF variable order sode. The generalized Runge-Kutta Fehlberg and Rosenbrock code DEGRK was written to fit into this package. In this way it was provided with all the user convenience and protection
specified in the package. For the most part the interface is an obvious mixture of the interfaces for the Range-Kutta and BDF codes along with appropriate descriptive coments. Some matters are pertinent only to DEARK. Oine is to discover and report that ill-conditioning is causing the step size to be restricted. The package design was intended to incorporate such additional interrupts. We shall mention other minor matters elsewhere, but there is one important difference we take up here.

We have chosen a different form for the partial derivative routine than is customary. In part this is necessary. A BDF routine needs only the Jacobiail f_{y}; a Rosenbrock, routine needs f_{x} too. The difference could have been concealed by using the autonomons form, but we think it better to emphasize the differenee. Thus the partial derivative routine returns with the matrix f_{y} and the vector f_{x}. We require f to be evaluated in this subroutine at the same time. This is in addition to providing a separate subroutine for the evaluation of f. The device is intended to increase the efficiency of the code and to make it more likely that partial derivatives are not a lot more expensive than a function evaluation. It depends on the fact that the code never requires evaluation of the partial derivatives without also requiring evaluation of the function at the same argument. The gain to be made is that often the function evaluation is cheap if combined with the evaluation of the partial derivatives. Consider the examples of section 2 where one sees that he almost has to evaluate f in the course of evaluating f_{y} and f_{x}. If the user chooses to program the partial derivative subrointine to take advantaige of this fact, and if the call list is as we take it, a function evaluation is obtained at a considerably reduced cost. If the user does not waint to be bothered, on if it is not cheaper to combine the f and the partial derivative evaluations, he can simply insert a call to the f subroutine in his subroutine for the partial derivatives. This costs the user some linkage and a little complication in writing the partial derivative subroutine, but the cost is not large. When applicable, the device could be quite helpful.
8. Stiff or Non-Stiff?

Within the class of probleins postulated, it is relatively easy to decide at any step whether to use an explicit or Rosenbrock one-step methol. We shall describe what we did in DEGRK and the resder will see that the ideas are broadly applicable. Although crude, the decision procedure is remarkably useful.

We have found that an effective code for non-stiff problems can be based on a pair of formulas of ordars 4 and j involving 5 stages which were devised by Fehlberg. We would like to be able to switch from such a code to a procedure suitable for stiff problems when it would be more efficieat and back when it would not. Natixally we expect to pais something for the convenience of such a type-insensitive code, but we hope that the cost will be almost negligible if the problem is unequivocally non-stiff or stiff. This turns out to be feasible.

The first question we aiswer is when to switch to a method suitable for stifi problems, in our case a Rosenbrock formula pair. The explicit Runge-Kutta formula is inefficient only when a step size $h_{\text {acc }}$ suitable for achieving the requested ascuracy must be reduced to $h_{\text {stable }}$ to keep the computation stable. We can decide when to switch if we can estimate $h_{a c c}$ and $h_{\text {stable }}$. One's imnediate reaction is likely to be that all general purpose codes estimate $h_{a c c}$, and we need only consider $h_{\text {stable }}$. Unfortunately this is not so. We have discussed the behavior of RungeKutta codes in the presence of stability restrictions elsewhere [21]. Briefly, if $h_{a \in c} \gg h_{\text {stable }}$, the code will increase the step size until the compratation becomes unstable. The growing error is seen by the local erron estimator and the step size reduced until the computation is arain stajle. For such a step size propagated error is actually damped out and eventually the smoth oehavion of the true solution anpoars in the numerical solution. As this behavior is nanifested, the code realizes its step size is smaller than $h_{a c c}$ and increases the step size. The cycle repeats itself. It is gratifying that the error never gets out of hain, but the difficulty we must face here is that the step size
which the code estimates as appropriate for the accuracy is ordinarily far smaller than $h_{\text {acc. }}$ To obtain a reasonable estimate of $h_{a: c}$, wa must force the cole to Nork within its region of absolute stability. Thus a critical issue is to obtain a good estimate or a reliable boind for $h_{\text {stable }}$.

Most explicit Runge-Kutta methols hare stability regions which contain a (half) disc of radius ρ. (Van der Fouven calls ρ the generalized stability boundary [12, p。83].) If λ is any eigenvalue of the Jacobian f_{y} with $R e(\lambda) \leq i o$ and $|h \lambda| s_{\rho}$, the method is absolutely stable with step size h. We obtain 3 computable relatinn from the bound

$$
|i| \leq \| f i l
$$

In DEGRK we use the I_{1} norn which for a matrix $\mathrm{M}=\left(\mathrm{M}_{\mathrm{i} j}\right)$ is.

$$
\|M\|_{I}=\max _{j} \sum_{i}\left|M_{i j}\right|
$$

This is a simple, cheap computation. Both the Fehlbery $(4,5)$ formulas are stable if we require

$$
\begin{equation*}
h\left\|f_{y}\right\| \leq 2.4 \tag{1}
\end{equation*}
$$

This condition is forced on the step size when the explicit Runge-Kutta method is used so as to gurirantee the computation is stable. Then we cail be sure that the step size estimated by the formala pair as appropriate for the requested accuracy antually approximates $h_{a c c}$ and can be used to decide when to switch.

DEARK is organized as follnws: There is a step size to be attempted which was estimated in a special module for the first step (see section 9) or in the module used to attempt the previc. 1 s step. This step size may be reduced so as to produce oitput at, desired points. This matter is
described in $[24,25]$. Unlike RKF45, DEGRK does not use the "stretching" device, but it does use a "look-ahead." As described in section 5, the step size might be reduced to improve the conditioning of the matrix E in (4.1). These adjustments to the step size are done beiore the method is selected because the choice is critically dependent on the step size。 In a mojule it is decided which method to use and the step size is possibly reduced further. Next control goes to one of the two modules for attempting a step by the two methods. If the step is a success, the module used estimates what step size is appropriata for the next step. If the shey is a foalure, a step size for onother lry le selected, After a failure control is returned to the point where this description began. This is reason we said "tin ntbempt" llu previvus s'sep.

There are three cases. The first step is alwajs taken with tho explicit Runge-Kutta method so as to get on scale. Also it may je nacessary to try several times if the estimated step size is bally off, and this is much cheaper to do with the explicit formula. The other two eases depend on the method used for the preceding step.

Suppose the preceding step was taken with the Rosenbrosk method. If the step size satisfies (l), we switch to the Fehlberg scheme and otherwise continue with the Rosenbrock method. This implies that the explicit Fange-Kutta formula vill be used for all sufficiently samll step sizes, There is a quertion as to how lo aljuist the step size on the shange of formala. Here we do not dijust it at all. The Fehlberg pair is of higher order and is an acourate pair of more stages. We postulate that if it is stable, it is more aourate than the Rosenbrock pair. Indeed, because we might be well within the stabili.t.y reaion of the method, the $F(4,5)$ pair might be a lot more accurate than necessary with this step size. Becaluse we adjust step size at every step it is not dooesoung that we have a good scheme for altering the step size when we change formula. On the other hand, we do need to prevent frequent changes so as to allow the code time to match the step size to the accuracy required.

