
Scientific Programming 17 (2009) 247–259 247

DOI 10.3233/SPR-2009-0286

IOS Press

Implementation of the two-point angular

correlation function on a high-performance

reconfigurable computer

Volodymyr V. Kindratenko a,∗, Adam D. Myers a,b and Robert J. Brunner a,b

a National Center for Supercomputing Applications, University of Illinois, Urbana, IL, USA
b Department of Astronomy, University of Illinois, Urbana, IL, USA

Abstract. We present a parallel implementation of an algorithm for calculating the two-point angular correlation function as ap-

plied in the field of computational cosmology. The algorithm has been specifically developed for a reconfigurable computer. Our

implementation utilizes a microprocessor and two reconfigurable processors on a dual-MAP SRC-6 system. The two reconfig-

urable processors are used as two application-specific co-processors. Two independent computational kernels are simultaneously

executed on the reconfigurable processors while data pre-fetching from disk and initial data pre-processing are executed on the

microprocessor. The overall end-to-end algorithm execution speedup achieved by this implementation is over 90× as compared

to a sequential implementation of the algorithm executed on a single 2.8 GHz Intel Xeon microprocessor.

Keywords: Reconfigurable computing, angular correlation function

1. Introduction

Correlation analyses are a common tool from the

field of spatial statistics, and thereby impact a wide

range of scientific disciplines. Measuring the relative

clustering of occurrences within a given parameter

space is of wide-ranging interest in fields from geol-

ogy and paleontology [6] to genetics and epidemiology

[1]. In addition, correlation functions are used exten-

sively within the astronomy community to character-

ize the clustering of extragalactic objects [14,16–18].

The two-point correlation function encodes the fre-

quency distribution of separations between coordinate

positions in a parameter space, as compared to ran-

domly distributed coordinate positions across the same

space. In astronomy applications, a common coordi-

nate choice is the angular separations, θ, on the celes-

tial sphere, which can be used to measure the angular

two-point correlation function, which we will denote

here as ω(θ). Qualitatively, a positive value of ω(θ) in-

dicates that objects are found more frequently at angu-

*Corresponding author: Volodymyr V. Kindratenko, National

Center for Supercomputing Applications (NCSA), University of Illi-

nois, Urbana, IL, USA. Tel.: +1 217 265 0209; Fax: +1 217 244

1987; E-mail: kindr@ncsa.uiuc.edu.

lar separations of θ than would be expected for a ran-

domly distributed set of coordinate points (i.e., a cor-

relation). Similarly, ω(θ) = 0 codifies a random dis-

tribution of objects, and ω(θ) < 0 indicates an unex-

pected paucity of objects at separations of θ (i.e., an

anti-correlation).

Reconfigurable computing [7] based on the use

of Field-Programmable Gate Array (FPGA) technol-

ogy has evolved to the point where it can accel-

erate computationally intensive floating-point scien-

tific codes beyond what is possible on conventional,

microprocessor-based systems [21]. Commercially

available high-performance reconfigurable computing

(HPRC) platforms from XtremeData, DRC and SRC,

among others, contain the hardware and tools neces-

sary to develop and execute software that takes advan-

tage of the fine-grain parallelism through direct FPGA

hardware execution in addition to the coarse-grain par-

allelism available on the traditional multiprocessor sys-

tems. As a result, in the past few years considerable ef-

fort has been made to port various computational ker-

nels to reconfigurable hardware, and to quantify and

characterize their performance. However, in general,

fewer attempts have been made to implement appli-

cations that go beyond a single reconfigurable proces-

1058-9244/09/$17.00 2009 – IOS Press and the authors. All rights reserved

248 V.V. Kindratenko et al. / Implementation of the two-point angular correlation function on an HPRC

sor used as an application-specific co-processor to ac-

celerate the computationally-intensive portion of the

code. In this case study, we present a parallel imple-

mentation of a two-point angular correlation function

(TPACF) algorithm on an SRC-6 reconfigurable com-

puter in which the workload is distributed between

a microprocessor and two reconfigurable processors,

each consisting of two FPGAs. The main contribution

of the study is a new formulation of the TPACF al-

gorithm suitable for a parallel implementation on an

FPGA-based system and its experimental validation on

SRC-6 reconfigurable computer. We also project per-

formance to multi-FPGA systems.

