
Implementation of RSA Algorithm
Based on RNS Montgomery Multiplication

Hanae Nozaki, Masahiko Motoyama, Atsushi Shimbo, and Shinichi Kawamura

Corporate Research and Development Center, Toshiba Corporation
1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan
{hanae.nozaki, masahiko.motoyama, atsushi.shimbo,

shinichi2.kawamura}@toshiba.co.jp

Abstract. We proposed a fast parallel algorithm of Montgomery multi-
plication based on Residue Number Systems (RNS). An implementation
of RSA cryptosystem using the RNS Montgomery multiplication is de-
scribed in this paper. We discuss how to choose the base size of RNS
and the number of parallel processing units. An implementation method
using the Chinese Remainder Theorem (CRT) is also presented. An LSI
prototype adopting the proposed Cox-Rower Architecture achieves 1024-
bit RSA transactions in 4.2 msec without CRT and 2.4 msec with CRT,
when the operating frequency is 80 MHz and the total number of logic
gates is 333 KG for 11 parallel processing units.

Keywords: RSA cryptography, residue number systems, Montgomery
multiplication, modular exponentiation

1 Introduction

Computational performance of large integers is important in the implementa-
tion of public key cryptography and digital signature. We proposed a fast par-
allel Montgomery multiplication algorithm based on Residue Number Systems
(RNS) [1]. In RNS, an integer is represented by a set of its residues in terms
of base elements of RNS, and thus addition, subtraction, and multiplication
can be independently carried out for every base element. On the other hand,
Montgomery multiplication is a method for performing modular multiplication
by substituting addition and multiplication for division. Therefore, the combi-
nation of RNS and Montgomery multiplication is expected to be well suited to
parallel processing of modular exponentiation, and several studies concerning it
have been reported [2], [3], [4].

The main purpose of our previous paper [1] was to improve the base trans-
formation algorithm which consumes most of the processing time in the RNS
Montgomery multiplication. We also proposed a hardware “Cox-Rower Archi-
tecture” suitable for the RNS Montgomery multiplication. The base transforma-
tion operation is efficiently realized by the Cox-Rower Architecture where Rower
units perform parallel processing in cooperation with one Cox unit. Based on

Ç.K. Koç, D. Naccache, and C. Paar (Eds.): CHES 2001, LNCS 2162, pp. 364–376, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Implementation of RSA Algorithm Based on RNS Mont. Mul. 365

this architecture, the performance of 1 Mbps has been estimated for 1024-bit
RSA cryptosystem at the operating frequency of 100 MHz.

In this paper, we investigate an implementation of RSA cryptosystem using
the proposed RNS Montgomery multiplication algorithm, and design an RSA LSI
to confirm the performance and feasibility of the proposed algorithm. As imple-
mentation methods, RSA decryption procedures without and with the Chinese
Remainder Theorem (CRT) are presented. The Cox-Rower Architecture is char-
acterized by the scalability for operating time and chip size depending on the
number of Rower units. In implementation, the relation between the number of
Rower units and the base size in RNS representation becomes important for the
performance, because operations for each base element are performed in paral-
lel at Rower units. For an LSI prototype using 0.25 µm CMOS, we obtain 4.2
msec for 1024-bit RSA cryptosystem without CRT and 2.4 msec with CRT. This
result is comparable with the present best performance of commercial chips.

The organization of the paper is as follows: In the next section, the RNS
Montgomery multiplication algorithm proposed in Ref. [1] is surveyed. In Sec. 3,
we present RSA decryption procedures without and with CRT, and discuss the
base size of RNS and the number of parallel processing units from the viewpoint
of implementation. In Sec. 4, for the designed LSI, a hardware structure and its
specifications are described. Finally, a short summary is given in Sec. 5.

