
Implementation of Smart Contracts Using Hybrid
Architectures with On and Off–Blockchain

Components
Carlos Molina-Jimenez

Computer Laboratory
University of Cambridge, UK
carlos.molina@cl.cam.ac.uk

Ioannis Sfyrakis
School of Computing

Newcastle University, UK
ioannis.sfyrakis@ncl.ac.uk

Ellis Solaiman
School of Computing

Newcastle University, UK
ellis.solaiman@ncl.ac.uk

Irene Ng
Hat Community Foundation

Cambridge, UK
irene.ng@hatcommunity.org

Meng Weng Wong
CodeX, Stanford University

mengwong@stanford.edu
Legalese.com

mengwong@legalese.com

Alexis Chun
Visiting Fellow,

Singapore Management University
Legalese.com

alexis@legalese.com

Jon Crowcroft
Computer Laboratory

University of Cambridge, UK
jon.crowcroft@cl.cam.ac.uk

Abstract—Decentralised (on-blockchain) and centralised (off–

blockchain) platforms are available for the implementation of

smart contracts. However, none of the two alternatives can

individually provide the services and quality of services (QoS)

imposed on smart contracts involved in a large class of ap-

plications. The reason is that blockchain platforms suffer from

scalability, performance, transaction costs and other limitations.

Likewise, off–blockchain platforms are afflicted by drawbacks

emerging from their dependence on single trusted third parties.

We argue that in several applications, hybrid platforms composed

from the integration of on and off–blockchain platforms are

more adequate. Developers that informatively choose between

the three alternatives are likely to implement smart contracts

that deliver the expected QoS. Hybrid architectures are largely

unexplored. To help cover the gap and as a proof of concept, in

this paper we discuss the implementation of smart contracts on

hybrid architectures. We show how a smart contract can be split

and executed partially on an off–blockchain contract compliance

checker and partially on the rinkeby ethereum network. To test

the solution, we expose it to sequences of contractual operations

generated mechanically by a contract validator tool.

I. INTRODUCTION

This paper focuses on scenarios involving two or more
commercial parties (as opposed to consumer or governmental
entities) interacting digitally with each other. The parties are
in a relationship regulated by some computer-readable and
computer-executable formal specification that stipulates the
operational aspects of the parties’ business with each other. If
the specification was written in natural language and signed by
the parties, it would be considered a legal contract enforceable
by a court. But since the specification is written in a formal
language and executed digitally by the parties, it is realised
primarily by technological means which obviate the need for
conventional offline enforcement. As a running example, this
paper uses a simple contract example based on selling of

personal data. The example is translated from natural to formal
language and executed as a smart contract.

A smart contract is an executable program (written in some
programming language like, Java, C++, Solidity, Go, etc.) that
is deployed to mediate contractual interactions between two
or more parties. Its task is to detect (and if possible prevent)
deviations from the agreed upon behaviour. To perform its
task, the smart contract i) intercepts each business event
generated by the parties, ii) analyses it to determine if it
is contract compliant or not, iii) produces a verdict, and iv)
records the outcome in an indelible log that is available for
verification, for example, to sort out disputes. Notice that in
some applications, the declaration of the verdict is directly
and intricately associated to an action (e.g., collect payment)
that is executed when the verdict is positive. In this paper we
separate the two acts and focus on the verdict—the essence of
smart contracts. We regard the action as an arbitrary reaction
that can be immediately or eventually executed by the smart
contract or by a different component.

We regard a smart contract as a piece of middleware
expected to deliver a service with some QoS. Examples of QoS
are: trust (who can be trusted with the deployment of the smart
contract), transparency (can the contracting and third parties
verify the verdicts), throughput (the number of operation that
the smart contract can verify per second), response time (the
time it takes to output a verdict), transaction fees (the monetary
cost that the parties pay to the smart contract for processing
each operation). Different applications (for example, a buyer–
seller contract, property renting contract, etc.) will demand
different QoS. The question that raises here is what architec-
ture and technology to use to implement smart contracts that
satisfy QoS requirements. Notice that in this paper we use the
terms smart contracts and contract as synonymous.

Centralised (off–blockchain) and decentralised (on-
blockchain) platforms are available for the implementation of
smart contracts. However, we argue that some applications
demand some QoS that can hardly be satisfied by none of the
two alternatives individually.

Leading blockchain platforms Bitcoin [1], [2] and
ethereum [3] are known to exhibit serious QoS limitations. For
example, Bitcoin can only process 7 transaction per second—
a poor throughput compared to visa’s 2000 transaction per
second [4]. Take another example, it takes Bitcoin about
10 min to publish a transaction in its block. off–blockchain
platforms for smart contract implementation became available
long before the Satoshi’s seminal paper that launched Bitcoin
[5]. Notable examples are [6]–[9]. However, their inherent
centralisation prevents them from meeting the QoS requirentes
demanded by some applications. For example, they cannot be
used when the contracting parties are reluctant to place trust
on trusted third parties (TTP).

