
IMPLEMENTATION OF SYSTOLIC ALGORITHMS
USING PIPELINED FUNCTIONAL UNITS

Miguel Valero-Garcia, Juan J. Navarro, Jose M. LLaberia and Mateo Valero
Dept. Arquitectura de Computadores, Univ. Polithcnica de Catalunya, Pau Gargallo 5,

08028 Barcelona Spain

In this paper we present a method to transform simple synchronization systolic
algorithms into two-level pipelined systolic algorithms so that they can be ejj’iciently
implemented using pipelined functional units. The paper includes an example of
application of the method to a one-dimensional systolic algorithm with data contrafrow
for QR decomposition.

1. INTRODUCTION

In this paper we presenta method to implement Systolic Algorithms (SAS) usingPipeIinedFunctiona1
Units (PFUs). This kind of units allow to improve the throughput of a processor because of the
possibility to initiate a new operation before the previous one has been completed.

In general, SAS obtained through automatic design methodologies [l] have symple
synchronization. This means that it is assumed that every cell spends the same time, a systolic cycle,
to perform any operation, in spite of the fact that some operations can be more complex than others.

A SA with simple synchronization cannot be directly and efficiently executed using PFUs
because in every cell each operation is performed only when the previous one has been completed,
even if those operations are independent. This fact will not permit to achieve a good utilization of
the PFU in every cell unless the original SA is transformed into a two level pipelined SA. This
transformation is specially difficult when the SA has feedback cycles because in this case the
operations performed by every cell are not independent.

Some proposals of two level pipelined SAS appear in [12], [3] and [6]. The problem of
systematic transformation of SAs with simple sinchronization into two level pipelined SAS is studied
in [4]. In that paper, the case of SAS without feedback cycles is studied. However, there is a number
of problems with dependences between results (triangular system of equations, LU decomposition,
etc) that can be efficiently solved using SAS with feedback cycles. In these cases, the SAS obtained
when applying the techniques proposed in [4] do not make a good use of the hardware.

In [l 11 we propose an automatic method to transform SAS with simple synchronization into
two level pipelined SAS. This method allows to obtain efficient results even when the original SAS
have feedback cycles. The method is based on three well-known SA transformations: slowdown,
retiming and coalescing [5]. The contributions of the present paped complement those in [l l] . The
result is a whole methodology that can serve as a basis for an automatic tool to help in the design
of SAPS. In the following section we present, by means of a simple example, the problems arising
when a SA must be executed using PFus. At the end of the section we present the structure of the
rest of the paper and describe briefly the main contributions in each of the remaining sections.

2. SYSTOLIC ALGORITHMS AND PIPELINED FUNCTIONAL UNITS

In this section we describe intuitively the proposed method to execute efficiently SAS using PFUs.
This description will permit to present the major contributions of this paper. The method will be
particularized for the case of ID SA with datu contrafrow. This kind of SA has feedback cycles. As
we said before, it is difficult to transform SAS with data contraflow into two level pipelined SAS.
For this reason, 1D SA with data contraflow will permit us to demonstrate the power of the method.

Work supported by the Ministry of Education of SPAIN (CICYT TIC 299189)

272 CH2920-7/90/0000/0272$01 .OO 0 1990 IEEE

a43
a33 .

a53

a42

a63

a52

Mapping Applications onto Architectures 273

RTI RT2 RT3

a83

. a72

. a61

a73 .

a62 .

a7I
. a32 . a41 .

. 431 .
, dl .

all .
RT5

1(4J)=3
1(65)=4

RT6

1(56)=5
1(76)=3

(a) (b)

Figurel: (a) Generalaspectofa 1DSA withdnta contraflow. (6)An example ofreservation tables to implement
the operations performed by the cells of the SA shown injigure 1 .a.

Figure 1 .a shows the general aspect of a 1D SA with data contraflow and simple sincronization.
A delay of one cycle is associated with every link between cells. These delays are represented by
black rectangles in figure 1.a. Each cell performs one valid operation every two cycles. For this
reason, it is said that the SA is 2-slow [5] . Figure 1.aalso shows theinput pattem for a math involved
in the computation. The main advantage of 1D SA with data contraflow is that, for non homogeneous
problems like triangular systems of equations, LU decomposition or QR decomposition, only one
cell must perform complex operations (divisions or square roots). The rest of cells perform simple
operation (inner product steps)

1D SAS with data contraflow have been used to solve problems such as band triangular systems
of equations 121, [6], LU decomposition [7] or QR decomposition [IO]. Obviously, the nature of the
problem to be solved determines the operations performed in every cell of the SA and the l/O data
sequences.