2. Prior work

With recent improvements in FPGA capabilities and

increases in size of the chips, computational scientists

began to consider this technology as a low-power high-

performance alternative for conventional multiproces-

sors. Numerous applications – with varying degree of

success – have been implemented on FPGA-based sys-

tems in the past few years. Applications that have a

small, but computationally intensive kernel are usu-

ally good candidates for acceleration on FPGAs. Im-

age and signal processing and cryptography problems

are particularly well-suited for FPGAs [4,22] as these

types of applications typically use integer numerical

data types and are characterized by a high degree of

data reuse and an execution mode in which data is

streamed through a chain of processing blocks with lit-

tle or no additional data produced in-between. 2D im-

age filtering using a separable kernel [8] is just one

such example in which an 18× speedup is achieved by

replacing the 1D 21-point convolution kernel with an

FPGA-based implementation.

Applications that require floating-point arithmetic,

such as those that make an extensive use of linear al-

gebra, FFTs, n-body particle calculations, etc., have

also been ported to FPGAs. Molecular dynamics non-

bonded force-field kernel is a representative example

of such an application in which a 3× speedup over the

conventional processor is achieved by implementing

the kernel on the FPGA [12]. Performance of floating-

point applications, however, is frequently limited by

the resources, such as hardware multipliers, available

on the FPGA chips. It is common to see floating-

point applications running on FPGAs with (2–10)×
speedup (when compared to modern processors) and

(10–100)× speedup for applications that use integer or

fixed-point arithmetic.

We first outlined the idea of using FPGAs to ac-

celerate the computation of two-point angular corre-

lation function in [11]. We implemented algorithm’s

cross-correlation kernel on SGI RASC RC100 recon-

figurable processor using Mitrion-C programming lan-

guage and achieved a 19× speedup as compared to In-

tel Itanium processor. More recently, we implemented

a different version of the algorithm in DIME-C target-

ing Nallatech H101 FPGA accelerator add-on board

achieving a 6.7× speedup over a 2.4 GHz AMD

Opteron processor [9]. The work presented in this pa-

per is based on a different FPGA platform – SRC-6

reconfigurable computer – and different software en-

vironment – SRC Computers Carte. In [15] we pro-

posed to implement fixed-point dot product and bin

mapper using Xilinx System Generator for Simulink

and integrated this operator with the Carte-based ap-

plication. We later found, however, that a simpler and

more efficient solution is to add a custom fixed-point

comparison operator written in Verilog, as described

later in Chapter 6.3. We also investigated how to load-

balance an FPGA-based application by partitioning the

data among several FPGAs and dynamically schedul-

ing their execution [10]. This approach allowed us to

achieve a nearly 100% utilization of reconfigurable

processors and boosted application performance by

9%. In the present paper, we provide a detailed descrip-

tion of the final algorithm and its FPGA-based par-

allel implementation and investigate its performance

and scalability characteristics on a multi-FPGA sys-

tem.

3. The SRC-6 reconfigurable computer

The SRC-6 MAPstation [19] we used consists of a

commodity dual-CPU Intel Xeon board, one MAP Se-

ries C and one MAP Series E processor, and an 8 GB

common memory module, all interconnected with a

1.4 GB/s low latency Hi-Bar™ switch. The SNAP™

Series B interface board is used to connect the CPU

board to the Hi-Bar switch. All these components are

standard.

The MAP Series C processor module contains two

user FPGAs, one control FPGA and memory. There

are six banks (A–F) of on-board memory (OBM); each

bank is 64 bits wide and 4 MB deep for a total of

24 MB. There is an additional 4 MB of dual-ported

memory dedicated solely to data transfer between the

V.V. Kindratenko et al. / Implementation of the two-point angular correlation function on an HPRC 249

Fig. 1. Carte development flow for SRC-6 reconfigurable computer.

two FPGAs. The two user FPGAs in the MAP Series C

are Xilinx Virtex-II XC2V6000 FPGAs. The FPGA

clock rate of 100 MHz is set from within the SRC pro-

gramming environment. The MAP Series E processor

module is identical to the Series C module with the

exception of the user FPGAs: the two user FPGAs in

the MAP Series E are Xilinx Virtex-II Pro XC2VP100

chips.