The central argument of this paper is that in several ap-
plications, hybrid platforms composed from the integration
of off and on–blockchain platforms are more adequate [10].
Unfortunately, the use of hybrid architectures in smart contract
implementations is largely unexplored. This papers aims at
helping covering the research gap.

The main contribution is the implementation of a smart
contract on a hybrid architecture. At this stage we aim at
proving the concept rather than at evaluating performance.
We show how a smart contract can be split and executed
partially on an off–blockchain contract compliance checker
and partially on the rinkeby ethereum network. To test the
solution, we expose it to sequences of contractual operations
generated mechanically by a contract validator tool.

We continue the discussion as follows: In Section II we
discuss a motivating example of a contract that we use as
running example in this paper. We explore different approaches
to smart contract implementation in Section III. The im-
plementation of the the hybrid architecture is discussed in
Section IV. In Section V raise some research questions that
need attention. In Section VI we discuss work related to ours.
In Section VII, we present some concluding remarks.

II. MOTIVATING SCENARIO

Let us take the example of an individual (e.g., Alice)
interested in selling personal data that she has aggregated from
different sources (domestic sensors, social networks, shopping,
etc.) and stored in a repository, as envisioned in the HAT
project [11]. Let us imagine that a data buyer (e.g., Bob) has
agreed with Alice on buying the data under a contract that
includes the following clauses. In the contracts Bob and Alice
play the roles of the buyer and store, respectively.

1) The buyer has the right to place a buy request with the

store to buy an item.

2) The store has the obligation to respond with either

confirmation or rejection within 3 days of receiving the

request.

buyer

store

BuyReq

buyer

store

Conf

buyer

store

Rej
buyer

store

Canc

buyer

store

Pay

buyer

store

GetVou

TO TO TO
O R O start end

Fig. 1. A contract between a buyer and store for trading personal data.

a) No response from the store within 3 days will be

treated as a rejection.

3) The buyer has the obligation to either pay or cancel the

request within 7 days of receiving a confirmation.

a) No response from the buyer within 7 days will be

treated as a cancellation.

4) The buyer has the right to get a voucher from the store,

withing 5 days of submitting payment.

The clauses include contractual operations (for example,
buy request, reject and confirmation) that the parties have
the right or obligation to execute under strict time constrains.
Though the clauses are relatively simple, they are realistic
enough to illustrate our arguments.

III. IMPLEMENTATIONS ALTERNATIVES

The contract written in English can be converted into a
formal notation such as the graphical view shown in Fig. 1,
and from there into smart contract code.

The operations written originally in English have been
mapped to messages sent by a party to its counterpart. For
example, the BuyReq message sent by the buyer to the store
corresponds to the execution of the operation buy request

by the buyer. The diamonds represent exclusive splits in the
execution and have been labeled with O (Obligation) and R

(Right). TO stands for Time Out and represents contractual
deadlines. Failure to execute and obligatory operations results
in abnormal contract end (represented by dashed lines) with
disputes to be sorted off line.

Fig. 1 can be regarded as a FSM modelled and implemented
in a Turing complete language. There are several architectures
and technologies that can be used [10]:

• Centralised: The smart contract is deployed on a TTP.
Since there is no blockchain involved, this approach is
also known as off–blockchain.

• Descentralised: The smart contract is deployed on a
blockchain platform, for example on ethereum. This
approach is also known as on–blockchain.

• Hybrid: The contract is split and deployed partially off
and on–blockchain, i.e., some clauses are enforced off–
blockchain whereas others are enforced on–blockchain.

IV. IMPLEMENTATION OF A HYBRID ARCHITECTURE

Motivated by the arguments presented in [10] about the
potential of hybrid architectures in meeting certain QoS, we

2

blockchain with n nodes

data repo

rp

SCd

SCd SCd

gateway

D1 D2

D3

TT
P

 n
od

e

SCc

op

rp

cc-op

cc | ncc eval op

cc | ncc eval op

Legend:
SC- smart contract.
op- contractual
 operation.
rp- response.
cc- contract compliant
ncc- non-contract
 compliant.

buyer store
client node

CCC

Fig. 2. A hybrid architecture for smart contracts: conceptual view.

have decided to implement one and use it to run the contract
example. The buyer and store represent the buyer and store of
the contract example. D1, D2 and D3 are pieces of personal
data that the store is selling to the buyer.

Let us assume from here on that the buyer and store of the
contract example, have agreed on using a hybrid architecture
where the operation Pay is to be enforced by the on–
blockchain component of the smart contract and the rest by
the off–blockchain component.

The interaction between the on and off–blockchain compo-
nents can can be based on several models such as peer–to–
peer and master–slave [12]. In pursuit of simplicity, in this
paper we follow a master–slave interaction model where the
off-blockchain smart contract is the master.

A conceptual view of the hybrid architecture shown in
Fig. 2. It can be implemented on the basis of several alternative
technologies. In this work, we use the ethereum blockchain [3]
to deploy the decentralised smart contract (SCd) component
and the Contract Compliance Cheker (CCC) developed by
University of Newcastle [13] to deploy the centralised smart
contract (SCc) component.