Suppose that the SA in figure 1.a must be executed using PFus in such a way that the
computation time for any stage of the pipeline becomes the systolic cycle. Every cell i performs
always the same operation, named OP,, and the reservation table RT, represents the order in which
the PFU stages are used to perform OP, [9]. Let [(i j) be the number of cycles required by the PFU
to compute, by performing OP,, a value involved in OP,.

Figure 1.b shows an example of reservation tables and values I(i j) for the SA in figure 1 .a.
These values indicate, for instance, that cell 1 requires 4 cycles to compute the value to be sent to
cell 2. It is not very realistic to think of SAS with a number of different reservation tables and
computation times. Frecuently, several cells of the SA perform the same operation and reservation
tables associated with these operations are equal. However, our intention is to propose a general
methodthat, as we will see later, benefits from the fact that different cells perform the same operation.

The SA shown in figure 1 .a cannot be directly executed using the available hardware because,
for instance, it is assumed that cell 2 performs each one of its operations one cycle after cell 1. The
original SA can be adapted to the hardware in an automatic way, by using temporal and spatial
transformations [l l] .
Temporal transformation
A temporal transformation permits to modify the cycle in which every cell performs its operations.
In our case, this transformation is used to obtain a new SA A ’ , in which the constraints imposed by
the hardware are preserved.

The temporal Wansformation consists in introducing new delays between cells. These delays
model the time required by every cell to perform its operations. Specifically, this transformation
must introduce a delay of, at least, I(ij) cycles between cellsj and i.

274 International Corbference on Application Specipc Array Processors

The required temporal transformation can be done by slowdown and retiming. Slowdown
allows to introduce new delays in the SA. These delays can be adequately distributed by retiming

Applying these transformations to our example, it is possible to obtain the SA A' shown in
figure 2.a. In this figure, dots represent those delays inaoduced to model the hardware constrains.
Black rectangles represent extra delays introduced to synchronize the whole SA. The value beside
the North link in every cell is the number of cycles before the f m t valid data item is received by the
cell through that link. From that cycle on, data items are received one every 9 cycles. In [I 11 we
describe how to apply retiming and slowdown in order to obtain that SA.

As a result of applying slowdown, the slow of the SA has increased to 9. SA A' performs the
same computations than the original one but requires more cycles.

At this point, it is important to note that equivalent %low SAS can be obtained just moving
extra delays. As an example, an equivalent SA can be obtained by moving the extra delay between
cells 2 and 1 of SA in figure 2.a to the link in the opposite direction (and delaying one cycle the
input data sequences to cells 2 to 6).
Spatial transformation
SA A' obtained through the temporal transformation can be directly executed using the available
hardware. However, the hardware utilization will be very low because each cell performs only one
valid operation every 9 cycles. The efficiency of the SA can be improved by applying a spatial
transformation.

A spatial transformation permits to redistribute operations among cells. Nevertheless, each
operation is performed in the same cycle than in the original SA. The result of the spatial
transformation is a new SA A', which performs the same computation, in the same number of cycles
but requiring less cells.

We propose the use of coalescing as spatial transformation. Each cell of A' will perform those
operations assigned to a set of adjacent cells of the original SA. Figure 2.a shows an example of the
application of coalescing. Specifically, cells 1 and 2 of A' have been assigned to cell 1 of A'. Figure
2.a also shows the utilization of the 3 stages of the PFU used to implement cell 1 of A'. Stages used
during the computation of OPi have been marked with value i . Operations OP, and OP, can be
executed without conflicts following the timing established by A' .

However, it is possible to increase the utilization of the PFU by selecting adequately the
location of extra delays as it is shown in figure 2.b. In this case, coalescing has been applied to a
SA equivalent to that in figure 2.a. obtained by moving two extra delays. This modification permits
to execute OP,, OP, and OP, in the same PFU.

There are two other ways to improve the utilization of the PFU: by increasing the slow of A'
and by modifying the shape of the reservation tables associated with the operations of the SA. In
our example, it is easy to prove that increasing the slow to 10 it is possible to execute OP,, OP,, OP,
and OP, in the same PFU without conflicts. However, an increase of the slow implies always an
increase of the number of cycles required to execute the SA. On the other hand, as we will see later,
modifying RT, and RT? as shown in figure 3.b it is possible to execute OP,, OP,, OP, and OP, in
the same PFU, without increasing the slow.

