
Received November 5, 2019, accepted November 25, 2019, date of publication January 3, 2020, date of current version January 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2963826

Implementation of RSA Signatures on GPU and
CPU Architectures

EDUARDO OCHOA-JIMÉNEZ 1, LUIS RIVERA-ZAMARRIPA 2,
NARELI CRUZ-CORTÉS 2, (Member, IEEE),
AND FRANCISCO RODRÍGUEZ-HENRÍQUEZ 1, (Member, IEEE)
1Computer Science Department, Cinvestav, Mexico City 07360, Mexico
2Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, Mexico

Corresponding author: Luis Rivera-Zamarripa (lriveraz@gmail.com)

This work was supported in part by Instituto Politecnico Nacional de Mexico.

ABSTRACT This paper reports a constant-time CPU and GPU software implementation of the RSA

exponentiation by using algorithms that offer a first-line defense against timing and cache attacks. In the case

of GPU platforms the modular arithmetic layer was implemented using the Residue Number System (RNS)

representation. We also present a CPU implementation of an RNS-based arithmetic that takes advantage of

the parallelism provided by the Advanced Vector Extensions 2 (AVX2) instructions. Moreover, we carefully

analyze the performance of two popular RNSmodular reduction algorithmswhen implemented onmany- and

multi-core platforms. In the case of CPU platforms we also report that a combination of the schoolbook and

Karatsuba algorithms for integermultiplication alongwithMontgomery reduction, yields our fastest modular

multiplication procedure. In comparison with previous literature, our software library achieves faster timings

for the computation of the RSA exponentiation using 1024-, 2048- and 3072-bit private keys.

INDEX TERMS Public key cryptography, RSA, RNS arithmetic, GPU, CPU, AVX2 instructions.

I. INTRODUCTION

Public key cryptosystems play an important role in communi-

cation systems that require the exchange of sensitive informa-

tion. Proposed by Rivest, Shamir and Adleman in 1978 [1],

RSA has become the most deployed public key cryptosystem

in practical applications. The signing/verification of digital

certificates is a heavily used application of RSA, as an impor-

tant fraction of commercial digital certificates have been cre-

ated using RSA as their cryptographic engine. However, due

to its relatively high latency, RSA must be carefully imple-

mented to achieve reasonable timing performance, memory

and code footprints. Moreover, the computation of RSAmain

primitives, quite especially modular exponentiation, must be

run in constant-time. This feature presents a first line of

defense against timing and cache attacks [2].

The RSA instantiation using 1024-bit keys

(a.k.a RSA-1024), has been widely used for computers on

networks and traffic handling across the Internet. For applica-

tions requiring to achieve the 112- and 128-bit security levels,

the National Institute of Standards and Technology (NIST)
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recommended in [3] the usage of RSA-2048 and RSA-3072,

respectively. This recommendation should be contrasted with

the newest analysis of state-of-the-art integer factorization

algorithms [4], [5], which estimate that RSA-1024 and

RSA-2048 can barely achieve the 76- and 106-bit security

levels, respectively.

The RSA algorithm produces a public/private pair of

keys by first constructing a per-user unique 2k-bit modulo

N = p · q, where p, q are two k-bit prime numbers. The

RSA public key is the tuple composed by the modulus N

and a public exponent e, which is generally chosen as e =

216 + 1. The RSA private exponent is defined as d = e−1

mod φ(N ), where φ(·) stands for the Euler’s totient function.

Given the RSA private key (d,N ) and a message m, the Full

Domain Hash (FDH) signature s of m is computed as s =

H (m)d mod N , where H (·) represents a hash function that

mapsm toZN . It has been shown that the FDHRSA signature

is provably secure [6]. A standard trick based on the Chinese

Remainder Theorem trades the 2k-bit RSA exponentiation

s = H (m)d mod N , by the computation of two independent

k-bit modular exponentiations of the form, s1 = hd mod (p−1)

mod p and s2 = hd mod (q−1) mod q, where s1, s2 can be

calculated concurrently.
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In this work, we focus our attention on the efficient parallel

computation of s1 and s2 in GPU and CPU software imple-

mentations.

Most Internet transactions are executed using desktop com-

puters, laptops and smartphones that are powered by multi-

core micro-architectures based on general purpose Central

Processing Units (CPUs). On the other hand, taking advan-

tage of their massive parallelism, General Processing Units

(GPUs) platforms have become an interesting option to

speedup high demanding computational tasks such as the

computation of several public key cryptographic primitives.

OUR CONTRIBUTIONS: In this work, two RSA constant-

time software implementations for 1024-, 2048-, and 3072-bit

RSA keys, are presented.

Our CPU software implementation of RSA uses a com-

bination of integer arithmetic algorithms and Montgomery

reduction that helped us to exploit the fine-grained paral-

lelism present in the latest Intel micro-architectures. We also

took advantage of the multi-core architecture of modern Intel

CPU processor to concurrently compute two RSA exponen-

tiations. Further, we explore the usage of the Advanced Vec-

tor Extension 2 (AVX2) for achieving an efficient Residue

Number System (RNS) field arithmetic, as an alternative

approach for the parallel computation of the RSA signature.

Likewise, our RSA GPU implementation also employs RNS

arithmetic, which permits to take a better advantage of the

massive parallelism available on this many-core architecture.

Our software implementation targeted four platforms,

namely, a GPU GeForce GTX TITAN running on a Kepler

architecture at 876 MHz, a GPU GeForce GTX 1080 running

on a Kepler architecture at 1.81 GHz and a CPU Intel core

i7 equipped with Haswell and Skylake micro-architectures

running at 2.6 GHz, 4 GHz and 1.8GHz, respectively.

Our experimental results show that computing one RSA

signature takes far less time when calculated using our CPU

software library. However, our GPU software scales better for

larger RSA key lengths, and offers better performance when

not one but many RSA signatures must be computed at once.

The experimental results presented in this work outperform

previously reported GPU RSA implementations [7]–[10]

by a factor of 1.24, 1.27 and 2.98 for RSA-1024 bits,

RSA-2048 bits, and RSA-3072, respectively. Regarding our

CPU implementation of RSA, our results outperform pre-

vious CPU software implementations [11], [12] by a factor

of 1.84 and 1.15 and 1.19 for the RSA-1024, RSA-2048 and

RSA-3072, respectively.

The remainder of this paper is organized as follows. In §II

a review of the main modular arithmetic algorithms used

in this work is given. Then, in §III and §IV we present a

detailed description of the CPU and GPU implementations of

the RSA exponentiation, respectively. Finally, we draw some

concluding remarks in §V.

II. ARITHMETIC BACKGROUND

One of the main objectives of this work is to perform a fast

and constant-time modular exponentiation, which is required

by the RSA signature algorithm. Hence, we start this section

by describing in §II-A the regular-recoding exponentiation

algorithm used for performing the RSA private operation.

Furthermore, throughout this work we use two different

approaches for computing the underlyingmodular arithmetic.

The first approach adopts the Montgomery representation

discussed in §II-B, whereas the second one uses an arithmetic

layer based on the Residue Number System (RNS) represen-

tation as explained in §II-C. In this section, we present an

overview of these two arithmetic representations.