2 Algorithm

2.1 Residue Number Systems

In RNS, an integer x is represented by

〈x〉a = (x[a1], x[a2], . . . , x[an]), (1)

where x[ai] = x mod ai. The set a = {a1, a2, . . . , an} is called a base and
the number of elements n is its base size. The elements are required to sat-
isfy gcd(ai, aj) = 1 for i �= j. CRT assures that the integer x which satisfies
0 ≤ x < A (A =

∏n
i=1 ai) is uniquely represented by 〈x〉a.

The RNS representation has an advantage in which addition, subtraction,
and multiplication can be realized by modular addition, subtraction, and multi-
plication for each RNS element as follows:

〈x± y〉a = ((x[a1]± y[a1])[a1], . . . , (x[an]± y[an])[an]) , (2)
〈x · y〉a = ((x[a1] · y[a1])[a1], . . . , (x[an] · y[an])[an]) , (3)

which enables parallel computation using n processing units. However, we have
not known how to perform comparison and division efficiently based on the RNS
representation. To overcome this disadvantage, combination with Montgomery
multiplication has been proposed [1], [2], [3], [4].

366 H. Nozaki et al.

2.2 Montgomery Multiplication

Montgomery multiplication is known to be an efficient method for implementing
modular exponentiation used in public key cryptographies. In the algorithm
shown below, the inputs are x, y, and N (x, y < N) and the output is w ≡ xyR−1

(mod N) (w < 2N), where gcd(R,N) = 1 and N < R.

1: s← x · y
2: t← s · (−N−1) mod R
3: u← t ·N
4: v ← s+ u
5: w ← v/R

The Montgomery constant R is chosen so as to make division in steps 2 and 5
simple. For example, R is generally set to 2’s power in a radix 2 representation.

It is characteristic of Montgomery multiplication to perform modular mul-
tiplication by substituting addition and multiplication for division. Since the
advantage of RNS is that addition, subtraction, and multiplication can be inde-
pendently performed for each RNS element, the combination of RNS and Mont-
gomery multiplication is expected to realize fast parallel processing effectively.

2.3 RNS Montgomery Multiplication

The RNS Montgomery multiplication algorithm proposed in Ref. [1] is briefly
described in this subsection. The above-mentioned Montgomery multiplication
procedure is rewritten by using RNS as shown in Fig. 1. Two bases a and b are
introduced, and B (=

∏n
i=1 bi) is used as the Montgomery constant. We assume

here both a and b have the base size n, and denote the RNS representation
of x based on a and b by 〈x〉a∪b or simply by 〈x〉. The bases a and b satisfy
A,B > 8N , gcd(A,B) = 1, and gcd(B,N) = 1.

Function: 〈w〉a∪b = MM(〈x〉a∪b , 〈y〉a∪b , N)
Input: 〈x〉a∪b, 〈y〉a∪b (x, y < 2N)
Output: 〈w〉a∪b (w ≡ xyB−1 (mod N), w < 2N)

Base a operation Base b operation
1: 〈s〉a ← 〈xy〉a 〈s〉b ← 〈xy〉b
2: 〈t〉b ←

〈
s(−N−1)

〉
b

3: 〈t〉a ← BT(〈t〉b , 0)
4: 〈u〉a ← 〈tN〉a
5: 〈v〉a ← 〈s+ u〉a
6: 〈w〉a ←

〈
vB−1

〉
a

7: 〈w〉b ← BT(〈w〉a , 0.5)

Fig. 1. RNS Montgomery multiplication algorithm.

Implementation of RSA Algorithm Based on RNS Mont. Mul. 367

Steps 3 and 7 in Fig. 1 are base transformation (BT) between a and b (see
Fig. 2). According to CRT, x in radix representation is calculated from 〈x〉a by

x =
n∑

i=1

ξiAi mod A, (4)

where ξi = x[ai]A−1
i [ai] mod ai and Ai = A/ai. Equation (4) is rewritten by

x =

(
n∑

i=1

ξiAi

)
− kA, (5)

with an unknown parameter k. Dividing both sides of Eq. (5) by A, we obtain

k =

⌊
n∑

i=1

ξi
ai

⌋
, (6)