If the preceding step was taken with the Fehlberg formula, we reduce the step size as necessary so that (1) holds. If the step size had to be more than halved for this reason, we switsh to the Rosenbrock method. Our hypothesis when switching to the Rosenbrock method is that the step size is beins held back pretty significantly because of stajility and it, rather than accuracy, is probably the dominant consideration. We expect, then, that the Rosenbrook method will succeed at this step size which is half (or less) of what will work for the Fehlberg method.

It is not very likely that a problem would call for a step size h such $h\|f\|_{y} \| \rho$ for many steps, but to make frequent switches less likely, we have made it easier to switch to the Fehlbery formula than vice-versa. In point of fact, frequent switches would not be impritant at all except for the crudity of the "adjustment" of step size on a switch.

To hold dow the overhead, especially for non-stiff pablems, we do not evaluate the Jacobian nor its norm at every step. We keep track of whether the Jacoinain hais jeen evaluated at the current step and whether its norm has been evaluated. In the module for selecting the method, we check if the step size is close to the critical point, specificaily if

$$
\frac{1}{2} p \leq h\|f\|_{01 d} \leq 4 p
$$

If it is, we forn, if mecessainy, a current f_{y} and we form, if necessary, a current $\left\|f_{y}\right\|$ for our decision. In any event we form a current value of $\left\|f f_{y}\right\|$ every 5 steps. With the Rosenbrook scheme, this sares a number of matrix nom compusations. With the Fehlberg schene, this saves a good mady unneressairy Jacobian evaluations. If the problem is
unequivocally non-stiff, we shall evaluate the Jaoobian avery five steps. For the six stage $F(4,5)$ methods this represents 30 function evaluations. We are presuning of the class of problems that evaluation of the function and the Jacobian together is not a lot more expensive than evaluating the function alone. To get some idea of the costs, suppose that the evaluation of both function and Jacobian is $2 \frac{1}{2}$ times the cost of evaluating a function alone. In such a case, evaluating the Jacobian to test for stiffness increases the cost in function evaluations ot solving an unequivocally non-stiff problem by only 5%. We consider this to be a negligible cost for the conrenience of a type-insensitive code. We remark that, rudghly spearing, Descrk
 unequivoeally non-stiff problem.

Clcarly the onnt, of testing goes up when the code is working close to the switchine poini. One might evaluate the Jacobian at every step, even though the integration is camried out with the explicit formula pair. On the other hand, the conservative nature of the algorithm neans that a problem may be treated as stiff when it would acturily be more efficient to use the explicit Ruye-Kutta scheme. This strikes us as an unoidable price which should not be a large one.

We shail ennsider a few examples to illustrale the usofulness af switching. First let us cunsider the problem Fir of the test set [8]. This is van der Fol's tuation, but it is not undergoing relaxation oscillations and we consider it not to be stiff. Ascording to the aidihors of the test set, the maximun nagnitide of an eigenvalue is at most 15 and the length of the interval is only 1 。 Wanen solved with DEARK at a pure absolute erron tolecance of 10^{-2} the problem is narginal. Four of the 6 (!) steps needed to solve tha problem were taken with the $F(4,5)$ pair. The maximim value or hl\|f $\|$ encountered was about 4. The Jacobian was evaluated at every step because this is a borderline problen. At the tolerane 10^{-4} all 10 steps were taken with the $F(4,5)$. The maximun value of inlfyll was about 2 and the Jasobian had to be evaluated at 7 of the 10 stepis. At the tolerance
10^{-6} all 19 steps were taken with the $F(4,5)$ pair. The maximum value of $n\|f\|$ was again about 2 and the Jacobian had to be evaluated at 7 of the 19 steps. At the crudest tolerance when the problem was most ambiguous, the code made 35 function evaluations so that the 6 evaluations of the partial derivatives (the associated f evaluation is included in the 36 reported) was a significant but acceptable cost. At the most stringent tolerance there were 121 f evaluations and the number of partial derivative evaluations approaches the 5% we expect in a elear-cut case.

For the salke of variety we shall report some results with the KapsRentrop pair GRK4A advanced with the third order formula. The code is DGGRK with the pair given in section 5 replaced by GRK4A. The B family of problems in the test set [8] are linear with non-real eigenvalues. $\mathrm{B}-\mathrm{B} 5$ is a family of one parameter with the eigenvalues getting larger and moving closer to the imaginary axis as one goes from $B 2$ to $B ;$. $B 5$ is a trap for high onder BDF formulas which suffer a stability restriction with this problem. The Rosenbrock formulas we have implemented are sill A-stable. We solved $B+$ and $B 5$ at the plure absolute tolerances $10^{-2}, 10^{-4}$, 10^{-6} and measured the central prosessor time for the solution of each problem. When we forced the code to solve B' without using the Fehlbery formulas, it cost 1.489 time wits to do the integration at all three tolerances. With the Fehlbery formalas, this fell to 0.527 . The corresponding figures for $B j$ are 4.365 and 0.950 respentively. When the Fehlberg formulas were used, moxe function evaluations were made, e.g., at 10^{-4} on B5 the function evaluations increased from 652 to 768 , but the number of partial derivailive evaluations dropped as did the LU decompositions and solutions of linear systems. The real time considerations make it impossible to define an optimal switching point between fomulas, but our cesults suggest that we have made an adequate choice. By way of indicating the possibilities of the kind of code we investigate, we made the same computations with the BDF code of the NAG library [17] given analytiral Jacobian and the saine tolerances. All the nonerical results obtained were of aecuracy comparable to DEGRK. The cost of solving B'+ was 1.301 time units aria of solving B5, 18.689 units.

Lest the raader think that the resultis reported for $B+$ and $B j$ be sonehow dixe solely to the oscillatory nature of the solutions and the non-real eigenvalues, we mention similar results for the A family of linear problems with real eigenvalues. When solving $A 3$ with the pure absolute error tolerances $10^{-2}, 10^{-4}, 10^{-5}$ the total cost was 1.141 time units if the $F(4,5)$ fommlas were not used in the Rosenbrock code and 0.831 if they were. The BiF code required 1.025 units. Wnen solving A4 the cost was 1.509 if the $F(4,5)$ formilas were not insed in the Rissenbrock code mat l. Inlt if they were. The BDF code required ? 2791 units.

Evidently switching formulas to account for a lask of stiffness is of significant value for these example problems, even though they are conisidered to be "stiff" test problems.

A further family of stiff and non-stiff problems will be analyzed in section 13 。

9. Initial Suep Size.

The initial step size is a critical one becanse it detemnines whether whether the code "sees" the scale of the problem, The algorithms fo: estimating local error and adjuistment of step size do well proviaind that only small aijustments are needed at each step.