An FPGA is a semiconductor device consisting of

programmable logic elements, interconnects, and in-

put/output (I/O) blocks (IOBs) that allow implement-

ing complex digital circuits. Xilinx Virtex II FPGA’s

basic logic blocks are a four-input lookup table (LUT)

and a flip-flop. Two LUTs, two flip-flops, and some

control logic form a SLICE – basic building block

and a unit used to measure FPGA resources utiliza-

tion. Many FPGAs also include higher-level functional

blocks, such as 18 × 18 hardware multipliers and

blocks of RAM (BRAM) distributed on the chip. As an

example, Xilinx Virtex-II Pro XC2VP100 FPGA con-

tains 88,192 4-input lookup tables, 88,192 flip flops,

444 dedicated 18 × 18 integer multipliers and 999 KB

of internal dual-ported block RAM.

Code for SRC MAPstation is written in the MAP C

programming language using the Carte™ version 2.1

programming environment [20]. The Intel C (icc) ver-

sion 8.1 compiler is used to generate the CPU-side of

the combined CPU/MAP executable. The SRC MAP

C compiler produces the hardware description of the

FPGA design for our final, combined CPU/MAP tar-

get executable. This intermediate hardware description

of the FPGA design is passed to Xilinx ISE place and

route tools to produce the FPGA bit file. Finally, the

linker is invoked to combine the CPU code and the

FPGA hardware bit file(s) into a unified executable.

Figure 1 presents the overall development flow using

Carte.

4. The two-point angular correlation function

Estimating angular correlation functions generally

requires computing histograms of angular separations

between a particular set of positions in a data space

[14]. The positions in question might be the set of

data points themselves, histograms of angular separa-

tions for which we will denote as DD(θ), or a set of

points that are randomly distributed in the same space

as the data, which we will denote RR(θ). Similarly

the distribution of separations between the data sam-

ple and a set of random points, which we will denote

DR(θ), can be calculated. Henceforth, we will often re-

fer to DD(θ) and RR(θ) counts as “autocorrelations”

and DR(θ) counts as “cross-correlations”. Once such

quantities are known, ω(θ) is estimated as in [14]:

ω(θ) =
DD(θ) − 2DR(θ) + RR(θ)

RR(θ)
. (1)

Naively, calculation of the separation distributions

(DD, DR, RR) for ND total points is an O(N2
D) prob-

lem, as it requires computing distances between all

possible pairs of points in the data space. Additionally,

as the variance of each of the separation distributions

diminishes with an increase in the number of points

sampled, using a random sample that is nR times larger

than the dataset, and then renormalizing by dividing

out by the factor of nR, is recommended. This guar-

250 V.V. Kindratenko et al. / Implementation of the two-point angular correlation function on an HPRC

antees that the finite size of the random sample intro-

duces a contribution to the variance that is nR times

smaller than the contribution from the data sample it-

self (e.g., see [14]). To ensure the random points in-

troduce fractional statistical imprecision compared to

the natural limitations of the data, the random sample

is usually constructed to contain nR ∼ 100 times as

many coordinate positions as the dataset.

Computing the distribution of all separations for a

random sample that is nR times larger than a dataset

increases calculation complexity by a factor of n2
R. As

modern astronomical data sets can contain many mil-

lions of positions, complexity can grow rapidly. One

might therefore prefer to create nR unique random

samples of comparable size to the dataset, and then av-

erage the separation distributions over these individual

realizations, thus reducing the complexity introduced

by sampling across the random realizations to nR. For-

tunately, statistical precision is not reduced by such an

approach [14]. Equation (1) can then be written:

ω(θ) =
nR · DD(θ) − 2

∑nR −1
i=0 DRi(θ)

∑nR −1
i=0 RRi(θ)

+ 1,

(2)

where nR is the number of sets of random points.

Astronomical measurements are usually made in a

spherical coordinate system, with the coordinate po-

sitions expressed as Right Ascension and Declination

(i.e., latitude and longitude) pairs. The separation, θ,

between any two positions p and q in such a coordinate

system can be determined by first converting the spher-

ical coordinates to Cartesian coordinates, and comput-

ing θ as:

θ = arccos(p · q)

= arccos(xpxq + ypyq + zpzq). (3)

The binning schema implemented by astronomers is

typically logarithmic, as clustering patterns can be im-

portant in extragalactic astronomy across a wide range

of angular scales. Each decade of angle in the loga-

rithmic space is divided equally between k bins, mean-

ing that there are k equally-logarithmically-spaced

bins between, for example, 0.01 and 0.1 arcminutes.