from 0 ≤ x/A < 1 and k ≤ ∑n
i=1 ξi/ai < k + 1. Figure 2 shows a procedure of

the base transformation from a to b. In this procedure, k is approximated by

k̂ =

⌊
n∑

i=1

trunc(ξi)
2r

+ α

⌋
, (7)

where trunc(ξi) is a function to approximate ξi by its most significant g (< r)

bits: i.e. trunc(ξi) = ξi
∧

(

g︷ ︸︸ ︷
1 . . . 1

(r−g)︷ ︸︸ ︷
0 . . . 0)(2),

∧
means a bitwise AND operation,

and r is the bit length of processing units. An offset value α is required as a
correction caused by the approximation, and is set to 0 at step 3 and 0.5 at step
7 in Fig. 1. The parameter k̂ is computed recursively by ki as shown at steps 4-6
in Fig. 2, where ki satisfies k̂ =

∑n
i=1 ki and ki ∈ {0, 1}.

Function: 〈x〉b = BT(〈x〉a , α)
Input: 〈x〉a, α = 0 or 0.5
Output: 〈x〉b
Precomputation:

〈
A−1

i

〉
a
, 〈Ai〉b, 〈−A〉b

1: ξi = x[ai]A−1
i [ai] mod ai

2: σ0 = α, yi0 = 0
3: For j = 1, . . . , n
4: σj = σj−1 + trunc(ξ(i+1−j))/2r

5: k(i+1−j) = �σj	
6: σj = σj − k(i+1−j)

7: yij = yi(j−1) + ξ(i+1−j) ·A(i+1−j)[bi] + k(i+1−j) · (−A)[bi]
8: Next j

9: x[bi] = yin mod bi

Fig. 2. Base transformation algorithm.

368 H. Nozaki et al.

Function: 〈y〉a∪b = MEXP(〈x〉a∪b , d,N)
Input: 〈x〉a∪b, d = (dκ, . . . , d1)(24)

Output: 〈y〉a∪b, s.t. y = xdB−(d−1) mod N

Precomputation: 〈BN 〉a∪b, s.t. BN = B mod N

1:
〈
x0

N

〉
← 〈BN 〉

2:
〈
x1

N

〉
← 〈x〉

3:
〈
xi+1

N

〉
← MM(

〈
xi

N

〉
, 〈x〉 , N) (for i = 1, . . . , 14)

4: 〈y〉 ←
〈
xdκ

N

〉
5: For i = κ− 1, . . . , 1
6: For j = 1, . . . , 4
7: 〈y〉 ← MM(〈y〉 , 〈y〉 , N)
8: Next j

9: 〈y〉 ← MM(〈y〉 ,
〈
xdi

N

〉
, N)

10: Next i

Fig. 3. RNS modular exponentiation algorithm.

As compared with the previous RNS Montgomery multiplication algorithm
[2], the above-mentioned algorithm has an advantage in that the base transfor-
mation at step 7 in Fig. 1 is error-free and does not need extra steps for error
correction. Moreover, the correction factor ki is computed only by an adder as
will be described in Sec. 4.1, which can make the hardware structure simpler
than that in Ref. [2].

An exponentiation algorithm based on a 4-bit window method is realized by
the RNS Montgomery multiplication as shown in Fig. 3. It is assumed that an
input variable has been transformed previously into x′ = xB mod N , because of
the essential feature of the Montgomery multiplication in which the Montgomery
constant B is introduced. From this assumption, we obtain y = xdB mod N as
an output.

The clocks to perform the RNS Montgomery multiplication are O(n2/u),
where u is the number of parallel processing units. The RNS modular exponen-
tiation (MEXP) is realized as the iteration operation of the RNS Montgomery
multiplication (MM), and the number of iterations is proportionate to the key
length |N |. From n ∝ |N |, the performance of the RNS modular exponentiation
is consequently estimated by O(n3/u). This relation means that there is the
scalability for performance and chip size depending on the number of parallel
processing units u, since the chip size is determined by u.