A. Contract compliant checker

We use the contract compliance checker [9], [13] because
it offers several features that can ease integration with a
blockchain platform. The CCC is an open source tool designed
for the enforcing of smart contracts. It is a Java application
composed of several files, RESTful interfaces, and a database.
At its core lies a FSM that grants and removes rights,
obligations and prohibitions to the contracting parties as
the execution of the contract progresses. To enforce a smart
contract with the CCC, the developer (i) writes the contract
in the Drools language and stores it in a .drl file (for example
dataseller.drl), (ii) loads (copies) the drl file into the configura-

tion/drools/upload folder, and (iii) deploys and instantiates the
CCC as a web server (for example on a TTP node) that waits

for the arrival of events representing the contractual operation.
An event is a notification about the execution of a contractual
operation by a contractual partner. For example when the buyer
of Fig 1, executes the operation BuyReq the event BuyReq is
generated by the buyer’s application and sent to the CCC for
evaluation.

Drools is a declarative Turing complete language designed
for writing business rules [14]. The contract loaded to the
CCC is capable of evaluating contractual operations issued by
business partners as RESTful requests against its rules. Rules
respond with RESTful responses that can be the outcome of an
evaluation of an operation (contract compliant or non contract

compliant) or an arbitrary message such as a request to execute
an operation on a blockchain.

B. Client node

The client node is an ordinary node and not necessarily the
same as the TTP shown in the figure. It is responsible for
hosting the gateway. Contractual operations (op) are initiated
by the business partners, such as BuyReq, and Pay. The SCc

contract determines if a given operation is contract compliant
(cc) or non contract compliant (ncc). The SCc is in control of
the gateway that grants access to the store’s data. For example,
when the buyer wishes to access the stores’s data, the buyer
i) issues the corresponding operation against the gateway, ii)
the gateway forwards the operation to the SCc, iii) the SCc

evaluates the operation in accordance with its business rules
that encode the contractual clauses and responds with either
cc or ncc to open or close the gateway, respectively, iv) the
opening of the gateway allows the buyer’s operation to reach
the data repository and retrieve the response (rp) that travels
to the buyer. Notice that, to keep the figure simple, the arrows
show only the direction followed by operations initiated by
the buyer. Operations initiated by the store follow a similar
procedure but right to left.

C. Ethereum

We have chosen the ethereum platform [3] for implementing
the decentralised contract enforcer for the following reasons:
It is currently one of the most mature blockchains. It supports
Solidity—a Turing–complete language that designers can use
for encoding stateful smart contracts of arbitrary complexity.
For complex contracts, ethereum is more convenient than
Bitcoin which supports only an opcode stack-based script
language. In addition, ethereum offers developers on line
compilers of Solidity code [15]. Equally importantly, ethereum
provides, in addition to the main ethereum network (Main-
net), four experimental networks (Ropsten, Kovan, Sokol and
Rinkeby) that developers can use for experimenting with their
ideas using ethereum tokens instead of real ether money [16],
[17]. We run our experiments in Rinkeby as it is the most
stable. To pay for transactions we used ether tokens requested
from faucet [18].

D. Execution sequences for testing the hybrid architecture

A particularity of smart contracts deployed on–blockchain
is that because of their descentralisation and openess, they

3

are hard to amend after deployment. Therefore, we suggest
that smart contracts are thoroughly validated (for example,
using conventional model checking tools) to uncover potential
logical inconsistencies of their clauses (omissions, contradic-
tions, duplications, etc.). In addition, we suggest that the actual
implementation is systematically tested before deployment.

In hybrid architectures the risk of implementing buggy is ex-
acerbated by the interaction between the on and off–blockchain
components. For instance, besides its simplicity, the master–
slave interaction model that we use in the architecture already
exhibits intricate behaviour that demands systematic scrutiny
to uncover potential inconsistencies. To face the challenge, in
this paper we use contraval—a contract validator that we have
developed specifically for model checking and testing con-
tracts [19], [20]. It is based on the standard Promela language
and the Spin model checker. It supports the epromela (an
extension of Promela) that provides constructs for intuitively
expressing and manipulating contractual concepts such rights,
obligations and role players.

We use contraval for model checking the contract example
and, more importantly, for generating the execution sequences
that we use for testing the hybrid architecture of Fig. 4. We
define an execution sequence (or sequences for brevity) as a
set of one or more contractual operations that the contractual
parties need to execute to progress the smart contract from the
start to the end.

To generate the sequences we proceeded as follows:
1) We converted the clauses of the contract example into a

formal model written in epromela. We arbitrarily called
it dataseller.pml.

2) We model checked the contractual model with Spin to
verify conventional correctness requirements (deadlocks,
missing messages, etc.) and typical contractual issues
(clause duplications, omissions, etc.).

3) We exposed the model checked model augmented with
a LTL formula to Spin and instructed Spin to produce
counter examples containing the sequences of interest.