We liver lons falt it important that the code select the initial step slize embuntically. This is obviouily a comvenience for the user. A suitable initial step size depends on the formala and the problem so that it is not easy for a user to obtain the information aeeded to make a good selection, eren if he knew how. It is common that iners solve a family of problems. Experience with an initial step size appliea to one member of a fanily nay proride valuable information about the integcation of another. For this reaso: and beaduse even the most careful adomatic proedure can break down, we did prowide the user a way to supply a guess in DEPAC. Tris is done by limiting the first step so that it does not go past the first output point,

In DEGRK we-insist that the first step be taken with the explicit Runge-Kutta method $F(4,5)$. We reduce the step size as needed so thet both of the fommulas of this pair are stable. This is an effective device for assuring ourselves that we shall "see" how fast the solution can change at the initial point. It is accomplished by evaluating the Jacobian at the initial point and insisting that the step size h satisfy

$$
\begin{equation*}
\left\|h f_{y}\right\|_{1} \leq 2.4 \tag{I}
\end{equation*}
$$

As explained in section 8, this implies the step size h is stable for both $F(4,5)$ formulas. We note that (1) may be mach nowe stringent than necessamy. This if fine because we are nainly interested in a step size which is small enough that we can trust the start of the integration.

Haring evaluated f, f_{y}, f_{x}, at the initial point, we are in a position to take a "virtual" step with a Taylor series $T(1,2)$ pair: .

$$
\begin{aligned}
& y_{1}=y_{0}+h y_{0}^{\prime}=y_{0}+h f\left(a, y_{0}\right) \\
& y_{1}=y_{0}+h y_{0}^{\prime}+\frac{h^{2}}{2} y_{0}^{\prime \prime}=y_{0}+h f\left(a, y_{0}\right)+\frac{h^{2}}{2}\left[f_{x}\left(a, y_{0}\right)+f_{y}\left(a, y_{0}\right) f\left(a, y_{0}\right)\right]
\end{aligned}
$$

As usual, the error control makes this an annoyingly complicated matter. The error estimated in solution component is

$$
\begin{equation*}
\left|e s t_{i}\right|=\left|\frac{h^{2}}{2}\left[f_{x}\left(a, y_{0}\right)+f_{y}\left(a, y_{0}\right) f\left(a, y_{0}\right)\right]_{i}\right| \tag{2}
\end{equation*}
$$

DEARK allows two erron control pananeters $r_{t o l}{ }_{i}$ and $a t o l_{i}$ to be specified for a mixed relative-absolute test on each solution component. The matter is handled a little differently in the start than at a general step. For the first step we triy to take the exror relative to the solution at the beginminis of the step:

$$
\begin{equation*}
\left|e s t_{i}\right| \leq a t o l_{i}+r \operatorname{tol} l_{i}\left|y_{o, i}\right|=w t_{i} . \tag{3}
\end{equation*}
$$

In the normal case $w t_{i}>0$. The weight $w t_{i}$ is fixed, as is all of est ${ }_{i}$ except for the factor h^{2}. Thus we can imnediately deduce the largest h suoh that (3) holds. In the usual error control of the code, the arcrage magnitude of the solution at the two ends of the step is used. This protects against a solution component vanishing "accidentally," but it is inconvenient for the first step. In particular, the weight then depends on the step size h and selection of h is no longer so simple.

It is all too common that a user ask for pure relative error, atol $_{i}=0$, even though the solution somponent $y_{0, i}=0$ at the initial point. Of comrse then $\mathrm{wt}_{i}=0$ in (3). In such a case we take the error relative to the solution at the end of the step:

$$
w_{i}=\operatorname{rtol}_{i}\left|h f\left(a, y_{0}\right)\right|
$$

Again we can see the laigest h sach that last ${ }_{i}$! $s \operatorname{wt}_{i}$, but notice trut the order is raduced in this situation.

It can happen that the solution component has a double zero at the initial point, $f\left(a, y_{o}\right)_{i}=0$, in which case both choices of weight vanish. The first order Taylor series method produces a nimerical solution which is identically zero for such a component so pure relative error control is not possible. We simply say such a buponent povides ma nale information.

Bxcept for the extromely raxe case that the user specifies pure relative error for every solution component and every component has (a. least) a double zero at the initial point, we find a siep size suitable for the $T(1,2)$ pair. We do not give up in the extreme case because it is quite possible we shall be able to integrate it. It is just that this part of the step selection prowedure provides no useful step size information, The local error of the first order method behaves like $\mathrm{mh}^{2} \phi$ in general and that of the fourth order methol like $\sim h^{5} \psi$. As a heuristic to go from a scale suitable for ${ }^{\prime} T(1,2)$ to a scale suitable to $F(4,5)$ wassume that the error of the fourth order method is equal to that of the first order method raised to the $5 / 2$ power. Fron this we deduee the largest step size which would apparently succeed with the fodrth order method. If it is snaller thein the bouns previously statex, we use it.

Finally we increase the step size as necessary so that it be meaningful in the precision being used. Specifically in DESRK, we insist it be at least as large as 26 units of roundoff in the initial point a.
10. Design Criteria for One-Step Methols

Runge-Kutta and Rosenbrock methods evaluate the differential equation several times in the course of a step of length h from x_{n} to $x_{n}+h$, say at $x_{n}+A_{i} h, i=l, 2, \ldots$. The author and his colleague H. A. Waits have pointed out in connection with explicit Runge-Kutta methods that it is desirable that the evaluations span the interval [$\left.x_{n}, x_{n+1}\right]$. This is so that discontinuities can be "seen" by the formula. Some computational results brought to the author's attention the fant that the Kaps-Rentrop Rosenbrock formulas do not span the interval. On subsequent investigation it was foud that this is common for formulas aimed at stiff problems. Unfortunately it is with stiff problems that trouble is most likely.

It is typical of stiff problems that they exaibit gmall regions in which the solution changes so fast that it is almost discontinuous on a time scale suitable for the rest of the problem. We shall desaribe these boundary layers on transition regions here as quasi-discontinuities. Relaxation oscillations are a familiar exanple.: Another kinj of example comes from a forcing function. Hindmarsin and Byrne have considered a couple of mockups of photocatalyzed atmospheric reactions (sea, e.g. [5]) winch are illustrative. The simpler has the forin
(1)

$$
y^{\prime}(t)=d-b y+a E(t)
$$

The forcing function $E(t)$ is zero during the $1 ?$ hour night. At sumrise it increases in seconds to a value almost constant during the day and reverts to 0 at sunset. The problem is so stiff that the solution is nearly always in steady state, in particular it has the constant value d / b as night. Thus the forcing function $E(t)$ and the solution $y(t)$ are nearly square wares.

With the more familiar methods we expect a sode to locate a quasidiscontinuity very sharply. During a period of slow variation a code for stiff problems will tako very large time steps. On such a time scale a boundary layer "looks" like a discontinuity. We expect, and find in the widely used codes, that codes will have repeated step failures at sueh a quasi-discontinuity until the step size is reduced to the point that the solution is not changing rapidly on the new time scale. Of course this means that the boundary layer is located accurately and resolved to the degree necessary.