3 Implementation

Figure 4 shows an RSA decryption procedure using the RNS modular expo-
nentiation algorithm. In steps 1 and 2, modular arithmetic based on the radix
2 representation is required. We assume that this modular arithmetic is per-
formed at a dedicated divider unit. In step 3,

〈−N−1
〉

b
which is used in MM()

is calculated from bi − (Nλi−1 mod bi), where λi, the Carmichael function [5] of

Implementation of RSA Algorithm Based on RNS Mont. Mul. 369

Input: C, d, N
Output: m = Cd mod N

1: BN ← B mod N

2: B2
N ← B2 mod N

3: Compute
〈
−N−1

〉
b

4: Radix-RNS conversion: N , BN , B2
N , C

5: 〈C′〉 ← MM(〈C〉 ,
〈
B2

N

〉
, N)

6: 〈m′〉 ← MEXP(〈C′〉 , d,N)
7: 〈m〉 ← MM(〈m′〉 , 〈1〉 , N)
8: RNS-Radix conversion: 〈m〉a
9: m← m− cN (c = 0 or 1)

Fig. 4. RSA decryption algorithm.

bi, is precomputed and stored in ROMs. Since steps 1–4 (except for C at step
4) depend only on the key N , it is effective to precompute these steps, if N
is not changed frequently. As mentioned above, it is assumed in MEXP() that
the input and the output are variables multiplied by the Montgomery constant
B. From this condition, steps 5 and 7 are required as a transformation to get
C ′ = CB mod N and as its inverse transformation, respectively. Finally, step 9
is a correction to assure m < N , because m obtained in step 7 is less than 2N .

Radix-RNS and RNS-Radix conversions are defined by

x[ai] =


n−1∑

j=0

x(j) · 2r·j [ai]


 mod ai, (8)

x = (2r·(n−1), . . . , 2r, 1)
n∑

i=1


ξi



Ai(n−1)

...
Ai(1)
Ai(0)


− ki



A(n−1)

...
A(1)
A(0)




 , (9)

where the notation x(i) means the radix-2r representation of x: i.e. x=
∑n−1

i=0 x(i)·
2r·i. In the RNS-Radix conversion, carry propagation is needed after the sum-
mation has been finished.

3.1 Base Size and Number of Parallel Units

The operation shown in Fig. 4, except for steps 1 and 2 performed at the addi-
tional divider unit and the carry propagation in the RNS-Radix conversion, is
independently carried out for every base element ai and bi at parallel process-
ing units. Here, the base size n has the relation n ≥ �(|N |+ r)/r� with the bit
length |N | of the modulus N . The number of parallel processing units u can be
chosen in the range of 1 ≤ u ≤ n. If u < n, time-sharing processing for some
base elements is performed in each unit. When the base size n is fixed, RSA

370 H. Nozaki et al.

transaction performance improves in proportion to u. Obviously, it is efficient
to set u as a divisor of n in order to control all processing units by the same
procedure. By choosing u appropriately, a variety of chips can be realized in
terms of performance and size.

In the implementation, it is realistic that all parameters which depend only
on the base sets a and b are precomputed and stored in ROMs. A chip loaded
with base sets for an RSA key length L can deal with key lengths which are
shorter than L. However, processing time of a key length l (< L) is reduced
only to l/L as compared with that of the key length L, although (l/L)3 is
achieved ideally. The overhead time is caused by the fact that the performance
of RNS Montgomery multiplication is determined from the base size, and thus
the amount of operations does not decrease.

In order to perform an efficient computation for shorter key lengths, it is
necessary to prepare some base sets for typical key lengths: e.g. 512, 1024, and
2048 bits. For these key lengths, minimum base sizes become 17, 33, and 65
in the case of r = 32. There are several implementation methods to deal with
different-sized base sets. Among them, it is advantageous to set a base size to a
multiple of u from the viewpoint of the simplicity of a control circuit. Therefore,
if u = 11, appropriate base sizes are 22, 33, and 66 for key lengths 512, 1024,
and 2048 bits, respectively. In this case, it is expected that 1024-bit and 2048-bit
RSA processing has good performance, whereas 512-bit processing has overhead
time.