4) We run a Python parser (called parser-filtering.py that
we have implemented, over the Spin counter examples
to extract the execution sequences.

A close look at Fig. 1 will reveal that it encodes six
alternative paths (sequences) from start to end.
// Execution sequences encoded in Fig 1.

// RejConfTo=Rej or Conf timeout,

// PayCancTo=Pay or Canc timeout

seq1: {BuyReq, Rej}

seq2: {BuyReq, Conf, Canc}

seq3: {BuyReq, Conf, Pay}

seq4: {BuyReq, RejConfTo}

seq5: {BuyReq, Conf, PayCancTo}

seq6: {BuyReq, Conf, Pay, GetVou}

Seq1, Seq2 and Seq3 result in normal contract completion.
However, Seq4 and Seq5 result in abnormal contract com-
pletion. In Seq4 the store fails to meet it obligation (execute
either Rej or Conf) before the 3 day deadline. Similarly, in
Seq5, the buyer fails to execute either Pay or Canc before
the 7 day deadline. Observe that although the buyer’s has
a deadline of 5 days to claim a voucher, failure to execute

Fig. 3. Transaction that deployed the collectPayment.sol contract.

GetVou does not result in abnormal contract completion
because GetVou is a right, rather than an obligation. Seq6
is particularly problematic. It will be analised separately in
Section IV-F.

To ease sequence manipulation, we have programmed the
Python parser to store the sequences in a folder with N
subfolders where each of them represents an sequence. Each
subfolder contains M files (one for each event). For instance
subfolder dataseller.pml.ExecSeq1 is related to Seq1 and con-
tains two files: event1.xml and event2.xml which store
messages, BuyReq and Rej, respectively.

E. Smart contracts code and deployment

Fig. 4 shows the technology that we have used in the
implementation of the architecture. We have split the contract
example into two parts: dataseller.drl and collectPay.sol.

dataseller.drl: corresponds to the SCc and is encoded in
drools. We deployed it on a Mac computer (regarded as a
TTP) as a web server as explained in Section IV-A. On the
Mac we also deployed the ethereum client shown in the figure.

collectPayment.sol corresponds to the SCd and is encoded
in Solidity. There are several alternatives such as the web3j
library to deploy the collectPayment.sol contract. For
simplicity, we opted for metamask [21]: a plugin that allows
developers to perform operations against Ethereum applica-
tions (including contract deployment) from their browsers,
without deploying a full geth Ethereum node. We deployed
metamask on Firefox and, before instantiating the CCC,
we executed the transaction shown in Fig. 3 to deploy the
collectPayment.sol contract on the Rinkeby test net-
work [22].

The following code contains two rules extracted from the
dataseller.drl contract.
#dataseller.drl contract in drools

rule "Payment Received"

4

Grants buyer the right to get a voucher when

the buyer’s obligation to pay is fulfilled.

when

$e: Event(type=="PAY", originator=="buyer",

responder=="store", status=="success")

eval(ropBuyer.matchesObligations(payment))

then // Remove buyer’s oblig to pay or cancel

ropBuyer.removeObligation(payment, seller);

ropBuyer.removeRight(cancelation, seller);

bcEvent.submitPayment();//forward pay to ethe contr.

ropBuyer.addRight(voucher,seller,0,0,120);//5 days

CCCLogger.logTrace("* Payment result received -

add right to GetVoucher ");

CCCLogger.logTrace("* Payment rule triggered");

responder.setContractCompliant(true);

end

rule "Get Voucher"

Grants a voucher to buyer if the buyer has the right

(’cos it has fulfilled his payment oblig) to get it.

It removes buyer’s right to get a voucher after given

it to him or 5 days expiry.

when

$e: Event(type=="GETVOU", originator=="buyer",

responder=="store", status=="success")

eval(ropBuyer.matchesRights(voucher))

then

ropBuyer.removeRight(voucher, seller);

bcEvent.getVoucher();

CCCLogger.logTrace("* Get Voucher rule triggered");

responder.setContractCompliant(true);

end

The following code is the collectPayment.sol contract.
///collectPayment.sol contract in Solidity

pragma solidity ˆ0.4.4;

contract collectPayment{

...

function submitPayment(uint pay) public constant

returns (string) {

/// func to submit payment. Returns:

/// "Payment received " + pay converted into str

var s=uint2str(pay);

var new_str=s.toSlice().concat("Received".toSlice());

return new_str;

}

function getReceipt(uint trasactionNum) public constant

returns (string) {

/// func to get a receipt of a given Tx.

/// returns: "Receipt 4 Tx " + transactionNum

/// converted into str

var s=uint2str(trasactionNum);

var new_str="Receipt 4 Tx".toSlice().concat(s.toSlice());

return new_str;

}

}

We stress that since our focus at this stage is to demonstrate
the building of the hybrid architecture, the collectPayment.sol

contract is simple, it only receives string messages (instead
of ethereum tokens or actual ethereum currency) from the
dataseller.drl contract and replies with another string message.