If the method does not evaluate the differential equation at t_{n+1}, it can do an exceadingly poor job of locating a quasi-diccontinuity. To expose the trouble let us consirer a simple comple, the implicit midpoint rule:

$$
\begin{array}{ll}
\text { solve } & y_{n+\frac{1}{2}}=y_{n}+\frac{h}{2} f\left(t_{n}+\frac{h}{2}, y_{n+\frac{1}{2}}\right), \\
\text { a.xvance } & y_{n+1}=y_{n}+h f\left(t_{n}+\frac{h_{1}}{2}, y_{n+\frac{1}{2}}\right) .
\end{array}
$$

Suppose the local error is estimated by doubling. In order to describe simply what is going on, let us consider the problem (l) and speak loosely as lhough the tunctioss $P(t)$, $y(t)$ ware actushly discontinuous. We take the time origin at suuset and supposa $y(t)$ has attained its steaily state vixlue d / b. Lul us try a stop size of just less than 8 hours. In the first step we evaluate the differential equation after 4 hours and we find the numerical solution to $b e d / b$. In the second slep wa эvaluatie just short of 12 hours and the formula again sias that the solution is d / b. In the double step of 16 hours the ev:uluation is done at 8 hours where the intermediate solution is d / b and so apparently confirnis the "more ascurate" solution to be $u / b \cdot$ of course the fommula does not "see" the discontinuous change at sinnise. The result is that the location of sunrise has been missed by 4 hours!

Quasi-discontinuities cannot be regarded as pathological for stifí problems and it is clear that serious errors in their solution are possible with any formula which does not evaiuate at t_{n+1}. Specifically, if during a smooth portion of an integration'a method might use a step size of h, a quasi-discontinuity could be located improperly by as much as ($1-A_{j}$) wimere $t_{n}+A_{j} h$ is the point closest to t_{n+1} at which the differential equation is evaluated.

The example of the midpoint rule is not at all contrived. Among the fully implicit Runge-Kut,ta methodis, considerable attention has been directed at those based on the Gaussian points because they achieve maximal order and A-stability. Tney ane all defective in the way we have pointed; out with the midpoint rule being the worst case. Hulme and Daniel [13] have a code implementind both Gadissian and Raiau formulas with dobling as an ercor estimator. Oar observaion applies directly. It is interesting to note that in the reaent derivation of ${ }^{\text {i }}$ some formulas by Butcher [4] (and implemented by Burrage, Butcher, and Chipman) the defect is not considered and it is quite possible. However, the additional constraints applied to achieve better stability properties had the side effect of avoiding the defect.

Lindberg [30, pp. 201-215] has based an extrapolation code on a molified midpoint rule

$$
y_{n+1}=y_{n}+h f\left(t_{n}+\frac{h}{2} \cdot \frac{y_{n+1}+y_{n}}{2}\right)
$$

Il is iuberestim that there has been some Alscussion [10 , p. i65] as to whether the basic formula ought to be this rule or the trapezoidal rule

$$
y_{n+1}=\dot{y}_{n}+\frac{h}{2}\left[f^{\prime}\left(t_{n}, \dot{y}_{n}\right)+f^{\prime}\left(t_{n+1}, \dot{y}_{n+1}\right)\right] .
$$

One argument alvanced in favor of the midpoint rule is that it is unnecessary to evaluate $f^{\prime}\left(t_{n+1}, y_{n+1}\right)$. In the present context we see that this is an argument against the midpoint rule.

The midpoint rule is an exmple of a semi-implicit formula. Some compiatationally interesting examples of such formulas considered by Crouzeix, Alexander [1], and Norsett exhibit one or more defects arising from an attempt to ashieve various other compatationally desirable properties. Crouzeix's $(2,3)$ A-stable DIRK formula does not evaluate at t_{n+1}. The (3,4) formula evaluates in the future as does Norsett's formula, It is interesting that Alexander increased the number of stages to get better stability properties. As a zonsequence of the desirad stability properties, he had to evaluate at t_{n+1} and so aroided the defect.

The defect we have noted is practically standard with Rosenbrock formulas, see for exanple the formulas mised in the codes of Bii [3], of Villadsen and Michelsen [29], and of Kaps and Rentrop [14].

In the course of these studies we noted that a number of codes are based on one-step methods which evaluate outside the step, either in the past, some $A_{i}<0$, on in the future, some $A_{i}>1$. This has traditionally been aroided without any special comnent, but in view of the recent use of such formulas, a few remarks seem to be in order. If a problem arises in autommous form, there is no obstacle to evaluating outside the step, As we have commented earlier, most. theoretical work is done with the automomous form and it easy to underistand how a researcher might overlook an evaluation outside the interval. Several of Bui's Rosenbrock formalas evaluate in the past. This is not greatly lifferent from a method with memory. There is an obvious difficulty with starting and after (effectivaly) restarting die to discontinuities. Bxi's code apparently assumes that evaluation in the past will cause no problem, but this is not alwass true. Alexander [I] notes that a semi-implicit formula of Crouzeix evaluates in the future. Norsett's pair as implemented by

Houbak and Thomsen [11] does this too. There is not then a starting problem, but there is a termination problem. It is not uncommon that it is not possible to evaluate the differential equation past some point, or its definition changes there. The D.EPAC [26] software design specifically provides users a way to warn the code that this is the case. Any formula which evaluates in the future needs to take special action in such a sase.

We have not thought of any easy and reliable remedy for the defect of not evaluating at the end of the step when solving stiff problems. Perhaps we should remark is that it is the combination of formula and error estimator that counts. If the formula did not evaluate at the end but the estimator did, there would oe no difficulty. We take a serious view of this defect. Evaluating outside the step is not so serious. For many problems no special action is needed. Easy remedies seem feasible because the difficulty is similar to a familiar one, but this does get away from the (ralative) simplicity of one-step methols. We feel that as an absolute minimun of protection to the user, the prolog of any code based on such a formula should warin the user of the situation so that he can recognize when the code is not applicable。

ll. Adjustment of Stap Size

The principles of the adjustment of step size for explicit RungeKutta methods are discussed at length in [24,25]. We have followed them in the portion of DEGRK concerned with the $F(4,5)$ formulas. However, if a step size shomid fall more thas once, we reduce the step size by the fixed factor 0.2. This is because the asymptotic behavior expected is not evident, else we would not have multiple failures. With no other information we resort to the fastest raduction ordinarily allowed.

There are some new issues when solving stiff problems that we have not seen discussed. One is losing the scale of the problem. For some particularly difficult problems, the kosenbrock formulas we have implemented have needed to restart repeatedly. The code would be integrating
a smooth solution with a very large step size and suddenly find it necessary to reduce the step size to the point that the problem is non-stiff. It world then move back to the smooth solution at which time it would begin to increase the step size rapidly. We believe this is partly due to the stability properties which we take up in section 12. It would not be particularly inefficient except for another phenomenon. We observed several cases when the algorithm for step size adjustment appropriate to the $F(4,5)$ formulas required more than 25 reductions of step size to finally obtain a successfill step.