3.2 CRT Mode

An RSA decryption procedure with CRT is given by

m = (Cdp mod p)(q−1 mod p) q + (Cdq mod q)(p−1 mod q) p (mod N)
= [(Cdp mod p)(q−1 mod p) mod p] q

+[(Cdq mod q)(p−1 mod q) mod q] p (mod N), (10)

where N = pq, dp = d mod (p − 1), and dq = d mod (q − 1). A procedure to
perform Eq. (10) is shown in Fig. 5. The operations for p and q are carried out
sequentially. Precomputations of steps 1, 2, 4, and 5 (except for Cp and Cq) are
effective, if the secret keys p and q are not changed frequently. Here, it should be
noted that we need the RNS representation of m by means of the base a ∪ b in
the RNS-Radix conversion at step 11, because the modulus N in RSA processing
with CRT is represented uniquely not by a single base a or b but by the base
a∪ b. In contrast, only 〈m〉a (or 〈m〉b) is sufficient for the RNS-Radix conversion
in Fig. 4. Step 12 is a correction to assure m < N the same as step 9 in Fig. 4.
In this case, m obtained in step 10 is less than 4N , because up and uq (< 2N)
are added to each other without mod N operation.

The processing time of Fig. 5 is dominated by MEXP() at step 7. Since
the base size n can be reduced to n/2 by adopting CRT, the processing time
of MEXP() becomes 1/8 of that in Fig. 4. As a result, reduction of about 1/4
is achieved in total processing time, because the operations for p and q are

Implementation of RSA Algorithm Based on RNS Mont. Mul. 371

Input: C, dp, dq, N , p, q, qinv(= q−1 mod p), pinv(= p−1 mod q)
Output: m = Cd mod N

Operation for p Operation for q

1: Bp ← B mod p Bq ← B mod q
2: B2

p ← B2 mod p B2
q ← B2 mod q

3: Cp ← C mod p Cq ← C mod q

4: Compute
〈
−p−1

〉
b

Compute
〈
−q−1

〉
b

5: Radix-RNS: p, qinv, Bp, B2
p, Cp Radix-RNS: q, pinv, Bq, B2

q , Cq

6:
〈
C′

p

〉
← MM(〈Cp〉 ,

〈
B2

p

〉
, p)

〈
C′

q

〉
← MM(〈Cq〉 ,

〈
B2

q

〉
, q)

7:
〈
m′

p

〉
← MEXP(

〈
C′

p

〉
, dp, p)

〈
m′

q

〉
← MEXP(

〈
C′

q

〉
, dq, q)

8: 〈tp〉 ← MM(
〈
m′

p

〉
,
〈
qinv

〉
, p) 〈tq〉 ← MM(

〈
m′

q

〉
,
〈
pinv

〉
, q)

9: 〈up〉 ← MUL(〈tp〉 , 〈q〉) 〈uq〉 ← MUL(〈tq〉 , 〈p〉)
10: 〈m〉 ← ADD(〈up〉 , 〈uq〉)
11: RNS-Radix conversion: 〈m〉a∪b

12: m← m− cN (c = 0, 1, 2, or 3)

Fig. 5. RSA decryption algorithm with CRT.

performed sequentially. The same reduction ratio is obtained in a general case
based on the radix 2 representation.

4 Prototype

We prototyped an LSI adopting the Cox-Rower Architecture. In this section, an
outline of the LSI is described.

4.1 Architecture

The Cox-Rower Architecture was proposed as a hardware suitable for the RNS
Montgomery multiplication [1]. The name is derived from its original structure
where plural “Rower” units perform parallel processing in cooperation with one
“Cox” unit which computes a correction factor in the base transformation.