The client corresponds to the client node of Fig. 2 and acts
as a web client to the dataseller.drl contract. We use it to
test the implementation of the contract example implemented
by the combination of dataseller.drl and collectPayment.sol.
In this order, we provide the client with all the sequences
encoded in the contract example and previously generated by
the contraval tool and stored in folders (see Section IV-D).

As shown in the figure, the CCC relies on the web3j
library [23] to communicate with the ethereum client. Among
other services, the web3j library includes a command line
application that mechanically generates wrapper code from

TTP node

CCC in Java

web3j collectPayment.sol
(SCd in solidity)

ethereum client

to rinkeby
ethereum
nodes

rinkeby ethereum network

json-rpc

account

cc | ncc eval op

read

subfolders with N exec sequences

dataseller.drl
(SCc in drools)

client dataseller.pmlExecSeq2 dataseller.pmlExecSeq1

Fig. 4. Hybrid architecture for smart contract: technology view.

a smart contract specified using Solidity and compiled us-
ing the solc compiler. The CCC (a Java application) can
use the generated wrapper code to communicate with the
collectPayment.sol contract, through the json–rpc API
provided by ethereum. In addition, the web3j library provides
an API to for the CCC to unlock an ethereum client account
by providing the path to the keystore file and the password.

In our implementation, the communication
facilities provided by web3j are used by the
bcEvent.submitPayment() statement of the
dataseller.drl contract (line 12) to forward the
Pay operation to the collectPayment.sol contract.
The statement calls the submitPayment function of
the collectPayment.sol contract. The aim of this
example is to demonstrate how the dataseller.drl

and collectPayment.sol contracts can communicate
with each other. Another example of communication is
bcEvent.getVoucher() of the Get Voucher rule.
As it is, this statement calls the getReceipt function of
the collectPayment.sol contract to receive a string.
However, it can be replaced by a function that returns actual
ethers representing voucher for the buyer, or by any other
function. Naturally, more functions that interact with more
rules from the dataseller.drl contract can be included
to compose a practical application.

F. Determination of contract compliance

Let us examine the procedures followed by the dataseller.drl

and collectPay.sol contracts to process the operations included
in the contract example. Let us start with execution sequences
that do not include the Pay operation.

1) We assume that the set of the N execution sequences to
test the architecture are already available from a local
folder.

2) We load the CCC with the dataseller.drl contract and
instantiate it to listen for incoming events.

3) We instantiate the client. In response, it proceeds to
read the dataseller.pmlExeSeq1 folder to extract its
sequence: BuyReq, Rej. Next the client sends the
BuyReq event to the dataseller.drl contract formatted
as a RESTful message.

5

4) The BuyReq event triggers a rule of the dataseller.drl

contract that determines if the corresponding BuyReq

operation was contract compliant or non–contract com-
pliant. The dataseller.drl contract sends its verdict back
to the client.

5) The above procedure is repeated with the next event
(Rej) of the sequence.

6) When the client sends the last event of the se-
quence, it proceeds to the dataseller.pmlExeSeq2,
followed by the dataseller.pmlExeSeq3 and so on till
dataseller.pmlExeSeqN . Since all the sequences are
legal, the dataseller.drl contract declares each event of
each sequence to be contract compliant.
However, the procedure changes when the dataseller.drl

is presented with an event that is meant to be processed
by the ethereum collectPay.sol contract, such as the Pay

operation in the contract example. Let us discuss this
situation separately.

The sequence seq: BuyReq, Conf, Pay, GetVou

which includes the Pay operation is more problematic be-
cause it involves the collectPayment.sol contract. The
dataseller.drl erratically declares GetVou either contract com-
plince or non contract compliance. BuyReq and Conf are
processed by the client and dataseller.drl contract as above.
However, when the dataseller.drl receives the Pay event,
the rule Payment Received (see the dataseller.drl code)
does not evaluate it immediately for contract compliance but
performs the following actions:

1) It creates a blockchain event object that the
dataseller.drl contract uses for interacting
with the collectPayment.sol contract.

2) It uses the wrapper code (provided by the web3j li-
brary) to call the submitPayment function of the
collectPayment.sol contract by means of a json–
rpc message. Basically, the message forwards the Pay

operation from the dataseller.drl contract to the
collectPayment.sol contract.

3) The result of the call to the submitPayment func-
tion is not necessarily notified immediately to the
dataseller.drl contract. Consequently, two situations can
develop:

• a) Pay confirmation precedes GetVou: The
dataseller.drl contract receives pay
confirmation and grants the buyer the right
to get a voucher. Consequently, when the
dataseller.drl eventually receives the
GetVou event from the buyer, the operation is
declared contract compliant and the voucher is
granted.

• b) GetVou precedes pay confirmation: This
situation might happen if we assume that the
pay confirmation might take arbitrarily long.
Because of this, the dataseller.drl con-
tract receives the GetVou event from the
buyer before receiving pay conformation from

the collectPayment.sol contract. Conse-
quently, the dataseller.drl contract declares
GetVou non–contract compliance— as far as the
dataseller.drl contract is aware of, the buyer
does not have the right to get a voucher.