NOTATION: Let N be a 2k-bit RSA modulus of the form

N = p · q, where p, q are two k-bit prime numbers. Since

an RSA exponentiation modulo N can be traded by two k-bit

exponentiations modulo p and q, in this work we focus our

attention on the computation of the operation y = xe mod p,

where it will be assumed that all the operands have a bit-

length of k bits. The integer representation of a k-bit integer

can be accommodated in n = ⌈ k
w
⌉ words, where each word

has a size of w bits. Throughout this work, word sizes of

w = 32 and w = 64 bits will be assumed. An element a ∈ Zp

is represented in radix-r as the array a =
∑n−1

i=0 air
i, where

r = 2w and 0 ≤ ai < r .We say that the operand a has a word-

length of n words. For the sake of simplicity, we will only

consider operands with an even word-length. Particularly,

we are interested in the cases n = 8, 16, 24, required for

computing RSA-1024, RSA-2048 and RSA-3072 signatures,

respectively.

A. CONSTANT-TIME MODULAR EXPONENTIATION

We adopted a variant of the fixed-window exponentiation

method, which starts by producing a regular recoding of the

exponent. To this aim, we use the procedure proposed by

Joye and Tunstall in [13] as shown in Algorithm 1. Given a

k-bit exponent, Algorithm 1 provides an encoding of length

η =
⌈

k
ω

⌉

+ 1, whose digits belong to the set {1, 2, . . . , 2ω},

where ω is the prescribed window size.

Algorithm 1 Unsigned Exponent Regular Recoding [13]

Require: A k-bit exponent e, window size ω.

Ensure: f = (fη−1, . . . , f0) with fi ∈ {1, 2, . . . , 2
ω} for 0 ≤

i < η.
1: i← 0 j← 1

2: while e ≥ 2ω + 1 do

3: d ← e mod 2ω

4: d ′← d + j+ 2ω − 2

5: fi← (d ′ mod 2ω)+ 1

6: j←
⌊

d ′/2ω
⌋

7: e← ⌊e/2ω⌋

8: i← i+ 1

9: end while

10: fi← e+ j− 1

11: return f

Algorithm 2 allows us to perform a constant-time mod-

ular exponentiation, which helps us to thwart basic timing

side-channel attacks. Since this windowed exponentiation
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algorithm requires to lookup a pre-computed table, it is neces-

sary to implement a mechanism that protects the correspond-

ing queries. Hence, whenever the pre-computed table Ŵ is

queried in Step 6, a linear pass memory access is performed

as a protective countermeasure [14]. This technique consists

of traversing the entire pre-computed table Ŵ every time that

a certain position is accessed. In this way we ensure that all

memory queries have the same running time. The protected

modular exponentiation that computes y = xe mod p is

shown in Algorithm 2. This algorithm has a cost of exactly
⌊

k
ω

⌋

modular multiplications and k − 1 modular squaring

operations.

Algorithm 2 Protected Fixed-Window Modular

Exponentiation

Require: The k-bit integers x, e and p, and the window size

ω.

Ensure: A k-bit integer y such that y = xe mod p.
Precomputation:

1: Recode e using Algorithm 1 to obtain the encoding f of

length η =
⌈

k
ω

⌉

+ 1.

2: Compute Ŵ[i]← x i mod p for i ∈ {0, . . . , 2ω}

Computation:

3: y← Perform a linear pass to recover Ŵ[fη−1]

4: for i = η − 2 down to 0 do

5: y← y2
ω

6: z← Perform a linear pass to recover Ŵ[fi]

7: y← y · z

8: end for

9: return y

B. MONTGOMERY MODULAR ARITHMETIC

In 1985, Montgomery proposed a novel method to com-

pute field multiplications without using trial divisions [15].

Montgomery suggested to change the operand representation

to the so-called Montgomery domain.1 Let us define the

Montgomery parameter R as, R = rn, where as before n

represents the number of words necessary to represent the

prime modulus p in radix r = 2w. Hence, rn−1 < p < rn.

The Montgomery representation ã of an element a ∈ Zp is

computed as ã = a · R mod p.

Let as assume that the elements a, b ∈ Zp have a Mont-

gomery’s representation given as ã and b̃, respectively. Let d

be given as d = ã · b̃. Then, the Montgomery product of ã and

b̃ is defined as c̃ = ã · b̃ · R−1 mod p, which can be readily

computed as

c̃ =
d + (µ · d mod R) · p

R
≡ d · R−1 mod p, (1)

where the parameter µ given as µ = −p−1 mod R, can

be pre-computed off-line. Also the reduction and division

by R operations, can be efficiently performed using fast

1Usually at the start and at the end of the RSA computation, operand
transfers to and from the Montgomery representation are performed.

right/left n-word shift operations. It can be shown that when

0 ≤ d < p2, the result c̃ of Equation (1) is an integer

in the interval [0, 2p[. Hence, at most a single conditional

subtraction is needed to obtain 0 ≤ c̃ < p. This conditional

subtraction must be performed in a constant-time fashion.

C. RNS MODULAR ARITHMETIC

In the nineties of the last century, several authors proposed

the usage of the Residue Number System (RNS) as an alter-

native for computing modular arithmetic over large integer

operands [16]–[19].2

Taking advantage of the ancient Chinese Remainder The-

orem (CRT), RNS main attractiveness is to represent a large

integer by means of a set of smaller independent numbers.

In this way, one trades the computational cost of a single

arithmetic operation over two large operands by the calcula-

tion of independent smaller modular operations that may be

computed in parallel. The RNS representation is defined as

follows.

Let B be an RNS-basis consisting of a set of ℓ pairwise

co-prime integer moduli B = {m1,m2, . . . ,mℓ}, and let

M =
∏ℓ

i=1 mi. Then, an integer a ∈ [0,M − 1] can be

uniquely represented by the ℓ-tuple a = (a1, a2, . . . , aℓ),

where each ai is the residue of a modulo mi. In the remain-

der of this paper this reduction operation will be written as

ai = |a|mi . From its RNS representation, the corresponding

binary representation of a can be obtained using the following

recovery formula,

a =

∣

∣

∣

∣

∣

ℓ
∑

i=1

∣

∣

∣
ai ·M

−1
i

∣

∣

∣

mi
·Mi

∣

∣

∣

∣

∣

M

, where Mi , M/mi. (2)

Let a and b be two large k-bit integers with a, b <

M , represented as RNS tuples a = (a1, a2, . . . , aℓ) and

b = (b1, b2, . . . , bℓ). Then, RNS addition ⊕ and RNS

multiplication ⊗ are performed coefficient-wise as,

c = a⊕ b = (c1 = |a1 + b1|m1
, c2 = |a2 + b2|m2

,

. . . , cℓ = |aℓ + bℓ|mℓ
),

d = a⊗ b = (d1 = |a1 · b1|m1
, d2 = |a2 · b2|m2

,

. . . , dℓ = |aℓ · bℓ|mℓ
). (3)

If the target platform is equipped with ℓ processing units,

then the computational cost associated to any of the two RNS

arithmetic operations of Eq. (3) is approximately the same as

performing one single coefficient multiplication.