The problem with the results mentioned is a general one. When solving stiff problems the observed order may not be that of the formula applied to nonstiff problems. Prothero and Robinson [19] have taken up this matter. Ueberhuber [28] has tried to cope with it in another context. It is easy to see that there is a difficulty by considering a one-step method applied to the specific scalar equation

$$
y^{\prime}=\lambda y .
$$

If at x_{n} we have a computed solution y_{n}, the typical one-step method leads to

$$
\nabla_{i 1+1}=R(h \lambda) y_{n}
$$

where R is a rational function. The loal error

$$
l e=y\left(x_{n}+h\right)-y_{n+1}=(\exp (h \lambda)-R(h \lambda)) y_{n} .
$$

When $|h \lambda| \ll 1$, we have

$$
\exp (h \lambda)=R(h \lambda)+\theta\left(|h \lambda|^{p+1}\right)
$$

so

$$
\left|\frac{1 e}{\bar{y}_{n}}\right|:=\theta\left(|\ln \lambda|^{p+1}\right)
$$

as a condition that the method be of order p. However, when solving stifir systems we are interested in this differential equation for $\operatorname{Re}(\lambda)<0$, $|h \lambda| \gg 1$ and the situation is radically different. First we note that

$$
\frac{\underline{l}}{y_{n}} \doteq-R(h \lambda)
$$

The behavior of R in the neighborhood of infinity must be investigated anyway because of the stability implications as in section 12, but here We are interested in the implications for accuracy. For methods stable at $\infty,|R(\infty)| \leq 1$. Writins

$$
R(h \lambda)=c_{0}+\frac{c_{1}}{h \lambda}+\frac{c_{2}}{(h \lambda)^{2}}+\ldots
$$

we see that if the local error is not acceptable, it may require large changes of step size to reduce it significantly. The Resenbrock methwis We limplemented all have $c_{0} \doteq 0.3$. One of the problems we integrated had $|h \lambda| \sim 10^{10}$, so it is not surprising that the local error did not behave like a third order formula. Many comnon formulas have $c_{0}:=0$, but none of the popular ones have $c_{1}=0$. Thus this difficulty with the asymptotic behavior is of some generality. It is surprising to many that the local error may well be a decreasing function of n for \mid in $\mid \gg$. This illustrates that our understanding of the control of error by adjustment of step size is not complete.

We hare responded to the situation in two ways. On a failed step we are pessismistic about the assumed asymptotic behavior. Because of the work involved it is better to attempt a stepsize too small and succeed, than one too large and fail. 0,1 a first failure, we simply halve the step size. Should this fail, we reduce the step size attempted by a factor of 0.2 . Shoiuld this step size fail, we, in effect, restaret by reducing the step size so that $\|$ hf $\|=\rho$, thus forving the code to shange to the explicit Runge-Kutta formula. This drastic action is becaise we have nocumulated evidence that the scale of the prublem hon been.lost. For reliainility we reduee the stcp size to the point that jiy integral curve can be resolved.

On a succassful step we esbimatc an appropriate step size for contiming, but, limit it depending on how stiff the problem is. The explicit formixa for non-stiff regions permits a step size increase as large as a factor of 5. The langer \|hf $\|$ is, the more conservative we choose to be because we are working in a region where our theoretical underpinnings are shaky. Specifically in DBGRK, we limited the increase of step size to

$$
1.2+\frac{3.8}{1.0+\frac{\| h f^{\prime}}{50} \|}
$$

Thus if the problem is berely stiff, the increase is limited so a factor of 5 , and if it is extremely stiff, to a factor of 1.2 .

7?. Stability Properties
The stability of methodis for the solution of stiff privlemg hon been the subject of intensive aesearch. Nevertheless, our understanding of the matter is far from answering lhe necds of paaetirec. Early wor:rigorously applies only to problems of the form $y^{\prime}=$ Jy with a constant J which can be diagonalized by a similarity transforination. The common numerical methods cai be arialyzed by the seme transformation so that one can test stability by considering the method as applied to $y^{\prime \prime}=\lambda y$
for λ a (complex) eigenvalue of J. Rosenbrock methods applied to this test equation lead to a rational function $R(h \lambda)$ of the step size h and λ. If $|R(h \lambda)| \leq 1$, the computation is stable and otherwise, unstable. The application of this analysis to more complicated problems is heuristic. Although experience shows it to be useful, one should not put too much faith in it.

The reason we give this backgrodnd is that the Kaps-Rentrop formula pairs have $|R(\infty)| \doteq 1$ for the formula they intended for advancing the solution. When solving stiff problems we are very interested in step sizes h such that for some eigenvalue λ of the Jacobiail, $|h \lambda| \gg 1$. The author mich prefers to use fomulas for which the stability is not so mairginal, so as to be a little more confident that they will be applicable to problems less artificial than the test equation.

Besides the matter of stability; there is the related matter of how accurate fommlas are for $|h \lambda| \gg 1$. At least for the test equation, this cail be studied in detail in terms of how well $R(h \lambda)$ approximates $\exp (h \lambda)$. If $|R(\infty)| \doteq 1$, there is no qualitative agreement for $|h \lambda| \gg 1$. If $|R(\infty)|$ is significantly less than 1 , the numerical solution is at least damped.

We preferred to advance the solution with the third order fomula of the GRK4A pair because it has $|R(\infty)| \doteq 0.31$. We satually tried proseeding with both fo:mulas. Kapis has told us that in the tests of [14] it was more efficient to use the fourth order formula. This is easy to understand becalnse the test set [8] is not particularly demanding and rewards high order. Our experience was somewhat different becanse our code used the Fehlberg scheme part of the time. Whenevar the Fehlberg scheme could be used, one would expect that the higher order formula of the Rosenbrock pair would be advantageous. In oxe computations with the test set [8] there was no imporiant distinction due to which formula of the Rosenbrock pair was used. The matter was different when harder problems were tried.

A good example of our experience, though not the most dranatic, is the problem of Bui [2] integrated to $x=5$. We made runs in which the solution was advanced with the third order formula and corresponding runs with the fourth order formula of the GRJ 4 A pair. With the pure absolute error tolerances $10^{-2}, 10^{-4}$ there was no striking difference. The number of steps gives a fair impression of the relative work. The numbers of steps at the two tolerances were 24, 90 with the third order formula and 28, 114 with the fourth order formula. Although not negligible, the difference does not compare to that oboerved when pure relative error tolerances of $10^{-2}, 10^{-4}$ were used. Then the numbers of steps were 158 , 769 and 253, 922 respectively. Considering the cost of a step, this represents 3 important difference in the performance of the formulas and caused us to prefer the more damped formula.

We would prefer that both formulas of the $(3,4)$ pair be strongly damped at infinity. Also, we would prefer to advance the solution with the fourth order formata to take advantaje of the higher order. This is partly why we made a different selection of formula pair in section 6 than did Kaps and Rentrop. With our choice both formulas are A-stable and both have $|R(\infty)| \doteq 0.33$. This is very nearly the same damping at. infinity as that of the third order formula of GRK4A, but now we can alvance the solution with the higher order formula (which by construction is a relative \perp y accurate fuimule of ordar 4):
13. More Numerical Results

As we said in the introduction, it is not our object to compare the performanee of the code DEGRK to popular BDF codes. Some results were reported in sections 8 and 12 . We shall present here a few aditional results intended to say something about, the algorithms used in DESRK and to suggest that Rosenbrock methods might be competitive in suitahle circumstances.