A hardware structure of the Cox-Rower Architecture in this work is shown in
Fig. 6. It consists of u sets of Rower units which individually have a multiplier-
and-accumulator with modular reduction unit by base element ai and bi. Figure
6 is different from the original structure proposed in Ref. [1] in regard to the
following two points:

(i) Rower units are connected by ring connection instead of by bus connection.
(ii) A Cox unit is embedded in every Rower unit.

In the base transformation, ξi (i = 1, . . . , n) which has been computed in each
Rower unit needs to be transferred to the other Rower units. The original archi-
tecture uses bus connection for this transfer. We have found that ring connection
can also realize the transfer of ξi’s by sending them to an adjoining Rower unit
in turn. In addition, since the original architecture has only one Cox unit, it also

372 H. Nozaki et al.

I/O RAM

RAM ROM

Mul & Acc
mod a2/b2

Rower #2

DIV

Cox

RAM ROM

Mul & Acc
mod au/bu

Rower #u

Cox

RAM ROM

Mul & Acc
mod a1/b1

Rower #1

Cox

r

r

rr

r

Fig. 6. Cox-Rower Architecture.

(b)(a)

trunc

r

g

c
ADD

g
1

r

mod ai/bi

r

RAM
RAM/ROM

ROM

Cox

Cox

r

r r

z z

r

1

r
SEL

SEL

Rower (i-1)Rower (i+1)

R1

R2

MUL

ADD

Fig. 7. Multiplier-and-accumulator (a) and Cox unit (b), where r = 32, z = 72, and
g = 9.

needs bus connection to broadcast the correction factor ki, which is computed
in the Cox unit, to all Rower units. This broadcast is, however, avoidable by
embedding a Cox unit in each Rower unit as shown in Fig. 6, which further
enables us to control all Rower units by the same procedure. Consequently, we
have adopted the ring connection in this work to lower data driving load and
improve the modularity of Rower units.

Structures of the multiplier-and-accumulator and the Cox unit are shown in
Fig. 7. The multiplier-and-accumulator has two stages: one is to accumulate a
result of multiplication-and-addition and the other is to perform modular reduc-
tion by the base elements. The Cox unit consists of a truncation unit, a g-bit

Implementation of RSA Algorithm Based on RNS Mont. Mul. 373

r+h

ii /νµ2
i

2
i /νµ

z-2r r r2h h

LSBMSB

MUL MUL

ii /νµ

ii /νµ
h+1

r

r

ADD

MUL

ADD

ADD

z

r+h+1

SEL
r r

Fig. 8. Modular reduction unit, where h = 10.

adder, and a register in order to compute ki in the base transformation according
to steps 4–6 in Fig. 2. One of the advantages of the proposed RNS Montgomery
multiplication algorithm is in this simple structure of the Cox unit.

Here, let us consider the base transformation procedure at Rower unit i.
First, at step 1 in Fig. 2, ξi is calculated from x[ai] and A−1

i [ai] and is stored
in the register R2. Next, in the loop for j = 1, ki is computed from ξi at the
Cox unit, and then yi1 is obtained and stored in the register R1. Before the next
loop for j = 2, ξi−1 which has been computed at Rower unit i− 1 is transferred
by ring connection and is stored in R2. Then, the loop for j = 2 is carried out
based on ξi−1, and yi2 is obtained. After all loop processes for j = 1, . . . , n have
been finished, x[bi] is computed from yin at step 9 and is stored in R2.

Figure 8 shows a structure of the modular reduction unit in Fig. 7(a). The
base elements ai and bi can be given as 2r − µi and 2r − νi. Small integers µi

and νi (� 2r) are chosen so as to make the base elements coprime. In this case,
modular computation for ai and bi can be realized by multipliers and adders,
where the multipliers perform multiplication by µi and νi as shown in Fig. 8.
The maximum bit length h of µi and νi is 10 bits for the base size n = 66. With
respect to the output y of the operation x mod ai, the modular reduction unit has
the condition y < 2r instead of y < ai, i.e. if x mod ai < µi, y = x mod ai + ai.
We have ascertained that this condition does not affect the RNS Montgomery
multiplication algorithm.