Remark 1: Let a, b be two k-bit integers. Then, the integer

product d = a ⊗ b of Eq. (3) can be uniquely recovered

from its RNS representation if and only if d < M . Since

in general the integer product d is a 2k-bit number, it follows

that an RNS representation of a, b and d requires an RNS-

basis composed of ℓ w-bit moduli, with ℓ ≥ 2⌈ k
w
⌉ = 2n.

Remark 2: For the sake of efficiency, the integer mod-

uli mi are usually selected as mi = 2w − µi, where µi

coefficients are chosen as small as possible. If µi < 2⌊
w
2 ⌋,

2See [20] for a recent survey on several RNS reduction strategies.
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then the coefficients di for i = 1, . . . , ℓ of Eq. (3) can be

efficiently computed by repeating at most twice the operation,

ti = di mod 2w + µi · ⌊di/2
w⌋. Thereafter it is guaranteed

that ti ∈ [0, 2w[. Since 2w > mi, one may need to compute

a final reduction, di = |ai · bi|mi = ti mod mi, which can

be achieved at a cost of at most one subtraction operation. In

order to assure a constant-time implementation, this reduction

is carried out by executing exactly two conditional reductions

of the form, ti = a mod 2w+µi ·⌊a/2
w⌋, followed by exactly

one conditionally subtraction by mi.

1) RNS MODULAR REDUCTION

A modular multiplication is often performed by first com-

puting the integer multiplication d = a ⊗ b, followed by a

reductionmodulo p so that the resulting value lies in the range

[1, p − 1]. In this work, we adopted the reduction approach

proposed in [16], [18], and its adaptation to GPU platforms

presented by Jeljeli in [21] (see also [22]). Crucially, this

approach allows to perform a modular reduction d mod p

without leaving the RNS domain as it is explained next.

Let d be a large integer represented in RNS using a basis

composed by ℓ one-word moduli. Let us assume that d

must be reduced modulo an n-word prime number p. Then,

a strategy to perform the modular reduction d mod p can

be obtained from a direct application of the RNS recovery

formula of Eq. (2) as

d =

∣

∣

∣

∣

∣

ℓ
∑

i=1

γi ·Mi

∣

∣

∣

∣

∣

M

=

(

ℓ
∑

i=1

γi ·Mi

)

mod M ,

where γi ,

∣

∣

∣
di ·M

−1
i

∣

∣

∣

mi
. (4)

Notice that the coefficients γi for i = 1, . . . , ℓ as defined

in Eq. (4), can be seen as a single RNS vector γ with ℓ

coordinates. Notice that d can also be written as

d =

ℓ
∑

i=1

γi ·Mi − α ·M , (5)

where α is some positive integer, and by construction, 0 ≤

d/M < 1. From Eq. (5), the parameter α can be estimated as

α ≈

⌊

ℓ
∑

i=1

γi

mi

⌋

.

Since γi < mi, we have that 0 ≤ α < ℓ. Observe that the

value

z =

ℓ
∑

i=1

γi · |Mi|p − |α ·M |p , (6)

is congruent to d mod p, but in general z ≥ d . In order

to obtain a good approximation of α, which at the same

time can be computed efficiently, one uses the fact that

mi ≈ 2w. Hence, the ratio γi/mi can be approximated by only

considering the σ most significant bits of the

quotient γi/2
w as

α̂ ,











ℓ
∑

i=1

⌊ γi

2w−σ

⌋

2σ
+1










, (7)

where σ is an integer in the range [1,w] and 0 < 1 < 1 is an

error correcting parameter.

Remark 3: The integer part of the summation in Eq. (7)

can be efficiently computed by considering the output carry c

produced by the addition of the σ most significant bits of the

coefficients γi with i = 0, 1, . . . , ℓ. Notice that the output

carry c is an integer in the range [0, ℓ[.

Algorithm 3 computes the RNS vector z ≡ d mod p as

defined in Eq. (6). In Steps 4-6, ℓ processing units con-

currently compute ℓ copies of the RNS vector γ given in

Eq. (4). Although the computational cost of these steps is

of ℓ RNS multiplications, their associated latency is very

close to the latency associated to one RNS multiplication.

The second loop of Algorithm 3 (Steps 7-13) completes the

computation of the RNS vector z. Step 9 performs ℓ and ℓ−1

RNS multiplications and additions, respectively. As before,

all these ℓ RNS multiplications can be computed in parallel,

but they must be sequentially added using a binary tree adder.

Step 10 computes α at the cost of adding ℓ σ -bit integers

(cf. Remark 3). In Step 11, the RNS vector z is finally

obtained by performing one RNSmultiplication and one RNS

subtraction.

Summarizing, the latency associated to Algorithm 3 is the

combined latency of three RNSmultiplications plus one RNS

subtraction plus the addition of ℓ σ -bit numbers.

Algorithm 3 does not calculate d mod p, but instead

produces an RNS multiple of it, which is bounded

by 2w · ℓ· [21], [22]. In practice this implies that the RNS

vector z must be accommodated using at least two extra

safeguard moduli. Consequently, we increased the cardinality

of the RNS basis B from ℓ to ℓ + 3 moduli. By taking

this caution measure, one guarantees that accumulating thou-

sands of modular multiplications (required in the computa-

tion of a typical RSA exponentiation), will not exceed the

RNS bound M .

2) RNS MONTGOMERY MODULAR REDUCTION

Alternatively, the modular reduction by a k-bit prime number

p can be performed by adapting the Montgomery reduction

given in Equation (1), to the RNS representation setting. This

approach was first introduced by Posch and Posch [23], and

several refinements were proposed in [24] and in a myriad of

subsequent papers [20].

The adaptation of the k-bit Montgomery reduction to

RNS arithmetic requires to handle two distinct RNS-basis

B = {m1,m2, . . .mℓ} and B′ = {m′1,m
′
2, . . .m

′
ℓ} such that

gcd(M ,M ′) = gcd(M , p) = 1, where ℓ = ⌈ k
w
⌉ = n,

and M =
∏ℓ

i=1 mi and M ′ =
∏ℓ

i=1 m
′
i. In addition, the

Montgomery parameters of Equation (1) must be represented

using two RNS bases B and B′. It is customary to choose
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Algorithm 3 RNS Modular Reduction Optimized for

Multi/Many Core Platforms [21]

Require: The integer d given in ℓ-moduli RNS representa-

tion, the ℓ-moduli RNS-basisB, and parameters r , σ , and

1.

Ensure: RNS vector z, such that its integer representation is

z ≡ d mod p.
Precomputation:

1: RNS vector

∣

∣

∣
M−1j

∣

∣

∣

mj
for j ∈ {1, . . . , ℓ}

2: Table of RNS vectors |Mi|p for i ∈ {1, . . . , ℓ}

3: Table of RNS vectors |α ·M |p for α ∈ {1, . . . , ℓ− 1}

4: for each processing unit j do

5: γj←−

∣

∣

∣

∣

dj ·

∣

∣

∣
M−1j

∣

∣

∣

mj

∣

∣

∣

∣

mj
6: end for

7: for each processing unit j do

8: for each processing unit i do

9: zj←−

∣

∣

∣

∑ℓ
i=1 γi ·

∣

∣|Mi|p
∣

∣

mj

∣

∣

∣

mj
⊲ requires ℓ RNS

mults and ℓ− 1 RNS adds.