The bin edges are then defined by 10j/k, where

j = −∞, . . . , −1, 0, 1, . . . , +∞, and the bin num-

ber for angular separation θ can be found by project-

ing logarithm of θ onto an interval of integer values,

from 0 to M , that define bin numbers with bound-

aries 10j/k:

bin = int[k(log10 θ − log10 θmin)], (4)

where θmin is the smallest angular separation that

can be measured and M is the total number of

bins.

Theoretically, each possible angular separation lies

in a unique bin, and ω(θ) can thus be uniquely de-

termined for any distribution of points. Angular coor-

dinates, however, as measured by modern astronomi-

cal surveys, are typically precise to ∼0.1 arcseconds

(e.g., [23]). The definitions of the bin edges are ab-

solute; but the θ values have some built-in tolerance.

Expressing θ values to different numbers of decimal

places, therefore, can cause separations to drift be-

tween bins, affecting an estimate of ω(θ), but not ren-

dering that estimate incorrect. Any differences in the

estimates of ω(θ) that are introduced by imprecision

in measured coordinates are, in most instances, com-

pletely undetectable, as variations in the random sam-

ples used to estimate DR(θ) and RR(θ) will usually

dominate this numerical imprecision.

5. TPACF algorithm

A block-diagram of the algorithm for computing

TPACF is shown in Fig. 2. Initially, the data points

are loaded/converted from spherical to Cartesian co-

ordinates and the autocorrelation function, DD(θ), for

the entire dataset is computed. Random points are then

loaded/converted one set at a time. For each random

set, the autocorrelation for the random dataset, RR(θ),

and the cross-correlation between the data points and

the random set, DR(θ), are computed. Equation (2) is

applied at the end.

The computational core of the algorithm is the sub-

routine that calculates binned separation distributions

for either DD(θ) (and RR(θ)) or DR(θ) style counts.

The analytical binning schema presented by Eq. (4)

requires the calculation of arccos and log functions,

which are computationally expensive. Therefore, in

practice we use a different bin mapping schema based

on the observation that if only a small number of

bins are required, a faster approach is to project the

bin edges to the pre-arccosine “dot product” space

and search in this space to locate the corresponding

bin. The values of bin edges 10j/k in the modified

(“dot product”) space, θj , can be pre-computed as fol-

V.V. Kindratenko et al. / Implementation of the two-point angular correlation function on an HPRC 251

Fig. 2. Block-diagram of the TPACF algorithm.

lows:

θj = cos(10log10 θmin+j/k), j = 0, . . . , M. (5)

Since the bin edges are ordered, an efficient binary
search algorithm [13] can be used to quickly locate
the corresponding bin in just log2 M steps (see Algo-
rithms 1 and 2).

Computational complexity of the autocorrelation al-
gorithm for computing binned separations is O(N2/2 ·
log2 M) whereas computational complexity of the
cross-correlation algorithm is O(N2 · log2 M).

6. Implementation of the TPACF algorithm on an

SRC-6 reconfigurable computer

6.1. Reference C implementation of the TPACF

algorithm

The reference C implementation of the TPACF algo-
rithm described in Section 5 is straightforward. We ob-

serve, however, that when executed on the SRC-6 host

processor, only 83 MFLOPS (about 1.5% of peak float-

ing point performance of the processor) is typically

achieved. Since the binary search is applied after each

dot product calculation in the main compute subrou-

tine, performance of the reference C implementation is

less dependent on the floating-point performance.

The reference C implementation was compiled us-

ing the Intel C version 8.1 compiler with compiler flags

-O3, -xW and -tpp7, thus, enabling processor-specific

optimizations. All code execution time measurements

presented in this paper were obtained using the get-

timeofday library subroutine.

6.2. FPGA implementation of the

autocorrelation/cross-correlation subroutines

The reference C implementation was written with

the autocorrelation and cross-correlation functions

coded as a single subroutine in which autocorrelation

252 V.V. Kindratenko et al. / Implementation of the two-point angular correlation function on an HPRC

Input: set of Cartesian coordinates of N points x1, . . . , xN on the celestial sphere,

set of M modified bins: [θ0, θ1), [θ1, θ2), . . . , [θM −1, θM);

Output: for each bin, the number of unique pairs of points (xi, xj) for which the dot

product is in the respective bin: Bl = |{ij: θl−1 � θ(xi, xj) < θl}|;

1. for i = 1, . . . , N − 1 do

2. for j = i + 1, . . . , N do

3. d ← xi · xj

4. l ← bsearch(d, θ)

5. Bl ← Bl + 1

Algorithm 1. Autocorrelation, DD and RR counts.