In [I 11 we propose a model for SAS and we formalize slowdown, retiming and coalescing so
that these transformations can be applied automatically. Moreover, we propose an algorithm to
determine the location of extra delays in order to minimize the computation time and maximize the
hardware utilization. This algorithm does not consider the possibility of modifying the reservation
tables.

In this paper we complement the work done in [ll]. Specifically, in section 3 we describe
how the delay insertion techniquecan be applied to our problem. In section 4 we propose an algorithm
to obtain the structure and control of the PES required to execute the SA. In section 5 we extend OUI
algorithms to non time homogeneous SAS, in which cells perform different operations during the
computation. Finally, in section 6 we present a concrete example consisting in the design of a SAP
to perform the QR decomposition of a matrix by Givens rotations.

151.

Mapping Applications onto Architectures 215

SA A'

SA A* -0

SA A'

SA A*

i W

Figuret: (a) Example of temporal andspatial transformation of the SA shown in figure 1 .a. The table shows
the ocupation of the PFU stages ifcellr 1 and 2 ofA' are implemented by the same cell ofA*. (b) A new SA
A' obkained by moving extra delays. This modification permits to improve the utilization of the PFU used to
implement cell 1 of A*.

3. IMPROVING THE UTILIZATION BY DELAY INSERTION

The delay insertion technique, proposed in [8], permits to modify the reservation tables of one or
several operations in order to avoid conflicts in the use of the PFU stages. As a result, the throughput
of the PFU is improved. In this section we describe how the delay insertion technique can be applied
to OUT problem.

A reservation table can be modified by delay insertion. Delaying n cycles the computation
performed by a given stage is represented by moving the mark associated with this computation n
columns right in the reservation table. In [8] it is assumed that there is not information about
dependences between stages. In this case, in order topreserve possible dependences, any mark placed
on the right of the moved one must be also move n columns right.

The modification of RT, is parametrized by values d,,,(X). Value d,,,.(X) is defined as the
number of columns mark in RT,(m,n) must be moved to the right relative to marks on its left side.
After the modification, the new position of mark RTdm,n) will be RT,(m,n'), where:

being p the number of stages of the PFU.
In [8] it is described how to modify the reservation tables associated with a set of operations

to allow these operations to be initiated in the same PFU, without conflicts and following a given
initiation pattem. The considered initiation pattem is an initiation cycle. An initiation cycle is
represented by means of a tuple. Each element of this tuple represents the type of operation to be
initiated and the number of cycles separating this initiation from the previous one. The tuple has the
following form:

(U,, ..., b,,c ,,..., d")

276 International Cogerence on Application Specific Array Processors

This expression indicates that OP, will be initiated c cycles after OP,, and OP, will be initiated
a cycles after OP,. In the example shown in figure 2.b, the cell obtained by coalescing cells 1.2 and
3 executes its operations following the initiation cycle described by the tuple:

(4,, ~ 4 3

In order to ilustrate how the delay insertion technique can be applied to our problem, we focus
on the scheduling of operations for cell 1 of SA A’.

First, it is necessary to determine how many operations of the original SA can be assigned to
cell 1 of A’. Io order to do that, we must take into account that any cell of A’ repeats its operations
in a periodic way, every k’cycles, where k’ is the slow ofA’. So, none of the stages of the PFUs can
be used more that k‘ cycles in each period. This fact determines an upper boundary to the number
of operations that can be assigned to the same PFU. Specifically, it is possible to assign, at most,
the first s operations to cell 1 of A’ if, for any of the stages of the PFU, the number of marks in the
reservation tables associated to these s operations is not greater than k’. This condition can be
expressed as follows:

P * S + l

maxChfU(i,m)<k’ and maxhfu(i,m)>k’

where MU(i,k) is the number of marks in row k of RT,. In our example, cell 1 of A’ can execute, at
most, the first 4 operations of A’.

Now, it is necessary to determine a possible initiation cycle for the selected operations. In our
case, due to the fact that the location of extra delays is not unique, there is a number of possible
initiation cycles. As an example, in the SA shown in figure 2.a. the initiation cycle for the first 4
operations is:

m = 1 ,=1 “ = I

(1l?2,,2*.43)

However, the initiation cycle for these operations in the equivalent SA shown in figure 2.b,
is:

(4 1 ~ 1 3 , 3 ~ 13
Both are valid initiation cycles for the first 4 operations. In general, any valid delay distribution

represents a valid initiation cycle. A delay distribution is valid if the delay associated with link
between cellsj and i in A’ is enough to model the time required by cell j to compute the value to be
sent to cell i. In the case of 1D SA with data contraflow, a valid delay distribution must satisfy the
following condition:

r ’ (i + l , i) ? l (i + l , i) and r ’ (i , i + l) > l (i , i + l) i E [I . .n- l]

where r’(i j) is the delay associated with the link between cells j and i, and n is the number of cells.
Moreover, because A’ is k‘-slow, a valid delay distribution must also satisfy the following

condition:

r ’ (i + l , i) + r ’ (i , i + l) < ~ ’ i E [l. .n-1]

In our example, there are 16 valid initiation cycles for the first 4 operations.
Finaly, we must determine if it is possible to initiate the operations in the same PFU following

one of the valid initiation cycles. In order to determine if it is possible to initiate the operations
following a given initiation cycle, the initiation interval sets Gx,y mod c must be computed. Gx,y mod
c contains all the intervals between initiations of OP, and initiations of OP,, in this order, following
the initiation cycle. Value c is the period, in cycles. of the initiation cycle. In our case c=k‘.

Now, the allowable usage interval sets H,,,mod c as obtained as follows:

H,,,modc = Z , -G,,,modc

where Z, is the set of integers module c.

Mapping Applications onto Architectures 277

This information permits
the reservation tables associated
table RT. The initiation cycle is
condition (a)

to determine if the initiation cycle is possible. In order to do that,
withthe s operations being studied are overlapped, forming a single
possible if the following condition is satisfied:

Any couple of marks RTda,b) and RT4a.c) from RT must be separated by a number n of columns,
where:

n = c - b e H,,,modc

If the reservation tables do not fulfil this condition it is necessary to modify them. The values
d,JX) that parametrize the required modification canbe obtained by a branch and bound algorithm,
subjected to condition (a). However, in our case, because there are dependences between operations
involved in the initiation cycle. an extra condition must be satisfied.
condition (b)
As a result of the modifcation of RT,, values l (i+ l , i) and l(i-1.i) can have been changed. The new
values will be noted by l ’ (i+I , i) and l ’ (i - l , i) . This modification should not force an increase of the
delay between cell i and its neighbours. So:

r ’ (i + l , i) > l ’ (i + l , i) and r ’ (i , i+ l)> l ’ (i , i+ l) i E [l..n -11

If condition (b) is not satisfied, OP,,, can not be initiated r ’ (i+ l , i) cycles after OP,, as it is
established by the initiation cycle.

So, in our case, the branch and bound algorithm that finds the values d,,JX) is subjected to
conditions (a) and (b). If it is not possible to find a set of values which satisfy these conditions for
a given initiation cycle, the procedure is repeated using one of the altemative valid initiation cycles.

In our example, it is possible to initiate OP,, OP,, OP, and OP, in the same PFU without
conflict, as it is shown in figure 3.a, following the initiation cycle represented by the tuple:

<3), 1,,4,, 13
To do that, it is necessary to modify RT, and RT, as shown in figure 3.b. The values which

parametrize this modification are:

d % 3 (l) = 1 and 4 4 4) = 1

This modification implies an increase in the values of 1(2,1) and l(5.4). Due to this fact, in
figure 5 , some extra delays (rectangles) have been replaced by delays associated with the PFU (dots).

To conclude this section, it is worth remarking that, if several cells of the SA perform the
same operation and the reservation tables associated with these operations are equal, then i t is
desirable that, after inserting the required delays, the reservation tables for these operations remain
equal. This fact facilitates the design and control of the PFU. This additional restriction can be easily
considered in the branch and bound algorithm used to find values d,,,”(Xj.

1’f2,1)=5 /‘(5.4)=6

(4 (b)

Figure 3: Increasing the utilization of the PFU by delay insertion: (a) Cell 1 of A* obtained by coalescing
celk I , 2 . 3 and 4 of SA A’ . (b) Modified reservation tables for OP, and OP,.

278 International Conference on Application Specific Array Processors

4. AUTOMATIC DESIGN OF PROCESSING ELEMENTS

The procedure described in the previous section permits to determine how many adjacent cells of
A’ are assigned to every cell of A’. The initiation cycle for each cell of A’ and the final shape of the
reservation tables are also obtained. In this section we propose an algorithm that permits to obtain
the structure and control of the PES required to execute SA A’. Again, we concentrate on the case
of 1D SA with data contraflow. Similar algorithms can be derived for other kinds of SAS.