In section ? we stated a problem from the chemical engineering literature which depends on three parameters $K, \mathcal{F}_{\mathrm{f}}$. In the article referenced a set of compatations is reported for the nine problems resulting from the choices $K=5 ; \overline{5}=0.1,5,500 ; N_{f}=0.1,5,50$. The solutions are well scaled so an absolute error test is reasonable. We solved all nine problems at a given tolerance with DEGRK and then with the BDF code of the NAG library [17]. At toleraince 10^{-2} the raspective central processor times were 0.205 and 0.497 units. At tolerance 10^{-4} they were 0.754 and 1.02. At tolerance 10^{-6} they ware 4.34 and 1.67. Spot checking of the apparent accuracies suggests that DEGRK is producing a somewhat mowe accurate result, but that the accuracies are roxghly comparable. These results and others of the
 suitable problems provided one does not aisk for a great deal of accuracy. Kaps and Rentrop cane to a similar conclusion in [14].

The parameter choice $K=5, \bar{\zeta}=0.1, \mathbb{N}_{f}=0.1$ results in the least stiff problem. At all there toleranes the $F(4,5)$ formulas are used a°, every step. At tolerance 10^{-2} there are only 3 steps, and 3 Jacobian evaluations were made. At tolerance 10^{-4} the decision is less ambiguous because of the smaller step size needed to get the aecurany. Thera were then only 6 steps and 2 Ja:obian evaluations. At tolerance 10^{-65} there ware 12 steps and 3 Jacobian evaluations. Because so few steps are made in solving this problem the number of Jacobian evaluations is ralatively large. As we would expect, the more stringent the tolerance, the less stiff the problem looks and the fewer Jacobians are needed in our test. It is no surprise that DEGRK is more efficient than the BDF code in terms of function and Jacobian evaluations. At tolerance 10^{--2} DEGRK required 21 fuaction evaluations along with the 3 Jacobian evaluations whereas the BJF code needed 35 function evaluations and 8 Jasobian evaluations. The difference of perfommuce in this measure incrases rapidily as the tolerance becomes more stringent for a non-stiff problem.

The parameter choice $K=5, \overline{5}=500, N_{f}=50$ results in the stiffest problem. The maximum value of hy\| $\mid f_{y} \|$ encountered by DFGRK in the integrations at tolerances $10^{-2}, 10^{-4}, 10^{-5}$ are respectively, $7353,4478,1734$. According to the results of section 5 this implies some fairly illconditioned systems in the evaluation of the Rosenbrock formula. As is typical, more stringent accuracy requests lead to smaller step sizes and better conditioned systems. Tnix, in a way, we can expect more accurate solutions when we really need them. A significant number of steps were taken with the explicit method at each tolecance. At tolerance $10^{-2}, 2$ of the 21 steps were taken with the $F(4,5)$ pair; at tolerance 10^{-4}, 1 ? of 77 ; and at tolerance $10^{-5}, 35$ of 635 . Notice the rapid increase in the number of steps as the tolerance is made more stringent. Tnis is charasteriatic of a flixed order method. The results 8 ugisest the code quite inappropriate at the tolerance 10^{-6}. This is also suggested by the nunber of rejected steps which were respectively 0,8 , and 111. At the crudest tolerance DEGRK is sonewhat competitive even in terms of function and Jasobian evaluations. Then it needed 90 function and 21 Jacobian evaluations whereas the BDF code needed 78 function and 15 Janobian evaluations. The difference of performance in this measure incraases rapidly as the tolerance becomes more stringent for a stiff problem.

It is especially hard to comprues codes on difficult problems, hut, we shall present one example which has its interasting points. seott and Watts [16, pp. 197-227] report a difficult initial value problem arising from the solution by shooting methods of a boundary value problem describing a kidney function. The systen of 5 equations showe a dranatio difference in cost when using the Adams suite ODE/STEP, INTRP on variation of one initial value from 0.99026 to 0.99000 . In large measure the difference in behavior is due to stiffness, although in another study we found that both problems are stiff. The integrations are very sensitive so high accuraizy was necessary in the application. Sush high accurasy makes DEGRX inappropriate, but we thoight it interesting to explore the problem at relatively crude tolerances becalse of the differing stiffness.

For each of the two different initial values cited, we solved the problem at the two pura relative error tolerances $10^{-2}, 10^{-4}$. DEARK mast take the first step of an integration with the explicit RungeKutta pair, but for these integrations the problems were so stiff that it took no other steps with the explicit formula. The problem with initial value 0.99000 is significantly stiffer. We computed in every case the maximum value of $n \gamma^{r}\left\|f_{y}\right\|$ as an indication of the stiffness. For the initial value 0.99000 this maximun was about 4000 at tolerance 10^{-2} and 7000 at tolerance 10^{-14}. For the initial value 0.99026 this maximum was about 50 at tolerance 10^{-2} and 20 at tolerance 10^{-4}.

We also solved the problemis with the BiF code from the NAG
library. A difficalty is that the computed rasults are of differing accuracies. We computed solutions at the pire relative error tolerance of 10^{-6} with the BDF code and ragarded them as the "true" solutions in what follows. In the application it is the value of the solution at the end of the integration which is critical, so we concentrated on it.

For the problem with initial value 0.99000 , the BDF code comprated a solution cheaply at tolerance $10^{-2}, 0.0^{\prime} 49$ units of central processor time, but it was worthless. For example it reported the first two solution components to be about $1.89 \times 10^{\circ}, 5.81 \times 10^{-1}$ when they in fact are about 1.38×10^{2} and 7.21×10^{-3}. At the tolerance 10^{-4} the cost was 0.295 units and the maximum relative error was aboat 1.3×10^{-1}. When DEARK was given the tolerance 10^{-2} it took more time, 0.180 units, but it produced a result almost as good as that with tolerance 10^{-4} in the BDF code, nanely a maximun error of 1.7×10^{-1}, When DEIAK was given the tolerance 10^{-4} it took less time, 0.248 units, than the BDF code and got a lot more accuracy, namely a maximxn error of 2.0×10^{-3}. The situation was similar, though father less dramatic, for the initial condition 0.99026 . The cost in central processor time at the tolerances $10^{-2}, 10^{-4}$ were 0.054 , 0.221 with the BDF cole and $0.148,0.223$ with DĐGRK. The rasult at tolerance 10^{-2} was not so bad
with the $B D F$ code as with the other problem, but one component was off bjy a factor of more then 3 so the solution was not very helpful. At tolerance 10^{-4} the maximun error with the BDF code was 4.0×10^{-1}. The error at tolerance 10^{-2} was not very good with DEGRK either, 8.6×10^{-1}, although closer in performance to the tolerance 10^{-4} than 10^{-2} with the BDF code. The error at tolerance 10^{-4} with DEGRK was 7.1×10^{-3}.

The kind of rasults seen on this problem did not surprise the author because he adopted rather conservative tactics in DEGRK and furthermore some of the algorithms have a tendency to result in more accurucy than required. The line of BD . codes starting with JIFSUB [9] are not so conservative. The sitiation makes it hard to compare DEGRK directly to BDF codes, but this is not the object of the peesent papar. We din think the results presented show that Rosenbrock codes are competitive with BDF codes in appropriate circumstances and that DGGRK, in particular, is in sone respects successful.
14. A Personal Assessment,

In the course of this investigation the althor has forined some opinions aboat production codes based on Rosenbrock methoxs. A Lew will he mentioned because they suggest sertain lines of development.