The Cox-Rower Architecture additionally has a divider which performs divi-
sion based on the radix 2 representation. This divider is required for steps 1 and
2 in Fig. 4 and steps 1–3 in Fig. 5.

374 H. Nozaki et al.

As described above, the Cox-Rower Architecture is designed to be suitable
for the RNS Montgomery multiplication algorithm, particularly for the base
transformation algorithm. The other operations such as the Radix-RNS and the
RNS-Radix conversions can also be implemented efficiently in this architecture.

4.2 Specifications

The specifications of the LSI prototype are summarized in Table 1. In the LSI,
the standard length of 32 bits is adopted as the bit length of processing units r.
The number of Rower units u is set to 11 from the consideration for chip size.
We can use the base sizes of 22, 33, and 66, which realize maximum key lengths
of 672, 1024, and 2080 bits, respectively. Therefore, key lengths up to 2048 bits
without CRT and 4096 bits with CRT are available.

SHA-1 which is required as a Hash function in digital signature is additionally
implemented in the LSI. The SHA-1 core has an MGF1 function used in RSA
standard spec PKCS#1 Ver.2.0 [6].

In Rower unit i (i = 1, . . . , 11), operations for the base elements aj and bj
are performed, where j = i+ 11' (' = 0, . . . , 5). Thus, parameters in terms of aj

and bj are stored in ROM of Rower unit i. Table 2 lists the parameters. These
parameters for the three base sizes n = 22, 33, and 66 are prepared in the LSI,
which needs the memory size shown in Table 3. In this table, memory sizes in the
case of shorter maximum key lengths are also estimated. Since the LSI has been
designed to provide long key lengths such as 2048 and 4096 bits, the increase
in memory size causes a big core size. It is possible to reduce the memory size
depending on maximum key lengths as shown in Table 3.

Figure 9 shows the details of the processing time. The transactions of I/O
and precomputation for keys are negligible in the total processing time and

Table 1. Specifications.

Process 0.25 µm CMOS
Operating frequency 80 MHz
Operating voltage 2.5 V
Functions RSA without and with CRT

SHA-1 Hash code generation
MGF1 (PKCS#1 Ver.2.0)

Performance 1024-bit RSA: 4.2 ms / 2.4 ms
(without/with CRT) 2048-bit RSA: 29.2 ms / 8.9 ms

4096-bit RSA: — / 60.4 ms
Core size 6.9 mm × 6.9 mm
No. of Rower units 11
No. of logic gates 333 KG (Total)

221 KG (RSA core)
36 KG (Divider)
57 KG (SHA-1)
19 KG (I/O etc.)

Implementation of RSA Algorithm Based on RNS Mont. Mul. 375

Table 2. Parameters stored in ROM.

Base transformation
〈x〉a =⇒ 〈x〉b A−1

j [aj], A1[bj], . . . , An[bj], −A[bj]
〈x〉b =⇒ 〈x〉a B−1

j [bj], B1[aj], . . . , Bn[aj], −B[aj]
Radix-RNS conversion
x =⇒ 〈x〉a 2r[aj], 2r·2[aj], . . . , 2r·(n−1)[aj]
x =⇒ 〈x〉b 2r[bj], 2r·2[bj], . . . , 2r·(n−1)[bj]
RNS-Radix conversion
〈x〉a =⇒ x A1(j−1), . . . , An(j−1), −A(j−1)
〈x〉a∪b =⇒ x (CRT mode) (AB/aj)−1[aj], (AB/bj)−1[bj],

(AB/a1)(j−1), . . . , (AB/an)(j−1),
(AB/b1)(j−1), . . . , (AB/bn)(j−1), −AB(j−1)

Table 3. Memory size.