In order to ilustrate the algorithm we use the example shown in figure 3.a. Specifically, we
will demonstrate how to obtain the structure and control of PE, responsible for executing OP,, OP,.
OP, and OP,, with the initiation cycle (3,, 13,&, 1,)

The delay r’(i+l,i) which separates initiations of OPi and OP,,,, is decomposed into two parts:

r’(i+l , i)=I’(i + l , i) + re’(i+l , i)

Value l ’ (i+l ,i) corresponds to the delay established by the used hardware, once the reservation
tables have been modified (dots in the figures). Value re’(i+l, i) corresponds to the extra delays
(black rectangles). Analogously:

r’(i - l , i)=I’(i -1.i) + re’(i -1,i)

We define T(i) has the number of delays in the path from the cell which receives the first value,
from the outside, to cell i. In our case, we assume that the first value enters the SA through cell 1.
so:

i - I

T (i) = 1 r ’ (j + l , j)

In the SA shown in figure 3.a we have: T(I)=O, T(2)=5, T(3J=IO, etc.
The general structure of PE, (and any of the remaining PES required to implement the cells

of A’) is shown in figure 4.a. PFU, must be able to perform operations OP,,..,OP,, assigned to cell
1 of A’ .as specified in their reservation tables. The results of OPi are obtained through outputs
o,WJ mdi and o ~ ~ ~ ~ ~ ~ , where k’ is the slow of A’. In our example, the results of OP, are obtained
through 0,‘ and 0:.

Values involved in every operation enter the PFU through N, i,, and i,. The last two values
come from multiplexors M, and M,, which are controlled using a module k’ counter, initialized to
zero. This counter is also used to determine the operation to be initiated every cycle. Specifically,
the PFU must initiate OPi when the counter gets the valuej=T(i) mod k‘ .

Operands for OP, are taken from input Nand from input T(i) mod k‘ of M and M The operand
taken from MI is one of the results of OPi-,, that was obtained through ~ ~ “ - ~ ’ ~ t . h i s value has
been delayed re’(i,i-I) CLCF. Analogously, the value taken from M, is one of the results of OP,+,,
obtained through 0:‘”’’ . This value has been delayed re’(i,i+I J cycles.

Finally, the link from EP, to EP, is Connected to input T(s) mod k’ of M,. with a delay of
re’(s,s+l) cycles. The left input of PE, is connected to input T(1) mod k’ of MI.

Note that some outputs of the PFU and some inputs of the multiplexors are not used and appear
just to allow the formulation of the algorithm.

Applying the algorithm proposed in this section to the SA shown in figure 3.a we obtain a PE,
with the structure and control shown in figure 4.b.

i E [l . .n]
j = 1

5. NON TIME HOMOGENEOUS SYSTOLIC ALGORITHMS

The techniques proposed in the previous sections apply only to time homogeneous SAS, in which
every cell performs always the same operation. However, many SAS are non time homogeneous
SAS. In [6] some examples of this kind of SAS can be found. In this section we describe how the
proposed techniques can be modified in order to apply them to non time homogeneous SAS.

Mapping Applications onto Architectures 279

Figure 4: (a) General structure of each cell ofA* obtained by caalescing. (b) P E I obtained to implemeni
cell 1 ofA* (figure 3.a).

Let OPi ,.. OP, be the ni different operations performed by cell i of the original SA during
the computation. Each one of these cells receives a control signal that we will call c,. This signal
determines the type of operation to be performed by cell i in every cycle. Let RT. be the reservation
table associated with OP. Let ldi j) be the number of cycles required to obtain, d;l performing OP,,,,
a value required in cell i.J.

In order to schedule operations for every PFU, we associate with each cell i a reservation table
that covers the requirements of any of the operations performed by this cell. This table, that will be
named RT,, is obtained by ORing the ni reservation tables associated with cell i :

RT, =OR(RT,,,) k E [I..ni]

Moreover, we use as value 1u.i) that associated with the slowest operation:

l (j , i)= m a l t (j , i)
k = l

Now, the techniques described in section 3 can be applied directly using reservation tables
RT, and values [(ij).

The proposed strategy is, at some extent, conservative, specially if the reservation tables
associated with a given cell are significatively different. In these cases, the knowledge of the
behaviour of each cell during the computation permits more efficient schedules, at the expense of
an importat complication of the proposed algorithms. However, in practical cases the different
operations apearing in a SA can be performed in such a way that the associated reservation tables
are very similar. In these cases, the strategy proposed in this section obtains efficient results.