The materialization of situation b) is shown in the outputs
produced by the client when it presents the BuyReq, Conf,

Pay, GetVou to the dataseller.drl contract. The text
has been slightly edited for readability. As shown by the
false output of the third last line, in this execution the
dataseller.drl contract declares the GetVou operation
non contract compliant. The output produced by situation a)

is is not shown but is similar, except that the third last line
shows true instead of false.

/* b) In this run of the seq BuyReq, Conf, Pay, GetVou

* the dataseller.drl contract declares GetVou operation

* contract compliant: false

*/

-------- Begin Request to CCC service ----------

BusinessEvent{type=’BuyReq’}

-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------

<contractCompliant>true</contractCompliant>

-------- End Response from CCC service ----------

-------- Begin Request to CCC service ----------

BusinessEvent{type=’Conf’}

-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------

<contractCompliant>true</contractCompliant>

-------- End Response from CCC service ----------

BusinessEvent{type=’Pay’}

-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------

<contractCompliant>true</contractCompliant>

-------- End Response from CCC service ----------

BusinessEvent{type=’GetVou’}

-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------

<contractCompliant>false</contractCompliant>

-------- End Response from CCC service ----------

We stress that the problematic situation emerges from a
legal sequence. The potential existence of illegal sequences
such as those that include GetVou not preceded by Pay

can be uncovered by model checking. This situation suggests
that model cheking is not enough. The error that we are
analyzing materialised at run time because of the interaction
(about pay confirmation) between the dataseller.drl

and collectPayment.sol contracts. In this work, we
uncover it at testing time.

One can also argue that there are simple mechanisms to
prevent the occurrence of the problematic situation (for exam-
ple, queue the GetVou event) and to resolve it (for example,
the buyer retries the GetVou operation until it is eventually
declared contract compliant by the dataseller.drl con-
tract. These are valid solutions, however, our main observation
is that this is only an example of a large class of situations
that might impact hybrid contracts unless adequate measures
are taken to uncover them at design and testing time.

6

G. Code and repeatability of experiments

The code for the implementation of Fig. 4 and generating
sequences is available from the conch [13] and contraval [20]
Git repositories, respectively.

V. FUTURE RESEARCH DIRECTIONS

We are only starting the exploration of hybrid imple-
mentations of smart contracts—our research is at proof of
concept stage. To consolidate our ideas, we are planning to
conduct performance evaluation of some QoS requirements
to demonstrate that our architecture can meet them. We will
use more demanding contracts. The exploration of different
interaction models (e.g., peer–to–peer) between on- and off–
blockchain components is also pending. To save space, the
sequences that we have used do not account for operations
that might fail to complete successfully, e.g., after failing to
reach a counterpart. We are planning to cover this issue in a
separate paper as suggested in [9], [12].

For the sake of readability the contract example that we
have used is written in a denormalised form to correspond
to popular intuitions about contract deontics [24]. However,
this point deserves further exploration. It involves the analysis
of the logics implicit in the English text of the contract
as this logics impacts the implementation complexity and
completeness of its smart contract equivalent. The issue is that
there several ways of phrasing contractual clauses with subtle
implications. For instance, prohibitions can be expressed as
obligations.

Programmatic contract drafting up is another pending ques-
tion. We are currently exploring Ricardian Contracts [25] to
develop systems that fill, in parallel, templates for both formal–
language contracts intended for digital execution (whether
on or off–blockchain), and natural language versions of the
contracts. These contracts in natural languages describe the
same operational core but contain additional boilerplate and
are intended to be signed on paper and legally binding. Natural
language generation systems offer the potential for efficient
production and filling of such dual contract templates. We will
complement this research with formal verification of smart
contracts.

VI. RELATED WORK

Research on smart contracts was pioneered by Minsky in
the mid 80s [6] and followed by Marshall [7]. Though some
of the contract tools exhibit some decentralised features [26],
those systems took mainly centralised approaches. Within this
category falls the contract compliance checker that we use in
our implementation [9].

The publication of the Bitcoin paper [5] motivated the devel-
opment of several platforms for supporting the implementation
of decentralised smart contracts. Platforms in [1], [3] and [2]
are some of the most representative. Though they differ in
language expression power, fees and other features they are
convenient for implementing decentralised smart contracts.

The hybrid approach that we suggest was inspired by the
arguments presented in [10], though the original idea emerged
by the off–blockchain payment channel [1], [27].