Maximum RSA key length ROM (KByte) RAM (KByte)
2048 & 4096 (CRT) ∗ 209 24
2048 & 2048 (CRT) 138 20
1024 & 2048 (CRT) 57 12

∗ Designed LSI

are not exhibited in this figure. It is found that the contribution from division
based on the radix 2 representation becomes large in the processing of shorter
key lengths and in CRT mode. The latter condition means that the number
of parameters which are computed in the divider increases in CRT mode. In a
comparison between the performance without and with CRT, reduction ratio of
0.3 is obtained in 2048-bit RSA processing, which is close to an ideal ratio of
1/4. However, reduction ratio becomes 0.5 in 1024-bit processing. This increase
in reduction ratio is due to the use of a redundant base size in CRT mode. In
non-CRT mode of 1024-bit processing, we use the base size n = 33 which is
optimum for this key length. In contrast, the base size n = 22 used in CRT
mode is too long for the key length of 512 bits. These results indicate that base

Fig. 9. Performance.

376 H. Nozaki et al.

sizes strongly affect the performance of the Cox-Rower Architecture as discussed
in Sec. 3.1.

At present, the best performance of 1024-bit RSA processing in commercial
chips is, as far as we know, reported for Rainbow’s chip (5 msec with CRT) [7]
and Pijnenburg’s chip (3 msec and 1.5 msec with CRT) [8], which is comparable
with the performance in this work. The Cox-Rower Architecture can equip up to
33 Rower units for 1024-bit RSA processing. In that case, three-times speedup
can be realized and the processing time which is less than 1 msec becomes
feasible.

5 Conclusions

This paper presented the implementation of RSA algorithm based on the RNS
Montgomery multiplication. We showed RSA decryption procedures and dis-
cussed the relation between the base size of RNS and the number of parallel
processing units. The designed LSI adopting the Cox-Rower Architecture can
deal with key lengths up to 4096 bits in CRT mode. Using 11 Rower units, we
obtained 1024-bit RSA transactions in 4.2 msec without CRT and 2.4 msec with
CRT, at the operating frequency of 80 MHz. This result gives us a prospect of
realizing a high performance. Downsizing of chips and speedup by using more
Rower units are subjects to be tackled in the next phase of this work.

Acknowledgment

The authors would like to thank Hidekazu Shimizu of Toshiba Information Sys-
tems Corporation for his collaboration in LSI design.

References

1. S. Kawamura, M. Koike, F. Sano, and A. Shimbo, “Cox-Rower Architecture for Fast
Montgomery Multiplication,” EUROCRYPT 2000, pp. 523–538 (2000).

2. K. C. Posch and R. Posch, “Modulo Reduction in Residue Number Systems,” IEEE
Tr. Parallel and Distributed Systems, Vol. 6, No. 5, pp. 449–454 (1995).

3. J.-C. Bajard, L.-S. Didier, and P. Kornerup, “An RNS Montgomery Multiplication
Algorithm,” Proceedings of ARITH13, IEEE Computer Society, pp. 234-239 (1997).

4. P. Paillier, “Low-Cost Double-Size Modular Exponentiation or How to Stretch Your
Cryptoprocessor,” PKC99, pp. 223–234 (1999).

5. E. Kranakis, “Primality and Cryptography,” Wiley-Teubner Series in Computer
Science, John Willy & Sons (1986).

6. RSA Laboratories, “PKCS#1 Ver.2.0: RSA Cryptography Standard,” Oct. 1 (1998).
7. http://www.rainbow.com/cryptoswift.
8. http://www.pcc.pijnenburg.nl/pcc-ises.htm.

	1 Introduction
	2 Algorithm
	2.1 Residue Number Systems
	2.2 Montgomery Multiplication
	2.3 RNS Montgomery Multiplication

	3 Implementation
	3.1 Base Size and Number of Parallel Units
	3.2 CRT Mode

	4 Prototype
	4.1 Architecture
	4.2 Specifications

	5 Conclusions
	Acknowledgment
	References