The algorithm proposed in section 4 to obtain the structure and control of every PE must be
modified in the case of non time homogeneous SAS. The value r’(i+l ,i) is still the number of cycles
separating the initiation of operations in cells i and i+l. However, the number of cycles required to
perform an operation in cell i depends now on the type of operation to be performed. Therefore, the
extra delay between cells i and i+l is not fixed and depends also on the operation performed in cell
i.

280 International Conference on Application Specific Array Processors

In general, when cell i performs OPiL, the extra delays for the results of this operation are:

re’t(i + 1, i) = r’(i + 1, i) - l’t(i + 1, i)

The delay between cells i and i+ l is implemented by associating a fixed delay with the link
between these cells and complementing this delay, in cell i , with an extra delay which depends on
the type of operation performed by cell i . The fued delay is:

and re’,(i - 1, i) = r’(i - 1, i) - l’k(i - 1, i) k E [l . .ni]

re’(i + 1,i) = min relt(i + 1 , i) and re’(i - 1, i) = min reIt(i - 1, i) i E [l..n]
k - 1 t = 1

In order to construct every PE we use a PFU slightly different to that shown in figure 4.a. In
this new PFU, the results of OPitare obtained through outputs

Output o;‘“’’ (k E [l..nJ) is connected to input k-1 of a multiplexor, that will be named
M;‘”’’. The output of this multiplexor is o , ’ ~ ~ ’ ~ ‘ .

Output o:‘i’dY’(k E [l . .nJ) is connected to input k-1 of a multiplexor, that will be named
M : ‘ ~ ’ ~ ~ . The output ofthis multiplexor is o : ~ ” ~ ‘ .

Thesemultiplexors permit to apply an extra delay to values computed in the PFU. Specifically,
a delay of re’(i+l, i) cycles is associated with output and a delay of r e ’ t (i + l , i ~ - r e ’ (i + l , i ~
cycles is associated with output o ~ ‘ ” ~ ‘ ’ . Signal c : ~ ” ~ ‘ must take the value k in cycle r if the PFU
initiated OPi, in cycle ~- (r ’~ i+ l , i) - re ’ (i+ l , i)~ . One of the results of this operation was obtained,
l’,(i+l,i) cycles after its initiation, through ~ y “ ’ ~ ~ ~ ~ , i t ’ was delayed re’t(i+l, i)-re’(i+l, i) cycles
and routed to output o,rfi’madt’ , where it will be delayed again re’ (i+ l , i) cycles. As a result, this
value will reach its destination r’(i+l, i) cycles after the initiation of OP,,,. The delays and control
for links in the opposite direction are defined in a similar way.

Signals c; and c,‘, which control multiplexors M; and M; are generated, together with signal
CTL, from a module k‘ counter and from signals c’, i E [l . . s] . Remember that signal c, is a control
sequence that indicates the type of operation to be performed by cell i of the original SA in every
cycle. Signal c’; is the equivalent control sequence for A’, obtained by applying slowdown and
retiming.

and o , ~ ~ ” ~ * ” .

6. IMPLEMENTATION OF A SYSTOLIC ALGORITHM FOR Q R
DECOMPOSITION

In this section we present a specific example of application of the techniques described in this paper.
Specifically, we describe an efficient implementation in hardware on a non time homogeneous 1D
SA with data contraflow for QR decomposition proposed in [l o] . The decomposition is done by
Givens rotations. Figure 5 shows the structure of this SA as well as the operations performed by
every cell. Cell 1 performs OP, when signal c, takes value a and OP, when c, takes value b. The
rest of cells perform always OP,. So, for this SA we have: OP,,=OP,, OP,2=OP, and OPi = OP,

In this SA every cell sends to its right neighbour a pair of values (c’ , s’). We consider that
there is only one link between two cells in each direction and that values c’ and s’ are sent as a single
data item. On the other hand, besides the values sent to the neighbour cells, every cell computes also
a value x’ that is sent to the outside. This difference in comparison to structure shown in figure 1
does not affect the application of the techniques described in previous sections.

SA in figure 5 has an arbitrary number of cells. In [lo], a possible partitioning scheme is also
proposed to obtain the QR decomposition of a matrix with any size. The I/O data sequences are not
shown in figure 5 because their structure does not affect the design procedure for the cells of the
new SA.

i E [2..n].

Mapping Applications onto Architectures 28 1

E’ = c

s’ = s

(4 (b)

Figure 5: (a) Operations and (b) structure of a 1D SA with dui% contraflow for QR decomposition.

Suppose that pipelined multipliers and adders are used to execute OP, and OP,. Specifically,
an inverse square root can be performed using only one multiplier and one adder as follows:

R1 =O.S*RO*(3.0-A*RO*RO) and -- 0S*R 1*(3.0 - A*R l*R 1)

where RO is an approximation of value I d A obtained by indexing a lookup table with some bits of
A [13].