Ta? minst stralghtforward improvement to DEGRK wound, be the development of a Rosenbrock formula with better properties. Specifically, it seems that maximal damping at infinity $(R(\infty)=0)$ tul a higher order are needed. Higher order, maximally damped formulas hare alreaky been given [15]. Unfortuantely they are not accompanied by an error estimator. The general principle of doubling j.s applicahle, but does not strike the author as promising. It involves two matrix factorizations und a conolduralile number of stages per step. Very recent work [18] suggests that perhaps the approach is practical. The history of explicit Runge-Kutta methods sujgests that too much emphasis is being plaed on a minimal number of stages. In view of the significant linear algebra costis and the partial derivatives evaluation at every step, it appears better to aim for fewer steps with more stajes.

In some circumatances the Rosenbrock methods appear to enjoy an a.dvantage with respact to the BDF in terms of overhead. The author suspects that this is partly due to the different assumptions made aboiat the problem class addressed rather than being intrinsic. The Rosenbrock methods are being implemented as fixed order codes while the BIF are usually implemented as variable order codes. The distinction has important implications independent of the underlying methods. The situation is analogous to the relative merits of explicit Runge-Kutta and variable order Adans methods.

We have seen that a erude, but useful, way to recognize and respond to stiffness automatically is possible. The author believes that other techniques he is currently developing will prove at least as effective for the BDF.

The Rosenbrock methods handle gracefully stiff problems with Jacobians that change pretty often. It is not clear at this time the practical significance of this difference. Part of the difficulty is that there is not enough information arailable about "typical" problems. Just how constant are the Jacobians? Do we focus our attention on problems with nearly constant Jacobians becsuse our theoretical understanding of them is better, or are they truly representative? Another difference difficult to evaluate is the different role of ill-conditioning in the linear systems to be solved. This appears a worisome matter for accurate integrations with high order Rosenbrock methods, but it is poesible that severe ill-conditioning is not comon or, for some reason not taken $x p$ in this paper, does not greatly affect the results.

References

1. Alexander, R. Diagonally implicit Ringe-Kutta methods for stiff O.D.E.'s. Siam J. Nuner. Anal. 6 (1977), 1006-1021.
2. Bui, T. D. Some A-stable and L-stable methods for the numerical integration of stiff ordinary differential equations. J. ACM 26(1979), 483-1733.
3. Bui, T. D. and Bui, T. R. Numerical methods for extremely stiff systens of ordinary differential equations. Appl. Math. Modelling 3 (1979), 355-358.
4. Butcher, J. C. A transformed implicit Runge-Kutta method. J. ACM 26 (1979), 731-738.
5. Byrne, G. D., Hindmarsh, A. C.', Jackson, K. R., and Brown, H. G. A compuriison of two ODE cones: G̣EAR and EDISODE. Comp. aind Chem. Eng. I (1977), 133-147.
6. Cline, A. K., Moler, C. B., Stewart, G. W., and Wilkinson, J. H. An estimate for the condition of a matrix. SIAM J. Numer. Anal. 16 (1979), 368-375.
7. Dongarra, J. J., Banch, J. R., Moler, C. B., and Stewart, G. W. LINPACK User's Guide. Soeiety for Industrial and Applied Mathematics, Philadelphia, 1979.
8. Enright, W. H., Hull, T. E., aid Lindberg, B. Compiring numerical methods for stiff systems of O.D.E.'s. BTT 15 (1975), 10.-48.
9. Gear, C. W. Numerical Indtial Vailue Prohlems in Ordinary Differential Equa,ions. Prentice-Hall, Englewood Eliffs, NJ, 1971.
10. Hall, G. and Watt, J. M. Modern Ninerical Methods for Ordinary Differential Equations. Clarendon Press, Oxford, 1976.
11. Hoipak, N., and Thomsen, P. G. SPARKS a FORTRAN subroutine for the solution of large systems of stiff ODE's with sparse jacobians. NI-79-0. Trut. for Numer, AngT, , Tech. Univ. of Denmark, Lyngby, Dennark, 1979.
12. van der Houven, P. J. Constmaction of Integration Formulas for Initial Valla Problems. North-Holland, Amsteryam, 1977.
13. Hulme, B. L. and Daniel, S. L. COLODE: a colocation subroutine for ordinary differential equations. SAND74-0330. Sandia National Laboratories, Albuquerque, NM, 1974.
14. Kaps, P. and Rentrop, P. Generalized Runge-Kutta methods of order four with step'size control for stiff ordinary differential equations. Numer. Math. 33 (1979), 55-58.
15. Kaps, P. and Wanner, G. A study of Rosenbrock-type methods of high order. Inst. für Math, and Geometrie, Universität Innsbruck, 1979.
16. Lapidus, L. and Schiesser, W.E. Numerical Methods for Differential Systems. Academic, New York, 1976.
17. NAG Manual, Marix 7. NAG Central Office, 7. Banbury Road, Oxford, England, 1979.
18. Pom, S., Kaps, P., and Bui, T. D. A Comparison of RON methods for stiff O.D.E.'s using Richardson extrapolation and embedding techniques for stepsize control. Dept. Comp. Sci., Concordia Univ., Montreal, 1980.
19. Prothero, A. and Robinson, A. On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comp. 28 (1974), 145-162.
20. Rodrigues, A. and Beira, E. C. Staged appiroseh of percolation processes. AIChE J. 25 (1979), 416-423.
21. Shampina, L. F. Stiffness and nonstiff differential equation solvers, II: detecting stiffness with Runge-Kutta methods. AZM Trans. Math. Software 3 (1977), 44-53.
22. Shanpine, L. F. Implementation of implicit formulas for the solution of O.D.E.'s. STAM J. Sei. Stat. Comp. 1 (1990), 103-118.
23. Shampine, L. F. Type-insensitive ODE codes jased on implicit A-stable methods. Math. Comp., to zppesr.
24. Shampine, L. F. and Watts, H. A. The art of writing a RuggeKutta code, Part I, in J. R. Rice, ed. Mathematical Software III. Academic, New York, 1977.
25. Shampine, L. F, aind Watts, H. A. The art of writing a RungeKutta code, II. Appl. Math. Comp. 5 (1979), 93-121.
26. Shanpine, L. F. and Watts, H, A. DEPAC - design of a user oriented package of ODE solvers. SAND79-2374. Sandia National Laboratories, Albuquerque, NM, 1980.
27. Stoer, J. and Bulirsch, R. Introduction to Nunerical Analysis. Springer, New York, 1980.
28. Ueberhuber, C. W. Implementation of defect correction nethods for stifi differential equations. Computing 23 (1979), 205-232.
29. Villadsen, J. and Michelsen, M. L. Solution of Differential Equation Models by Polynomial Approximation. Prentice-Hall, Englewood Uliffs, NT, 1978.
30. Willoughby, R. A, Stiff Differential Systems. Flenum Press, New York, 1974.