The concept of logic–based smart contracts discussed
in [28] has some similarities with our hybrid approach. They
suggest the use of logic–based languages in the implementa-
tion of smart contracts capable of performing on–blockchain
and off–blockchain inference. The difficulty with this ap-
proach is lack of support of logic–based languages in current
blockchain technologies. In our work, we rely on the native
languages offered by the blockchain platforms, for example,
ethereum’s Solidity. On and off–blockchain enforcement of
contractual operations is also discussed in [29], though an
architecture is presented, no technical details about its imple-
mentation or functionality are discussed. Another conceptual
design directly related to our work is private contracts executed
in the Enigma [30] architecture. Like in our work, a private
contract is a conventional business contract with contractual
operations separated into on and off–blockchain categories.
Similarly to our hybrid design, they use a blockchain plat-
form (namely ethereum) to execute on–blockchain operations.
However, unlike in our work, instead of using a TTP to execute
off-blockchain operations, they use a set of distrusting Enigma
nodes running a secure multi–party computation protocol that
guarantees privacy. The Enigma nodes charge computation and
storage fees.

The logical correctness of smart contracts is discussed in
several papers. For instance, in [31] the author use PetriNets
for validating the correctness of business process expressed in
BPMN notation and executed as a smart contract in ethereum.
They mechanically convert BPMN notation into PetriNets, ver-
ify soundness and safeness properties, optimise the resulting
PetriNet and convert it mechanically into Solidity. Related to
our work on Cartesian Contract is the system for programmatic
analysis of contracts written in natural languages to extract
contractual rights and obligations [32].

The idea of interconnecting smart contracts to enable them
to collaborate with each other is also discussed in [33]. These
authors draw a similarity between blockchain and the Internet.
They speculate that in the future, we will have islands of
blockchain systems interconnected by gateways.

VII. CONCLUDING REMARKS

The aim of this paper has been to argue that there are
good reasons to consider hybrid architectures composed of
off and on–blockchain components as alternatives for the im-
plementation of smart contracts with strict QoS requirements.
As a proof of concept, we have demonstrated that hybrid
architectures are implementable as long as the off–blockchain
component provides standard APIs (such as RESTful) to
communicate with the standard APIs that current blockchains
offer such as json–rpc.

We have presented the approach as a pragmatic solution to
the current problems that afflict both off and on–blockchain
platforms. However, we believe that these ideas will become
useful in the development of smart contract applications of

7

the near future. We envision cross–smart contract applications
that will involve several smart contracts running on different
independent platforms. The architecture that we have imple-
mented is in line with this futuristic view. Though the current
implementation includes only two components, it can be
generalised to include and arbitrary number of off–blockchain
and on–blockchain components. This generalisation should be
implementable provided that the components offer interfaces
(gateways) to interact with each other and the developer
devises mechanisms for coordinating their collaboration.

We have argued that the implementation of sound smart
contracts is not trivial and that the inclusion of off and on–
blockchain components makes the task even harder. To ease
the task, we advise the use of software tools to mechanise the
verification of the smart contract and testing of its implemen-
tation.

ACKNOWLEDGEMENTS

Carlos Molina-Jimenez is currently collaborating with the
HAT Community Foundation, Grant RG90413 NRAG/536.
Ioannis Sfyrakis was partly supported by EU Horizon2020
prismacloud.eu project, GA No.644962. Meng Weng Wong is
a 2017–2018 Fellow at Stanford University’s CodeX Center
for Legal Informatics, and previously a 2016–2017 Fellow at
Harvard University’s Berkman Klein Center for Internet and
Society, and a 2016 Fellow at Ca’Foscari University of Venice.

REFERENCES

[1] A. Antonopoulos, Mastering Bitcoin, 2nd ed. O’Reilly, 2017.
[2] The Linux Foundation, “Hyperledger,” www.hyperledger.org, Visited

Nov 2017 2017.
[3] Ethereum, “A next-generation smart contract and decentralized ap-

plication platform,” https://github.com/ethereum/wiki/wiki/White-Paper,
Visited 23 Oct 2017 2017.

[4] T. McConaghy, R. Marques, A. Müller, D. D. Jonghe, T. T. Mc-
Conaghy, G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto,
“Bigchaindb: A scalable blockchain database,” www.bigchaindb.com/
whitepaper/bigchaindb-whitepaper.pdf, Visited 1 Nov 2017 2017.

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” http:
//nakamotoinstitute.org/bitcoin/, Visited 13 Nov 2017 2008.

[6] N. H. Minsky and A. D. Lockman, “Ensuring integrity by adding obli-
gations to privileges,” in Proc. 8th Int’l Conf. on Software Engineering,
1985, pp. 92–102.

[7] L. F. Marshall, “Representing management policy using contract ob-
jects,” in Proc. IEEE First Int’l Workshop on Systems Management,
1993, pp. 27–30.

[8] Z. Milosevic, A. Josang, T. Dimitrakos, and M. Patton, “Discretionary
enforcement of electronic contracts,” in Proc. 6th IEEE Int’l Enterprise

Distributed Object Computing Conf.(EDOC’02). IEEE CS Press, 2002,
pp. 39–50.

[9] C. Molina-Jimenez, S. Shrivastava, and M. Strano, “A model for
checking contractual compliance of business interactions,” IEEE Trans.

on Service Computing, vol. PP, no. 99, 2011.
[10] C. Molina-Jimenez, E. Solaiman, I. Sfyrakis, I. Ng, and J. Crowcroft,

“On and off-blockchain enforcement of smart contracts,” in Proc.