Figure 6 shows two reservation tables to perform OP, and OP, using one multiplier and one
adder, both pipelined into 3 stages. Therefore, in this case, we have:

*-

lJ2.1) = 31, lb(2,1)= I , l b (O , l) = 7

l(i+l,i) = I , l(i-I , i) = 7 i > 1

For the sake of simplicity, we assume that the time required to access the table of
approximations can be neglected. Note that, when a cell performs OP,, the value received from the
left is directly sent to the right, without modification. In order to avoid global communications, we
associate a delay of 1 cycle with this operation. Using the notation proposed in section 5, RT,, =
RT,, RT,,= RT, and RTi = RT, (i>l).

ORing reservation tables RT,, and RT,,we obtain RT,. In this example, the minimum possible
slow for A’ is k‘ = 38. This value is determined by the time required by cells 1 and 2 to compute
the values to be sent to each other.

For a slow of k‘=38, the maximum number of operations that can be assigned to cell 1 of A’
is 7. However, after applying the techniques proposed in section 3, only the first 4 operations can
be assigned to cell 1 of A . Moreover, in order to do that it is necessary to mo&fy RT, by delaying
4 cycles the last multiplication and addition. This modification does not affect values l(i j). OP, must
be initiated 31 cycles after OP, (any of the operations performed by cell 1, OP,, or OP,,). OP, must
be initiated 19 cycles after OP,, and OP, must be initiated 10 cycles after OP,. So, the delays between
initiations are:

r’(2,l) = 31 r’(3,2) = 19 r’(4,3) = 10 r’(1.2) = 7 r’(2,3) = 19 r’(3.4) = 28

and the corresponding initiation cycle is (7,, 12,. l0,,9J

A maximum of 9 operations can be assigned to each one of the rest of cells. In this case, it is
possible to execute these operations without any modification of the reservation table RT,. The
initiation cycle for cell 2 of A’ is (6,,4,,~,4,,4,,4,,,4,,,4,,,4,,). The rest of cells have the same
initiation cycle with different operation numbers (all these operations are OP,). We focus now on
the design of PE, required to execute cell 1 of A’.

The first valid operation is performed in cell 1 of SA A’. So, in this case we have: T(1) = 0,
T(2) = 31, T(3) = 50,774) = 60. In order to obtain the structure and control of PE,, we have to design
a PFU able to execute OP, and OP, as indicated in the associated reservation tables. The external
aspect of that PFU can be seen in figure 7. When signal CTL takes values U the PFU initiates OP,,
and when CTL takes value b the PFU initiales OP,. Due to the presence of non time homogeneity,
we must distinguish between signals c’, and s ’ ~ , used to output values c’ and s’ obtained by OP,,
and signals c’, and s ’ ~ . used to output values c’ and s’ obtained by OP,.

282 International Conference on Application Specific Array Processors

OPa

U U
L

A
D D

OPb

U
L

A
D D

Figure 6: Reservation tables to implement OP. and OP, uring one multiplier and one adder. both pipelined
into 3 stages.

Applying expresions presented in section 5 , we obtain the delays to be associated with the
feedback links appearing in PE,:

re’,(2,1) =r’(2,1)-[’,,(2,1) = 31 - 31 = 0

re’,(2,1) = 31, re’(3,2) = 19, re’(4.3) = 10, re’(5,4) = 1, re’(1, 2) = 0, re’(2,3) = 12, re’(3.4) = 21

Figure 7 shows the intemal structure and control of PE,. This PE is controlled by a module
38 counter, initialized to zero, and signal c’, . When signal ChT takes value 0 then the PFU must
initiate one of the operations that, in the original SA, performs cell 1 (T(1) mod 38 = 0). This opera tion
is OP, or OP, depending on the value of signal c’,. The PFU receives the values involved in the
computation through inputs 0 of the multiplexors and input N.

When CNT takes value 31 the PFU initiates one operation OP,. This operation corresponds
to one of the operations performed by cell 2 of the original SA (T(2) mod 38 = 31). In this case, one
of the values involved in the computation is a result of an operation assigned to cell 1 of the original
SA. This value has been previously computed by the PFW, and multiplexor No is used to determine
the source of this value, depening on the type of operation performed to obtain it. Analogously, OP,
is initiated when CNT takes value 12 or value 22. The design of the remaining PES is quite easy and
it is not described here.