10: α←−











∑ℓ
i=1

⌊ γi

2w−σ

⌋

2σ
+1











11: zj←−

∣

∣

∣
zj −

∣

∣|α ·M |p
∣

∣

mj

∣

∣

∣

mj
12: end for

13: end for

14: return z = (z1, . . . , zℓ)

R = M , instead of R = rn. Moreover, the parameter µ of

Equation (1) is represented by the RNS vector −p−1 mod R

represented in base B.

As discussed in [24], [25], the RNS version of the Mont-

gomery reduction can avoid a conditional subtraction by

adopting Walter’s approach of [26]. Indeed, a redundant rep-

resentation of the elements in Montgomery representation

can be achieved by choosing a Montgomery radix such that

4p < R and a RNS-basis B′ such that 2p < M ′. At the end

of the whole computation the result can be normalized at the

cost of a single constant-time subtraction.

The procedure to compute an RNS Montgomery modular

reduction is presented in Algorithm 4. It is noted that the

multiplication dB by µ in Step 5, is carried out in base B.

Due to the design choice R = M , the reduction modulo R

is implicitly applied in this computation. Thus, the product

performed in this step is equivalent to compute µ · d mod R

of Equation (1). The numerator of Equation (1) is computed

in Step 11. This calculation must be performed in base B′

because the expected result is a multiple of R, which is equal

to zero in base B.

A division by R is computed in Step 12. The output

of this operation corresponds to the RNS representation of

d · R−1 mod p in base B′. This computation must be per-

formed in base B′ because R−1 is not defined in base B.

Thus, throughout the algorithm it becomes necessary to

Algorithm 4 RNS Montgomery Modular Reduction [24]

Require: The integer d given in the two bases ℓ-moduli RNS

representations dB and dB′ , the ℓ-moduli RNS-basis B

and B′.

Ensure: The RNS vectors zB and zB′ corresponding to the

integer representation of z ≡ d mod p.
Precomputation:

1: RNS vectors

∣

∣

∣
M−1i

∣

∣

∣

mi
,

∣

∣

∣
M
′−1
i

∣

∣

∣

m′i

,
∣

∣M−1
∣

∣

m′i
,

∣

∣−p−1 mod M
∣

∣

mi
and |p|m′i

for i ∈ {1, . . . , ℓ}

2: Table of vectors |Mi|m′j
and

∣

∣M ′i

∣

∣

mj
for i, j ∈ {1, . . . , ℓ}

3: Tables of RNS vectors |α · (−M )|m′i
and

∣

∣α · (−M ′)
∣

∣

mi
for α, i ∈ {1, . . . , ℓ}

Computation:

4: for each processing unit i do

5: γi←−

∣

∣

∣
dBi ·

∣

∣−p−1 mod M
∣

∣

mi

∣

∣

∣

mi
⊲ 1 RNS product

6: θi←−

∣

∣

∣

∣

γi ·

∣

∣

∣
M−1i

∣

∣

∣

mi

∣

∣

∣

∣

mi

⊲ 1 RNS product

7: end for

8: α←−













∑ℓ
j=1

⌊

θj

2w−σ

⌋

2σ













⊲ Addition of ℓ σ -bit terms

9: for each processing unit i do

10: δi←−

∣

∣

∣

∣

∑ℓ
j=1

∣

∣

∣
|Mi|m′j

· θj

∣

∣

∣

m′i

+ |α(−M )|m′i

∣

∣

∣

∣

m′i

⊲ ℓ

RNS products and ℓ RNS additions

11: γi←−

∣

∣

∣
dB′i +

(

δi · |p|m′i

)∣

∣

∣

m′i

⊲ 1 RNS product and

1 RNS addition

12: zB′i←−

∣

∣

∣
γi ·

∣

∣M−1
∣

∣

m′i

∣

∣

∣

m′i

⊲ 1 RNS product

13: θi←−

∣

∣

∣

∣

zB′i ·

∣

∣

∣
M
′−1
i

∣

∣

∣

m′i

∣

∣

∣

∣

m′i

⊲ 1 RNS product

14: end for

15: α←−













∑ℓ
j=1

⌊

θj

2w−σ

⌋

2σ
+ 0.5













⊲ Addition of ℓ σ -bit

terms

16: for each processing unit i do

17: zBi←−

∣

∣

∣

∣

∑ℓ
j=1

∣

∣

∣

∣

∣M ′i

∣

∣

mj
· θj

∣

∣

∣

mi
+
∣

∣α(−M ′)
∣

∣

mi

∣

∣

∣

∣

mi

⊲ ℓ

RNS products and ℓ RNS additions

18: end for

19: return zB and zB′

perform two base extensions, which consist of transforming

a number given in base B (resp. B′) into a number in base B′

(resp.B.) The first base extension (Steps 6 to 10) is performed

to derive an approximation for δ obtained from the value

γ calculated in Step 5. This permits to compute the value

(d+(µ·d mod R)·p)/R in baseB′. The second base extension

(Steps 14 to 17) is performed at the end of the algorithm. This

extension obtains the RNS representation of the final result in

base B (which was computed in Step 12 in base B′).
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III. EFFICIENT IMPLEMENTATION OF RSA ON CPU

PLATFORMS

In this section, efficient CPU software implementations of the

RSA exponentiation are described in detail. First, the imple-

mentation of elementary arithmetic operations such as multi-

plication, squaring and Montgomery reduction, is described.

Moreover, a brief explanation of how this modular arithmetic

layer was used for the concurrent computation of the two

exponentiations associated to the RSA signature is given.

Thereafter, a description of the RNS-based arithmetic imple-

mentation is presented. The implementation of this arithmetic

heavily relies on the set of Advanced Vector Extensions 2

AVX2. Furthermore, a comparison between the RNS reduc-

tion procedures described in Algorithm 3 and Algorithm 4

shows that for our CPU implementation setting, the latter is

faster than the former.

All the experimental results presented in this section

were executed on an Intel Core i7-4770 processor support-

ing the Haswell micro-architecture and on an Intel Core

i7-6700 processor that supports the Skylake micro-

architecture, equipped with 16 GB of RAM memory

and using the Ubuntu 16.04.6 LTS operating system.

To guarantee the reproducibility of our measurements,

the Intel Hyper-Threading and Intel Turbo Boost tech-

nologies were disabled. Our source code was com-

piled using the GNU C Compiler (gcc) v6.1.0 with the

-O3 optimization flag and using the options -mbmi2

-fwrapv -fomit-frame-pointer and -mbmi2

-madx -fwrapv -fomit-frame-pointer for the

Haswell and Skylake micro-architectures, respectively.3

A. MONTGOMERY BASED ARITHMETIC ON CPU

PLATFORMS

1) INTEL INTEGER ARITHMETIC INSTRUCTIONS

Aiming to achieve efficient integer multiplication/squaring

and Montgomery’s reduction, we took advantage of the

instruction MULX and the set of instructions Multi-precision

Add-carry instruction extensions ADX [27]. First introduced

in the Bit Manipulation instruction set (BMI2) of the Haswell

micro-architecture, the assembly instruction MULX is an

extension of the 64-bit multiplication instruction MUL. MULX

uses a three-operand code and computes an unsigned multi-

plication without modifying the arithmetic flags. The advan-

tage of the three-operand code is that permits to save MOV

instructions by allowing to choose the output registers receiv-

ing the highest and the lowest part of the two-word output

product. On the other hand, the instruction set ADX first

introduced in the Broadwell micro-architecture, includes the

instructions ADCX and ADOX, which were designed to handle

two independent carry chains. These instructions compute

unsigned 64-bit additions with input carry. The resulting

output carry is stored in the carry flag (CF) and the overflow

flag (OF), respectively. Since both instructions deal with two

3The source code of our software library is available at,
https://github.com/luinxz/RSA.

independent carry chains, they can be executed in parallel. An

important advantage of these instructions is that they allow to

combine MULX, ADC, ADCX and ADOX instructions without

corrupting the carry chain. This feature has a noticeable

impact in the efficiency of the Montgomery based arithmetic

as discussed next.