Input: 2 sets of Cartesian coordinates of N points x1, . . . , xN and y1, . . . , yN on the

celestial sphere, set of M modified bins: [θ0, θ1), [θ1, θ2), . . . , [θM −1, θM);

Output: for each bin, the number of unique pairs of points (xi, yj) for which the dot

product is in the respective bin: Bl = |{ij: θl−1 � θ(xi, yj) < θl}|;

1. for i = 1, . . . , N do

2. for j = 1, . . . , N do

3. d ← xi · yj

4. l ← bsearch(d, θ)

5. Bl ← Bl + 1

Algorithm 2. Cross-correlation, DR counts.

or cross-correlation mode of execution is triggered by
the input parameters. On the other hand, it can be

advantageous to implement these two functions sepa-
rately when porting the implementation to the SRC-6

platform because we have two different FPGA chips
in the two MAPs, and each implementation can be tar-

geted to best match the available on-chip resources to
the function properties. Code executed on the micro-

processor is still responsible for loading and convert-
ing data files, running the overall compute loop, com-
puting the final results, etc. However, two versions of

the computational kernel can now be outsourced to two
MAPs.

6.2.1. Autocorrelation kernel

The autocorrelation subroutine was written in MAP
C targeting the MAP Series C reconfigurable processor

module. The design occupies both FPGAs of the MAP
Series C processor and makes use of all available OBM
banks. The code implemented on the primary chip is

responsible for transferring bin boundaries, bin values,
and the sample to be processed into OBM banks. Bin

boundaries and existing bin values are transferred first;
they are mirrored by each FPGA to the on-chip mem-

ory. Sample points are transferred next, they are dis-
tributed across all 6 OBM banks and permissions are

given to the secondary chip to access only one half of

the memory banks. The workload is then split equally

between the two FPGAs. Once the entire sample of

coordinate points is processed and the results are ob-

tained on both chips, they are merged on the primary

chip and streamed out to the host microprocessor.

The computational core of the autocorrelation sub-

routine is implemented as a nested loop that closely

follows the reference C implementation, with one im-

portant exception. We note that the MAP C compiler

attempts to pipeline only the innermost loop of the

code. The bin search loop, used to find the bin edges

that a coordinate-point-separation lies between, is the

innermost loop in the reference C implementation.

Pipelining this loop alone does not lead to an efficient

FPGA implementation, as multiple clock cycles would

have to be spent to locate the bin that needs to be up-

dated. Therefore, it is more advantageous to fully un-

roll this loop and let the MAP C compiler to pipeline

the next innermost loop instead. Thus, instead of run-

ning a binary search loop, we implement a cascade of

if/if-else statements necessary to manually unroll the

binary search loop for a fixed number of bins. This is

accomplished using selector macro supported by SRC

MAP C compiler that tests at once all bin boundaries

V.V. Kindratenko et al. / Implementation of the two-point angular correlation function on an HPRC 253

for a given angular separation. This way, a new re-

sult can be computed on each iteration of the pipelined

loop, thus achieving a substantial improvement in ef-

ficiency of the overall computation. Moreover, there is

enough space on each FPGA chip to unroll the loop by

a factor of two. Thus, the overall execution time of this

design is proportional to N2/8 where N is number of

points in the sample being processed: the overall algo-

rithm complexity is ∼N2/2 (autocorrelation), and the

execution is split between two chips with 2 simultane-

ous calculations per chip.

6.2.2. Cross-correlation kernel

The cross-correlation subroutine was written in

MAP C targeting the MAP Series E reconfigurable

processor module. As with the autocorrelation sub-

routine, the code implemented on the primary chip

is responsible for transferring the bin boundaries, the

bin values, and the sample to be processed into OBM

banks. As before, the workload is then split equally

between two FPGAs, and the results are assembled at

conclusion.