7. CONCLUSIONS

During the last ten years, a lot of attention has been paid to the SA automatic design problem. A
number of methodologies have been proposed, although in general, the SAS obtained cannot be
directly and efficiently executed. Aspects including limitations in the number of PES, fault tolerance
of communication bandwidth limitations can hardly be taken into account if the SAS are obtained
through automatic synthesis techniques. For this reason, SAS transformation techniques can play a
role of major importance in the design of algorithmically specialized processors.

The method proposed in this paper permits to transform a SA so that it can be efficiently
executed using PFUs. The method is based on two temporal transformation (slowdown and retiming)
and one spatial transformation (coalescing). The temporal transformations permit to modify the SA
in such a way that dependences established by the PFU are preserved. The spatial transformation
permits to improve the hardware utilization. The method has been applied to 1D SAS with data
contraflow. This type of SAS are specially suitable for hardware implementation. However, the use
of PFU is difficult due to the presence of feedback cycles.

To demonstrate theeffectiveness of themethod, we have described an efficient implementation
of a non time homogeneous SA with data contraflow for QR decomposition. The structure and
control of each one of the PES is obtained automatically. Similar results can not be obtained through
any other design methodology. The proposed method can be applied to any kind of 1D SA as well
as 2D SA and it can serve as the basis for an automatic tool oriented to the design of SAPS.

Mapping Applications onto Architectures 283

9 , 1
18.
I I

I

cn.

Figure 7: Internal structure and control for PE 1 which executes cells I , 2 , 3 and 4 of the original SA

8. REFERENCES

J.A.B. Fortes, K.S. Fu y B.W. Wah, "Systematic Design Approaches to Algorithmically Specified
Systolic Arrays," Computer Architecture Concepts and Systems, North Holland 1988, pp. 455-494.
H.T. Kung y C.E. Leiserson, "Systolic Arrays (for VLSI), " Sparse Matrix Proc. 1978,1979, Society
for Indwhial and Applied Mathematics (SIAM), pp. 256-282. (a slightly different version appears
in the text Introduction to VLSI Systems, Section 8.3. C.A. Mead and L.A. Conway. eds.,1980,
Addison-Wesley, Reading, Mass.).
H.T.Kung,L.M. Ruane andD.W.L. Yen, 'Tw~LevelPipelinedSystolic Array forMultidimensional
Convolution," Imageand Vision Computing, Vol. 1. No. 1, Febr. 1983 pp. 30-36
H.T. Kung and M.S. Lam, "Wafer-Scale Integration and Twc-Level Pipelined Implementation of
Systolic Arrays," Journal of Parallel and Distributed Processing, Vol. 1, No. 1, 1984.
C.E. Leiserson and J.B. Saxe, "Optimizing Synchronous Systems," Proc. 22ndAnnual Symp. on
Foundations of Computer Science, Oct. 1981, pp. 23-36.
J.J. Navarro. J.M. LLaberia y M. Valero, "Partitioning: An Essential Step in Mapping Algorithms
Into Systolic Array Processors," Computer. Vol. 20, No. 7, July 1987, pp. 77-89.
J.J. Navarro et al. "LU Decomposition with No Size-Restriction Using a One-Dimensional Systolic
Array Processor," Proc. Second Int'l Conf. Supercomputing. May 1987, Vol. 3, p. 218.
J.H. Pate1 and E.S. Davidson, "Improving the Throughput of a Pipeline by Insertion of Delays,"
Proc. 3thAnnual Int'I Symp. on Computer Archirecrure, 1976, pp. 159-164.
C.V. Ramamcarthy, "Pipeline Architecture," Computing Surveys, Vol. 9, No. 1, March 1977, pp

N. Torralba and J.J. Navarro, "A One-Dimensional Systolic Arrays for Solving Arbitrarily Large
Least Mean Square Problems, 'I Proc. Int' I Conf. on Systolic Arrays. May 1988 pp. 103-1 12.
M. ValemGarcia. J.J. Navarro, J.M. LLaberia y M. Valero, "Systematic Hardware Adaptation of
Systolic Algorithms," Proc. 16th Annual Int' I Symp. on Computer Architecture 1989, pp. 96-104.
D.W.L. Yen and A.V. Kukami, "Systolic Processing and an Implementation for Signal and Image
Processing," IEEE Trans. on Computers, Vol. C-31, No. 10, Oct. 1982, pp. 1000-1009.
Floating Point Division/ Square Root/ IEEE Arithmetic Wll1032/1033, Application Note, Weitek,
1983.

61-102.