Int’l Workshop on Future Perspective of Decentralized Applications

(FPDAPP), 2018.
[11] “Hat: Hub-of-all-things,” http://hubofallthings.com/home/, visited: 10

Feb 2016.

[12] C. Molina-Jimenez, I. Sfyrakis, E. Solaiman, I. Ng, and J. Crowcroft,
“Implementation of smart contracts using on and off blockchain com-
ponents (extended version),” Jul 2018, to appear in e-prints arxiv.org.
Available from Research gate DOI: 10.13140/RG.2.2.34438.2720.

[13] C. Molina-Jimenez and I. Sfyrakis, “Deployment of the contract compli-
ant checker: (user’s guide),” https://github.com/carlos-molina/conch.git,
Visited in Feb 2016.

[14] The JBoss Drools team, “Drools expert user guide,” https://docs.
jboss.org/drools/release/5.3.0.Final/drools-expert-docs/html/index.html,
visited: 7 May 2018.

[15] Remix, “Remix solidity ide,” https://remix.ethereum.org, Visited 17 Jun
2018 2017.

[16] Ethereum, “Ethereum: Comparison of the different test-
nets,” https://ethereum.stackexchange.com/questions/27048/
comparison-of-the-different-testnets, Visited 17 Jun 2018 2018.

[17] C. Svensson, “Transactions—webj 3.4.0 documentation,” https://web3j.
readthedocs.io/en/latest/transactions.html, Visited 17 Jul 2018 2018.

[18] Faucet, “Rinkeby authenticated faucet,” https://faucet.rinkeby.io, Visited
30 Jul 2018 2018.

[19] A. Abdelsadiq, C. Molina-Jimenez, and S. Shrivastava, “On model
checker based testing of electronic contracting systems,” in 12th IEEE

Int’l Conf. on Commerce and Enterprise Computing(CEC’10), 2010, pp.
88–95.

[20] C. Molina-Jimenez, “Deployment of contraval—a contract validator :
(user’s guide),” https://github.com/carlos-molina/contraval.git, 2012.

[21] Metamask support, “Metamask installation,” https://chrome.google.com/
webstore/detail/metamask/nkbihfbeogaeaoehlefnkodbefgpgknn, Visited
24 Jul 2018 2018.

[22] “Collectpay.sol smart contract deployment transaction.” https://rinkeby.
etherscan.io/address/0xab52675ea8464963fda7c0b610d931dd87ea4829,
Visited 24 July 2018 2018.

[23] C. Svensson, “web3j,” https://web3j.readthedocs.io/en/latest/, Visited 17
Jul 2018 2018.

[24] T. Hvitved, “Contract formalisation and modular implementation of
domain-specific languages,” Ph.D. dissertation, Faculty of Science Uni-
versity of Copenhagen, Mar 2012.

[25] I. Grigg, “The ricardian contract,” http://iang.org/papers/ricardian
contract.html, 2000, (Accessed on 07/26/2018).

[26] N. Minsky, “A model for the governance of federated healthcare infor-
mation systems,” in IEEE Int’l Symposium on Policies for Distributed

Systems and Networks (Policy’10), 2010, pp. 111–119.
[27] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain

instant payments,” https://lightning.network/lightning-network-paper.
pdf, Jan. 2016.

[28] F. Idelberger, G. Governatori, R. Riveret, and G. Sartor, “Evaluation
of logic–based smart contracts for blockchain systems,” in Proc. 10th

Int’l Symposium RuleML’16: Rule Technologies: Research, Tools, and

Applications, LNCS, Vol 9718, 2018, pp. 167183,.
[29] X. Xu, C. Pautasso, V. Gramoli, and A. Ponomarev, “The blockchain

as a software connector,” in Proc. 13th Working IEEE/IFIP Conf. on

Software Architecture (WICSA). IEEE, apr 2016, pp. 182191, 2016, pp.
182–191.

[30] G. Zyskind, O. Nathan, and A. S. Pentland, “Enigma: Decentralized
computation platform with guaranteed privacy,” https://arxiv.org/abs/
1506.03471 (visitied in Mar 2018), Jan 2015, arXiv:1506.03471v1
[cs.CR].

[31] L. Garcı́a-Bañuelos, A. Ponomarev, M. Dumas, and I. Weber, “Opti-
mized execution of business processes on blockchain,” https://arxiv.org/
pdf/1612.03152.pdf, Dec 2016, arXiv:1612.03152 [cs.SE].

[32] J. J. Camilleri, “Contracts and computation formal modelling and
analysis for normative natural language,” Ph.D. dissertation, Department
of Computer Science and Engineering, 2017.

[33] T. Hardjono, A. Lipton, and A. Pentland, “Towards a design philosophy
for interoperable blockchain systems,” https://arxiv.org/pdf/1805.05934.

pdf, May 2018, arXiv:1805.05934 [cs.CR].

8