2) INTEGER MULTIPLICATION

The two most popular approaches for computing integer

multiplication in a software implementation are the school-

book method with its associated quadratic complexity on

the number of word multiplications, and the Karatsuba and

Ofman [28] approach that enjoys a sub-quadratic complexity

on the number of word multiplications at the price of increas-

ing the number of required word additions. One can also opt

for using a combination of these two methods, which was the

strategy adopted in this work.

The efficiency of the schoolbook method mainly depends

on how the partial products are computed and the way that

they are added.We used the operand-scanning strategy, where

the multiplicand operand is multiplied by each word of the

multiplier. This strategy allows us to take full advantage of

the MULX, ADCX and ADOX instructions.

However, this approach is limited by the available number

of general purpose registers. Because of this, the school-

book method tends to be efficient only when the operands

have a small word-length. Indeed, as shown in Table 1, our

implementation of a pure schoolbook integer multiplication

outperformed Karatsuba only when the operands had a word-

length in the range 0 < n ≤ 8.

Therefore, n-word multiplications with n > 8 were per-

formed using a combination of the Karatsuba multiplication

method [28] and the schoolbook approach. Two n-word inte-

gers a and b can be written as a = a0 + a1 · r
n/2 and

b = b0 + b1 · r
n/2, where as before r = 2w. Using the

Karatsuba approach, one first computes the values cL =

a0 · b0, cM = (a0 + a1)(b0 + b1) and cH = a1 · b1. Then

the integer multiplication c = a · b is obtained as

c = cL + (cM − cL − cH ) · r
n/2 + CH · r

n.

This computation costs two additions and three multiplica-

tions of n/2-word integers, plus one addition and two sub-

tractions of n-word operands.

For 16-word multiplications, we applied one Karatsuba

level that took us from 16- to 8-word multiplications. In the

case of 24-word multiplications, we utilized two Karatsuba

levels that took us from 24- to 12-word multiplications, and

then to 6-word multiplications. The results obtained from this

strategy are presented in Table 1.

COMPARISON AGAINST SCOTT’S KARATSUBA VARIANT

In [29], Scott proposed a Karatsuba variant based on Arbi-

trary degree Karatsuba (ADK) previously suggested in [30].

Scott implemented the ADK approach in the reduced-

radix setting, where a number is represented using a word

size lower than the one belonging to the target processor.
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TABLE 1. A comparison of integer multiplication using Karatsuba and
schoolbook method. Computational costs are reported in number of word
multiplications (using MULX instructions) and clock cycles measured on
Haswell (HW) and Skylake (SK) micro-architectures.

TABLE 2. Comparison of timings for integer multiplication using Scott
strategy [29] against Karatsuba-schoolbook method. All timings are
reported in clock cycles measured on Haswell (HW) and Skylake (SK)
micro-architectures.

The advantage of this strategy is that the partial products can

be accumulated without worrying about the output carries.

We implemented Scott’s strategy using a word size of

r = 262 bits as proposed in [29]. A comparison of our

own implementation of Scott’s proposal against the com-

bination of Karatsuba and the schoolbook methods is pre-

sented in Table 2. It can be observed that the combination of

Karatsuba plus the schoolbook approaches outperforms the

one reported by Scott for the range of word-lengths relevant

to this work.

3) INTEGER SQUARING OPERATION

For operands with a word-length n ≥ 6, we chose a variant

of the Karatsuba method that takes advantage of the repeated

partial products that show up in the squaring operation. Con-

sidering an n-word integer a written as a = a0 + a1 · r
n/2.

First compute the values cL = a20, cM = 2(a0 · a1) and

cH = a21. Then the squaring c = a2 can be computed as

c = cL + 2(a0 · a1) · r
n/2 + cH . This can be obtained at

the cost of two n/2-word squarings, one multiplication of

n/2-word operands, and two n-word additions.

The implementation of an n-word squaring for n ∈

{24, 16, 8} was conducted using up to three Karatsuba lev-

els (going from 24- to 12-, then to 6-word and finally to

3-word multiplications/squarings). Eighteen squaring and

nine multiplications of 3-words operands were computed for

n = 24. For n = 16, two Karatsuba levels (going from

16- to 8- and then to 4-word multiplications/squarings),

TABLE 3. A comparison of integer squaring using the schoolbook and the
Karatsuba methods. Computational costs are reported in number of word
multiplications (using MUX instructions) and clock cycles measured on
Haswell (HW) and Skylake (SK) micro-architectures.

require six squarings and three multiplications of 4-word

operands. For n = 8 it suffices one Karatsuba level

(going from 8- to 4-word multiplications/squarings), using

two squarings and one multiplication of 4-word operands.

According to our experiments, the squaring computation of

up to 4-word operands has a better performance when using

a pure schoolbook approach. In the case of operands with

a word-length n ≥ 6, the best strategy was to combine the

Karatsuba and schoolbookmethods. A summary of the results

obtained are reported in Table 3.

4) MONTGOMERY MODULAR REDUCTION

The Montgomery modular reduction of Equation (1),

requires to compute two n-word multiplications, which are

divided or reduced modulo R = rn. A straightforward opti-

mization can be applied observing that for the multiplication

µ ·d mod R, only the least significant half of the result must

be computed. Likewise, in the case of the (µ · d mod R) · p

computation, only the most significant half of the product is

required (due to the subsequent division by R).

For the cases when n ≤ 8, these operationswere performed

using the schoolbookmultiplicationmethod. Thus, an n-word

multiplication divided by R is computed using n(n+1)/2+n

word multiplications; and an n-word multiplication modulo

R is computed using n(n+ 1)/2 word multiplications. On the

other hand, for the cases when n > 8 we employed up to

two levels of the Karatsuba method. At each level was nec-

essary to compute one n/2-word multiplication and two half

n/2-word multiplications as depicted in Figure 1.

Table 4 reports the timings measured for the Mont-

gomery modular reduction, modular multiplication and

squaring operations. The operands have a word length

of n ∈ {8, 16, 24}.