We introduce an extra loop in the cross-correlation

subroutine in which a fraction of one of the sam-

ples being correlated is brought into the BRAM of

each FPGA. This is necessary for two reasons. First,

a cross-correlation, or DR(θ) count, requires two sam-

ples, a data sample and a random sample, and gener-

ally, there is not enough OBM to store the entirety of

both samples. Therefore, a provision needs to be made

to incorporate and process the 2N coordinate positions

that comprise both samples as smaller subsets. This

can be implemented either on the microprocessor side,

or on the MAP side. We have chosen to implement this

on the MAP side to minimize the penalty of calling

a MAP function multiple times. Second, even if there

would be enough OBM memory to store both samples

concurrently, there are not enough independent OBM

banks to provide simultaneous access to several co-

ordinate pairs from the samples, which is needed to

achieve a fully pipelined implementation. Therefore,

a portion of the sample points have to be copied to

several BRAM banks to provide the required mem-

ory bandwidth needed to support simultaneous calcu-

lations.

Inside the extra loop, which we introduced to di-

vide our samples into manageable chunks, sits the rest

of the code. This code is similar to the one written

for the autocorrelation subroutine with two exceptions.

First, the inner and outer loops are fused into a single

loop. This became possible because the outer and in-

ner loop index ranges are independent in the case of

a cross-correlation. Second, MAP Series E FPGAs are

larger and they have enough space to unroll the loops

by a factor of three. Thus, overall execution time of

this design is proportional to N2/6 since there are N2

operations to perform and they are split between two

chips, each chip implementing three simultaneous cal-

culations.

6.3. Exploiting custom-size numerical types

The difference between two smallest bin edges,

binedge0 and binedge1, is 6 × 10−12. Thus, just 12 dig-

its after the decimal point (40 bits of the mantissa) are

sufficient to provide the required precision used in this

particular application. We experimentally verified this

observation on a large data set. Thus, instead of com-

paring full double-precision floating-point numbers, it

is sufficient to compare only the first 12 digits after the

decimal point. This can be implemented in a number

of ways: we can use fixed-point numerical type as in

[15], or we can just scale up both the bin boundaries

(on the host system before they are loaded to OBM)

and the dot product (once it is computed on FPGA)

by 1012 and use only the lower 40 bits (and the high-

est bit for sign) for comparison via a custom-made

comparison operator written in Verilog. SRC Carte de-

velopment environment provides a way to integrate

third party subroutines written in VHDL or Verilog

hardware description languages and therefore using the

custom comparison operator was trivial. The achieved

space savings were significant: over 27% of SLICEs

per single bin mapping core of 31 comparison opera-

tors. As a result, the autocorrelation subroutine was ex-

tended from two simultaneous distance calculation/bin

mapping cores per chip to four such cores; the over-

all execution time of this design is now proportional

to N2/16. Also, the cross-correlation subroutine was

extended from three to five computational cores per

chip; the overall execution time of this design is pro-

portional to N2/10. Overall resource utilization pat-

tern has changed as compared to our previous designs:

while SLICEs utilization remains almost identical, the

use of hardware multipliers increased.

6.4. Exploiting task-level parallelism

Once a random data dataset is loaded from the

disk, computations of the autocorrelation and cross-

correlation functions involving this dataset are en-

tirely independent and may thus be executed simul-

taneously. Moreover, while calculations are executed

254 V.V. Kindratenko et al. / Implementation of the two-point angular correlation function on an HPRC

Fig. 3. The execution sequence of independent tasks in the final two-point angular correlation function implementation. Parallel scheduling of

these tasks is accomplished via OpenMP.

on the MAPs using one dataset, the next random data

dataset can be loaded and converted by the micro-

processor. Figure 3 shows the execution sequence of

different modules that can occur simultaneously. We

can easily modify our reference C code to take advan-

tage of running three simultaneous execution threads

via OpenMP. One such thread is responsible for read-

ing in a sample, the second thread is responsible

for executing the autocorrelation subroutine, and the

third thread is responsible for executing the cross-

correlation subroutine. Only when all 3 threads are

done, we move to the next random data dataset. Thus,

we take advantage of the coarse-grain task-level par-

allelism using multithreaded execution on the conven-

tional microprocessor platform in addition to the fine-

grain instruction-level parallelism implemented via the

direct hardware execution of the core algorithms on

two MAPs. The overall execution time of this imple-

mentation, in accordance with Amdahl’s Law, will be

limited by the execution time of the slowest compo-

nent, which is the cross-correlation subroutine.