Distribution:
Prof. R. Alexander
Rensselaer Polytechnic Institute
Mathematical Sciences Dept. Troy, NY 12181

Prof. D. G. Bettis
TICOM
University of Texas at Austin
Austin, TX 78712
Prof. T. A. Bickart
Elec. and Comp. Engr. Dept. Link Hall
Syracuse University
Syracuse, NY 13210
Dr. T. D. Bui
Dept. of Computer Science 1455 de Maisonneuve Blvd. West
Montreal, Quebec H3G lM8
CANADA

Prof. Dr. R. Bulirsch
Mathematisches Institut der
Technischen Universität
8 München 2
Arcisstrasse 21
Postfach 202420
West Germany (BRD)
Prof. J. C. Butcher
Dept. of Computer Science
University of Auckland
Private Bag
Auckland
NEW ZEAT:AND

Dr. G. D. Byrne
Computer Technology and Services Div. Exxon Research and Engineering Co. P.O. Box 45

Linden, NJ 07036
Prof. F. Chipman
Department of Mathcmatics
Acadia University
Wolfville, Nova Scotia
CANADA BUP 1×0

Dr. Alan Curtiss
AERE Harwell
Computer Science and Systems Div. Didcot, Berkshire OX ll ORA ENGGLAND

Prof. G. Dahlquist
Department of Numerical Analysis
Royal Institute of Technology
S-10044 Stockholm
SWEDEN

Prof. Dr. P. Deuflhard
Universität Heidelberg
Institut fur Angewandte Mathematik
Im Neuenheimer Feld 294
6900 Heidelberg l
West Germany
J. R. Dormand

Dept. of Mathematics and Statistics
Teesside Polytechnic
Middlesbrough Cleveland TSI 3BA
England
Dr. R. England
I.I.M.A.S.

Universidad Nacional
Autónoma de México
Apartado Postal 20-726
Mexico 20, D. F.
MEXICO

Dr. W. H. Enright
Department of Computer Science
University of Toronto
Toronto, Ontario
CANADA M5S lA7
Prof. C. W. Gear
Department of Computer Science
University of Illinois at U-C
Urbana, IL 61801
Dr. I. Gladwell
Department of Mathematics
University of Manchester
Manchester M13 9PL
ENGLAND

Prof. G. K. Gupta
Division of Computer Applications
Asian Institute of Technology
P.O. Box 2754

BANGKOK, THAILAND
Dr. George Hall.
Department of Mathematics
University of Manchester
Manchester M13 9P!
ENGLAND

Dr. J. P. Hennart
I.I.M.A.S.

Universidad Nacional
Autónoma de México
Apartado Postal 20-726
Mexico 20, D.F.
MFITTCO

Dr. A. C. Hindmarsh
L-310
Lawrence Livermore Laboratory
Livermore, CA 94550
Prof. P. J. Van Der Houwen
Stichting Mathematisch Centrum
Ze Boerhaavestraat 49
Amsterdam 1005
The Netherlands
Prof. T. E. Tull
Department of Computer Science
University of Toronto
Toronto, Ontario
CANADA M5S LA7
Dr. K. R. Jackson
Dept. of Computer Science
Yale University
New Haven, CT 06520
Dr. R. Jeltsch
Mathematic: Department
Ruhr-Universität Bochum
4630 Bochum 1
Postfach 102148
West Germany (BRD)
Dr. P. Kaps
Institut für Mathematik I
Universität Innsbruck
Technikerstr. 13
A-6020 Innsbruck
AUSTRIA

Dr. R. W. Klopfenstein
RCA Laboratories
Princeton, NJ 03540
Dr. F. T. Krogh
125/128
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91103
Prof. J. D. Lambert
Department of Mathematics
University of Dundee
Dưndee DDI 4 HN
SCOTLAND

Dr. B. Lindberg
Dept. of Computer Science
Roval Institute of Technology
Stockholm 70
SWEDEN

Dr. W. Iiniger
IBM T. J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
Dr. sc. R. März
Bereich Num. Mathematik
Sektion Mathematik
Humboldt-Universität zu Berlin
DDR 1086 Berlin, PSF 1297
Einst germany (DDR)
Dr. O. Nevanlinna
vepartment uf Mullematics
Faculty of Technology
University of Oulu
SF-90570 OULU 57
FINLAND
Dr. S. P. N ϕ rsett
Universitet I Trondheim
Norges Tekniske Hфgskole
Institutt for Numerisk Matematikk
N 7034 Trondheim
NORNAY
Dr. A. Prothero
Thornton Research Centre
P.O. Box No. 1

Chester CHI 3 SH
ENGLAND

Dr. P. Rentrop
Institut für Mathematik
der Technischen Universität
D. 8 Münchea 2

Arcisstrasse 21
Postfach 202420
West Germany (BRD)
Prof. J. Rosenbaum
Virginia Comnonwealth University
Mathematical Sciences Dept.
Richmond, VA 23284
Dr. R. Sacks-Davis
Dept. of Computer Science
Monash University
Clayton, Victoria 3168
AUSTRALIA
Dr. A. E. Sedgwick
Dept. of Mathematics
Dalhousie University
Halifax, NS B3H 4 H8
CANADA
Dr. P. Seifert
Technischen Universität Dresden
Sektion Mathematik
Wissenschaftsbereich
Numerische Mathematik
DDR-8027 Drasden, Mommsenstr. 13
East Geringily (DDR)
Prof. Dr. H. J. Stetter
Institut fur Numerische Mathematik Technische Hochschule Wien
A-1040 Wien, Gusshausstr. 27-P9 AUSTRIA

Dr. P. G. Thomsen
Inst. for Numerical Analysis
Technical University of Denmark
DK 2800 Lyngby
DENMARK
C. W. Ueberhuber

Institut tưc Numerische Mathematik
der Technischen Universität
Gusshausstr. 27
A-1040 Wien
AUSTRIA

Dr. M. van Veldhuizen
Wiskundig Semarium
Vrije Universitett
de Boelelaan 1011
Amsterdam
the Netherlands
Dr. J. H. Verner
Dept. of Mathematics
Queen's University
Kingston K7L 3N6
CANADA
J. G. Verwer

Stichting Mathematisch Centrum
P.O. Box 4079 1009.AB

Amsterdan
the Netherlands
Dr. G. Wanner
Dept. de Mathematique
Universite de Geneve
2-4 Rue du Lievre
CH-1211 Geneve 24
SW.TTZERLAND
Dept. of Computer Sciences
Report Section
Royal Institute of Technology
5-100 44
Stockholm 70; Sweden
2646
M. R. Scott

2646
H. A. Watts

5600 D. B. Shuster Attn: 56.10 A. A. Lieher 5520 M. M. Newsom 5630 R. C. Maydew
5640 G. J. Simmons
5641 R. J. Thompson
5642 L. F. Shampine
(50)
$8 \geq 66$ E. A. Aas
8332 R. E. Huddleston
$833{ }^{\circ}$ L. Petzold
3.141 T. L. Werner (5)

3151 W. L. Garner (3) FO: DOE/TIC (Unlim. Release)
3154-3 R. P. Campbell (25) For DOE/TIC

Recipient must initial on classified documents.

[^0]: * This article sponsored by the U. S. Department of Energy under Contract DE-ACO4-76́DPOD739.
 ** A. U. S. Department of Energy Facility.