5) MONTGOMERY-BASED RSA SIGNATURE

The RSA signature described in the introduction section, was

performed using the exponentiation procedure presented in

Algorithm 2, which was implemented with an underlying

Montgomery-based arithmetic layer. Furthermore, the two

RSA signature exponentiations were computed concurrently

using two cores and the OpenMP library for synchronization.
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FIGURE 1. Let a and b be two n-word integers written as
a = a0 + a1 · rn/2 and b = b0 + b1 · rn/2, respectively. Figure (a) shows a
Karatsuba n-word multiplication modulo R, whereas Figure (b) shows a
Karatsuba n-word multiplication divided by R. The dashed rectangles
show the operations that are not computed.

TABLE 4. Timings for modular reduction, modular multiplication and
modular squaring. All timings are reported in clock cycles measured on
Haswell (HW) and Skylake (SK) micro-architectures.

The 8-word modular exponentiations for RSA-1024 were

performed using a window size ω = 4. In the case of

the 16- and 24-word modular exponentiations (required for

computing RSA-2048 and RSA-3072), a window size ω = 5

was chosen.

In Table 5, the latency achieved by our library when

computing RSA signatures for 1024- , 2048-, and 3072-bit

private keys is reported. Table 5 presents a comparison of

our results against previously reported RSA implementations.

Bos et al. et al. in [11] computed a Montgomery multiplica-

tion by splitting the Montgomery algorithm into two parts,

which can be executed in parallel using Single Input Multiple

Data (SIMD) instructions. Moreover, the authors of [11]

presented RSA signature timings corresponding to a serial

implementation. Table 5 also shows the work by Gueron and

Krasnov [12], where the authors reported an RSA implemen-

tation that profited from a redundant integer representation

that avoids the carry propagation by using operands organized

TABLE 5. Performance comparison of the RSA signature implemented on
CPU platforms using Montgomery based arithmetic. All timings are given
in millions of clock cycles.

on 29-bit words. To the best of our knowledge, none of these

two works included countermeasures to protect their RSA

implementations against some basic side-channel attacks.

B. CPU IMPLEMENTATION OF RNS-BASED ARITHMETIC

In this section, our implementation of RNS-based arithmetic

using the set of Advanced Vector Extensions 2 AVX2 is pre-

sented. A performance comparison between the RNS reduc-

tion procedures given in Algorithm 3 and Algorithm 4 is also

reported.

1) VECTOR INSTRUCTIONS

In order to perform an efficient implementation of the RNS

based arithmetic as described in Section §II-C, we took

advantage of the AVX2 instruction set introduced in the Intel

Haswell micro-architecture [31]. AVX2 is an extension from

its ancestor AVX, which allows to compute Single Instruc-

tion Multiple Data (SIMD) operations using 256-bit vector

registers. AVX2 provides operations supporting integer arith-

metic that are able to compute up to four concurrent 64-bit

operations over the values stored in the vector registers. In

terms of performance, one would expect a speedup factor of

four coming from the simultaneous execution of 64-bit oper-

ations. Nevertheless, this acceleration can be attained only

by some instructions. This is due to some overhead factors

like the execution latency and throughput, and the number

of execution units available in the target micro-architecture.

In fact, the size of the AVX2 multiplier is expected to be a

limiting factor. We mainly made use of the following AVX2

instructions,

• mm256_mul_epu32: Computes four products of 32×

32 bits, storing the four 64-bit results on a 256-bit vector

register;

• mm256_add_epi32, mm256_sub_epi32: Com-

putes eight concurrent 32-bit additions/subtractions,

without handling the input/output carry and borrow,

respectively;

• mm256_slli_epi32,mm256_srli_epi32: Com-

putes eight 32-bit logical shifts using the same fixed shift

displacement for everyword stored in the vector register;

• mm256_shuffle_epi32: Shuffles 32-bit values of

the source vector in the destination vector at the loca-

tions selected by a control operand;
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• mm256_xor_si256, mm256_and_si256: Com-

putes the XOR/AND of two 256-bit vector registers;

• mm256_cmpgt_epi32: Returns a vector with the val-

ues 232− 1 and zero depending if the comparison of the

32-bit integers in the vector register is true or not.

Since the AVX2multiplier works on 32-bit input operands,

a word size w = 32 must be assumed. This implies that the

operations required for RSA signatures with 1024-, 2048- and

3072-bit keys must be computed using integers with a word-

length n ∈ {16, 32, 48}.

RNS addition, subtraction, and multiplication of two inte-

gers a and b are performed component-wise as shown in

Equation (3) of Section §II-C. Considering our target micro-

architectures, one can compute up to eight operations modulo

mi simultaneously. Therefore, all the computations described

below must be performed by each vector storing the moduli

of the the RNS-basis B, i.e. a total of
⌈

n
8

⌉

vectors.

The implementation of the RNS arithmetic main opera-

tions taking advantage of the AVX2 instructions is presented

in the remaining of this section.

2) VECTORIAL RNS ADDITION/SUBTRACTION

Addition and subtraction can be straightforwardly imple-

mented using the vector operations included in the AVX2

instruction set. Initially, the integer addition or sub-

traction are computed with the mm256_add_epi32 or

mm256_sub_epi32 instructions. The result of these oper-

ations is stored in a vectorC . As shown in Figure 2, themodu-

lar reduction by each modulimi belonging to the RNS base B

(cf. Section §II-C) can be computed in constant time as

discussed next.

By means of the mm256_cmpgt_epi32 instruction, one

can catch the carry or borrow produced by the integer addi-

tion or subtraction operations, which is stored in a vector CB.

Thereafter, the instruction mm256_and_si256 is used to

FIGURE 2. RNS addition/subtraction using AVX2 instructions.

compute the logic AND of CB and the vector M of moduli

mi, whose result is stored in a vector D. Then, the vector D

is subtracted or added to the value obtained from the above

addition or subtraction, respectively. The RNS computation

of C = A⊕ B and C = A⊖ B is depicted in Figure 2.

3) VECTORIAL RNS MULTIPLICATION

Multiplication and squaring in RNS are a bit more involved

operations than the addition and subtraction ones. This is

because, the AVX2 instruction mm256_mul_epu32 only

computes four 32 × 32-bit multiplications. Hence, in order

to compute a component-wise integer multiplication of two

RNS vectors A and B, we use the mm256_mul_epu32

instruction. This instruction calculates the products of odd

indexes and store them into a vector D0. Then, the shuf-

fle instruction mm256_shuffle_epi32 can be used to

reorder the 32-bit values of the A and B vector registers. This

permits to compute the products of the even indexes, which

are stored in the vector D1 as shown in Figure 3.

FIGURE 3. Component-wise integer multiplication of two integers a and b

in RNS representation.

RNS INDIVIDUAL MODULAR REDUCTION

Modular reduction by each moduli mi = 2w − µi in B is

computed as described in Remark 2 of Section §II-C. Let

D0 and D1 be two output vectors of the computation shown

in Figure 3, and letM be a vector composed by the µi small

values described in Remark 2.

First, the mm256_shuffle_epi32 instruction is

executed to reorder the 32-bit values in the D0, D1 and

M vectors. Thereafter, the instruction mm256_mul_epu32

recovers the values µi · ⌊ti/2
w⌋ with ti = ai · bi, which

were stored in the vectors E0 and E1, respectively. Then,

the execution of the mm256_srli_epi32 instruction on

E0 and E1 using an offset of 32 produces the vectors F0 and

F1, which are added using mm256_add_epi64 to D0 and

D1.This obtains the values di = ti mod 2w+µi·⌊ti/2
w⌋. After

two iterations of the above procedure, the di values stored

in D0 and D1 correspond to ti mod mi. Thus, it becomes

necessary to combine the final vectors D0 and D1 to get the

vector D that stores the values of A ⊗ B. This procedure is

depicted in Figure 4.

4) VECTORIAL RNS MODULAR REDUCTION

Modular reduction was performed using Algorithm 3 as was

presented by Jeljeli in [21], and Algorithm 4 as was described

by Kawamura in [24]. For both of these two reduction algo-

rithms it becomes necessary to find the approximation α̂ as

given in Equation (7), which was computed as described in

Section §II-C, Remark 3.
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FIGURE 4. RNS multiplication/squaring using AVX2 instructions.

TABLE 6. Comparison of timings for modular reduction, modular
multiplication and modular squaring based on the RNS reduction
Algorithm 3 and Algorithm 4 using the AVX2 instructions. All timings are
reported in clock cycles measured on Haswell (HW) and Skylake (SK)
micro-architectures.

When working with the RNS reduction Algorithm 3,

one computes α̂ for each vector storing Ŵ = (γ1, . . . ,

γℓ). This calculation is performed by invoking the

mm256_srli_epi32 instruction with offsets 5 for

RSA-1024, and 25 for RSA-2048 and RSA-3072. For the

reduction Algorithm 4, offsets of 18 for RSA-1024 and

RSA-2048, and 16 for RSA-3072 were employed.

Thereafter, the mm256_slli_epi32 instruction is

applied to each vector using offsets that guarantee constrain-

ing the subsequent additions in the interval [0, 232 − 1].

For example when the reduction Algorithm 3 is used,

the offsets are 19 for RSA-1024, and 17 for RSA-2048

and RSA-3072. In the case of the reduction Algorithm 4,

the offsets are 14, 10 and 8 for RSA-1024, RSA-2048 and

RSA-3072, respectively. As a final step, all vectors are added

using mm256_add_epi32 instructions, and the values of

the resulting output vector are also added in order to obtain a

32-bit value, which is shifted to the right by an offset of 24.

The matrix-vector multiplications needed in both

algorithms can be performed using ℓ RNS multiplications

followed by ℓ− 1 RNS additions, as shown in Section §II-C.

The matrix multiplication in Step 9 of Algorithm 3 can be

done straightforwardly. However, the matrix multiplications

in Steps 10 and 17 of Algorithm 4 require to transpose the

matrices |Mi|m′j
and

∣

∣M ′i

∣

∣

mj
.

TABLE 7. Timings for RSA signature algorithm using AVX2 instructions. All
timings are reported in millions of clock cycles measured on Haswell
(HW) and Skylake (SK) micro-architectures.

The experimental results obtained for both reduction algo-

rithms are presented in Table 6. One can observe that the RNS

Montgomery reduction of Algorithm 4 is twice as fast as the

RNS reduction Algorithm 3. This is mainly due to the fact

that for the RNS Montgomery reduction the basis used to

represent the numbers are of size ℓ = n, whereas the base

used in Algorithm 3 has a size of ℓ = 2n + 3. Moreover, all

the operations in Algorithm 4 require to process vectors with

a size of roughly half of the ones required in Algorithm 3.

5) RNS-BASED RSA SIGNATURE

As in §III-A, we concurrently computed two RSA modu-

lar exponentiations using two cores running the protected

exponentiationmethod described in Algorithm 2. Once again,

the synchronization of these two tasks was achieved trough

the usage of the OpenMP library. Modular exponentiations

for RSA-1024 were performed using a window size ω = 4,

whereas ω = 5 was adopted for modular exponentiations

corresponding to both RSA-2048 and RSA-3072.

Table 7 presents the latency achieved by our library for the

RSA-1024, RSA-2048, and RSA-3072 signature computa-

tions. One can observe that the RSA signature based on RNS

Montgomery arithmetic (Algorithm 4) is two times faster than

the RSA signature based on the RNS reduction Algorithm 3.

It is worth noting that the best results of Table 7 are slower

by a factor of 3.1x and 3.8x than the best results reported

in Table 5 for RSA-2048 and RSA-3072. On the other hand,

the best result for RSA-1024 signature in Table 7 is 2.5 times

faster than the one reported in Table 5.

IV. EFFICIENT IMPLEMENTATION OF RSA ON GPU

PLATFORMS

In this section, the implementation of the RSA exponentiation

on a GPU architecture is described. The material presented

here is partially based on a previous work presented in [32].

A. PARALLEL COMPUTATIONS ON GPU ARCHITECTURES

Graphics Processing Units (GPU) are optimized hardware

blocks originally designed for performing graphics opera-

tions [33]. Nowadays, GPU platforms are widely considered

general purpose processors. In 2006, NVIDIA introduced a

parallel computing framework namedCUDA, whichwas espe-

cially designed for GPU environments. CUDA defines three

important features: a threading model, a set of conventions

for calling nativeGPU’s functions, and a hierarchicalmemory

infrastructure. In a GPU architecture the basic computational

and resource allocation units are threads. Threads can be
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grouped into blocks, which in turn can be grouped into a

grid. Threads in a block are partitioned into warps. For all

GPU architectures a warp is composed by 32 threads that run

concurrently.

A GPU architecture utilizes the Single Instruction Mul-

tiple Thread (SIMT) programming model paradigm, where

all threads inside a warp can execute the same instruction

at the same time. The general programming model consists

of code sequences called kernels. A kernel execution can

be synchronous or asynchronous. This allows programmers

to manage concurrent execution through the completion of

command sequences called streams.

GPU architectures support several types of memory mod-

els such as, global memory, constant memory, shared mem-

ory, among others. The shared memory is a small cache

memory with low-latency attached to each Streaming Mul-

tiprocessor (SM). Shared memory can be accessed by all the

threads in a block. During kernel invocation, a programmer

can configure the amount of shared memory available per

block.4 For example, in a Kepler architecture a valid config-

uration can allocate 48 KB and 16KB for the software and

the hardware data cache, respectively. Moreover, the PTX

(Parallel Thread eXecution) is a low-level parallel thread

execution virtual machine that provides a stable programming

model and an instruction set for general purpose parallel pro-

gramming [34]. It is often used to gain control over arithmetic

operations trying to avoid thread divergence during a program

execution.5

In this work wemade extensive use of the following assem-

bly instructions,

• addc: Adds two 32/64-bits values taking into account

the carry-in bit, producing a carry-out bit;

• subc: Performs a 32/64-bits subtraction operation with

input borrow and producing a borrow-out bit;

• mul.lo: Multiplies two 32/64-bits values and returns

xi × yi mod 2r , where xi and yi are both non-negative

integers, and r is typically selected to be the GPU word

size;

• mul.hi : Multiplies two 32/64-bits values and returns

xi×yi/2
r , where xi and yi are both non-negative integers;

• mad.(hi,lo).cc: Multiplies two 32/64 -bits values,

extracts the higher or lower half of the result, and adds a

third 32/64-bit value with carry-out.

Especially because of its ability to handle an implicit

carry/borrow operation, the aforementioned instructions

helped our implementation to achieve a better performance.

Also, we extensively used the data type uint2, which is a two-

element vector that stores two halves of a 64-bit integer, as the

most and least significant halves. This data structure permits

an efficient access to data stored in registers and the shared

memory.

4Common GPU architectures are Fermi, Kepler, Haswell, Pascal, and
Volta. Each architecture has different sizes for shared memory.

5A thread divergence occurs when several threads do not execute the same
instruction at the same time. This prevents to fully exploit parallelism.

FIGURE 5. Computation of RNS modular multiplication on a GPU
platform.

B. MAIN OPERATIONS IN RNS REPRESENTATION

In the following, we describe how the RSA exponentiation

was carried out in the GPU platform. As a pre-computation

step, in the CPU server the set of pair-wised co-prime num-

bers composing the RNS-basis B was chosen. Then, all the

RSA operands and moduli were converted to their RNS rep-

resentation and these values were sent to the GPU platform.

After that, the exponentiation computation in the GPU plat-

form was considered ready to start.

RNS INTEGER MULTIPLICATION

Integer multiplication can be performed in parallel by launch-

ing ℓ blocks with ℓ threads, which compute concurrently up

to ℓ independent RNS multiplications of the form C = A⊗

B, where A and B are in RNS representation in base

B = m1, · · · ,mℓ (or in base B = m1, · · · ,mℓ and

B′ = m′1, · · · ,m
′
ℓ if the RNS reduction Algorithm 4 is

used). This arrangement is depicted in Figure 5(a), where it is

shown that each thread is in charge of processing the modular

product of a pair of RNS coordinates |ai · bi|mi (or |ai · bi|mi
and |ai · bi|m′i

). Since each warp executes the same instruc-

tion, this arrangement avoids thread’s divergence. Moreover,

the multiplications carried out concurrently do not need to be

synchronized. Also, the threads can efficiently access each

coordinate of the RNS vectors as these values are allocated on

contiguous segments of memory. Each thread stores the out-

put of its modular multiplication computation on a register,

thus avoiding global memory accesses that would be much

more costlier.

After all threads have completed the integer multiplica-

tion step, a modular reduction by the modulus p must be

applied either using the reduction Algorithm 3 or the RNS

Montgomery reduction algorithm 4. For the sake of brevity,

9938 VOLUME 8, 2020



E. Ochoa-Jiménez et al.: Implementation of RSA Signatures on GPU and CPU Architectures

TABLE 8. Performance comparison of RSA private operation
implemented in GPU platforms. Al timings are given in milliseconds.

we only explain in the following our GPU implementation of

the RNS reduction Algorithm 3. The corresponding imple-

mentation of the RNS Montgomery reduction algorithm 4

follows a similar design flow.

C. RNS MODULAR REDUCTION USING ALGORITHM 3

Modular reduction carried out by Algorithm 3 is illustrated

in Figures 5 (b), (c), (d), and (e). The reduction process

requires the pre-computation of several values (Steps 1-3),

which are processed in the hosting CPU and sent to the GPU

before the main computation starts. The RNS vector |M−1i |mi
and the RNS table |Mi|p in Steps 1-2 are both stored in the

shared memory so that it can be available for all the threads.

The third precomputed value is the table containing the RNS

vectors |α ·M |p, for α = 1, . . . , ℓ−1. This table is mapped to

the texture memory because only few threads have to query it.

The multiplication operations required in Step 5 are com-

puted in a redundant fashion as previously described and

illustrated in Fig. 5b. Then in Step 9, the most expensive

task of the reduction algorithm is performed, requiring the

computation of ℓ and ℓ−1RNSmultiplications and additions,

respectively. This calculation is performed in parallel by

launching ℓ blocks with ℓ threads each (illustrated in Fig. 5c).

If there are more than 32 active threads, then an explicit

barrier must be placed in order to synchronize all threads

of each block, and one must wait until all the threads have

completed their execution. Once that all the partial results

have been obtained by each block, each thread stores its

result in the shared memory. Next, all the partial results so

obtained must be added, This can be done by using a binary

addition tree strategy [35]. Step 10 of Algorithm 3 calculates

ℓ copies of α using ℓ blocks as shown in Figure 5(d). The

ℓ − 1 additions are computed collaboratively as previously

mentioned. Finally, in Step 11 of Algorithm 3, a single thread

of each one of the ℓ blocks, performs an RNS coordinate

subtraction saving the final result of the modular reduction

into the global memory (see Figure 5e). This avoids that

the threads compete to each other for writing into the same

memory address.

D. GPU RESULTS

The experimental hardware setup used for the experimental

results reported in this section is the following: CUDA toolkit

version 9.1, 20 MultiProcessor with 128 cores each running

at 1.81 GHz, and global memory of 8 GB.

In Table 8, the latency achieved by our GPU library

for the RSA private operation is reported for key lengths

of 1024, 2048 and 3072 bits, respectively. Table 8 also shows

a comparison against related works previously published

for the parallel RSA implementation on GPU platforms.

It can be seen that our implementation has better latency for

RSA-1024, RSA-2048 and RSA-3072 than previously pub-

lished results. Besides, our implementation offers a first-line

of protection against timing attacks.

V. CONCLUSION

In this paper an optimized parallel implementation of RSA

signatures using some of the most efficient and effective

arithmetic algorithms for both CPU and GPU high-end archi-

tectures was presented. As it was shown in Tables 5 and 8,

our RSA CPU and GPU libraries instantiated with the most

popular private key lengths of 1024, 2048 and 3072 bits,

achieve faster timings than previously reported literature.

From an algorithmic point of view, it is also interesting

to compare the performance achieved by the RNS reduction

procedures described in Algorithms 3-4 when implemented

in CPU and GPU architectures. In the case of our RSA CPU

implementation, a close inspection of Table 7 reveals that

due to the higher number of about 4n2 word multiplications

required by Algorithm 3 compared with about 2n2 word

multiplications required by Algorithm 4, the latter reduction

algorithm is faster than the former by a factor close to two.

Strikingly, from our RSA GPU implementation we observed

the opposite situation. Indeed, due to the fact that Algorithm 3

is more amenable for the massive parallelism provided by the

GPU many-core architecture, it yields a better performance

than Algorithm 4. This computational behavior is reported

in Table 8.

In spite of its massive parallelism, we observe that GPU

implementations of RSA are considerably slower than their

CPU counterparts. Nevertheless, notice that our RSA GPU

implementation enjoys a sub-quadratic complexity in the cost

of the RSA exponentiation with respect to the size of its key.

For example, from our GPU timings shown in Table 8,

one can see that the computational timing cost of

RSA-2048 and RSA-3072 is just 2.42 and 4.23 more expen-

sive than RSA-1024, respectively. On the contrary, from our

CPU timings shown in Table 5, one can see that the cost of

RSA-2048 and RSA-3072 is 6.60 and 20.08 more expen-

sive than RSA-1024, respectively. These timings increments

closely follow a quadratic complexity. Hence, we believe

that for cryptographic applications where extremely large

operands are required (such as the ones proposed in sev-

eral homomorphic encryption schemes), our RNS arithmetic

library could be of interest. We leave as a future work to study

this potential application.
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