For sufficiently large datasets, the measured sus-

tained floating-point-equivalent performance of this fi-

nal dual-MAP implementation is 7.4 GFLOPS, com-

pared to 83 MFLOPs in the reference C implementa-

tion.

7. Performance and scalability

The dataset and random samples we use to calcu-

late ω(θ) in this work are the sample of photometri-

cally classified quasars and the random catalogs first

analyzed by [17]. We use 100 random samples (nR =

100). The dataset, and each of the random realizations,

contains 97,178 points (ND = 97,178). We use a bin-

ning schema with five bins per decade (k = 5), θmin =

0.01 arcminutes, and θmax = 10,000 arcminutes. Thus,

angular separations are spread across 6 decades of

scale and require 30 bins (M = 30).

Figure 4 shows the percentage of the execution time

expended performing various operations such as file

I/O (including data conversion), computing the auto-

correlation of the data, the autocorrelation of the ran-

dom samples, and the cross-correlation between the

data and the random samples. The overall performance

of the reference implementation of the algorithm is

limited by the performance of the computational core

subroutine. Figure 4 (left bar) indicates that we would

need to achieve a (TDD + TDR + TRR)/T I/O ≈ 360×
speedup of this subroutine in order for our applica-

tion to become file I/O (and data conversion) bound.

Here TDD, TDR and TRR are compute times for different

kernels and T I/O is the data I/O and conversion time.

While obtaining such a speedup is unlikely on the re-

configurable system used in this study, realizing even a

modest speedup would lead to a substantial reduction

of the overall execution time.

Figure 4 (right bar) shows the execution time per-

centages for our reference C implementation in which

the compute kernel subroutine has been replaced with

the two MAP-based subroutines, as described in Sec-

tion 6.3. This result can be directly compared to that

shown by the left bar, as it represents results obtained

for the same sample sizes. As before, about one and a

half seconds of the overall time is spent on file I/O and

data conversion. However, the overall time spent by

the FPGA-based autocorrelation and cross-correlation

V.V. Kindratenko et al. / Implementation of the two-point angular correlation function on an HPRC 255

Fig. 4. Analysis of time spent while processing sample sizes of

8,000 (ND = 8,000) points by the reference C implementation

(left) and an implementation in which the compute kernel subrou-

tine was replaced with two MAP-based subroutines (right) of the

TPACF algorithm. One set of data points and 100 sets of random

points (nR = 100) of the same size were used to generate both

plots. Numbers on the bars indicate the absolute execution time (in

seconds) for the three major tasks. Note that time to compute DD

counts is less that 0.4%.

subroutines is significantly smaller when compared

to the microprocessor-based reference implementation.

There is also a different ratio of time spent executing

each of these subroutines. This is due to the differences

in the implementation of these subroutines in our ref-

erence C code and MAP C codes. The bottom line is

that this hybrid microprocessor/dual-MAP design out-

performs the reference microprocessor-only design by

a factor of TCPU/TMAP ≈ 44 for samples of only

8,000 points where TCPU = TDD + TDR + TRR + T I/O

for the CPU implementation and TMAP = TDD +

TDR +TRR +T I/O for the FPGA implementation. Thus,

even without exploiting the task-level parallelism as

described in Section 6.4, we achieved a 44× speedup

simply by outsourcing the execution of the two com-

putational kernels to two MAPs used sequentially.

Figure 5(a) shows execution time as a function

of the sample size for 2 implementations: the origi-

nal reference C implementation and the implementa-

tion in which I/O and FPGA computations are fully

overlapped, as described in Section 6.4. Note that in

this implementation, TMAP ≈ TDD + max(TDR, TRR,

T I/O) ≈ TDD + TDR since the execution of differ-

ent parts of the algorithm is fully overlapped with

each other and the cross-correlation is the most time-

consuming part. The execution time of the micro-

processor-only reference C implementation grows

quadratically with sample size, as expected. The exe-

cution time of the dual-MAP implementation increases

quadratically as well, but it follows a different curve.

For small datasets, overhead associated with calling the

MAP-based subroutines is the dominant factor in the

overall code execution time. However, as the sample

size increases, this overhead becomes relatively small

when compared to the time spent on actual calcula-

tions. This effect is best demonstrated in Fig. 5(b),

which shows the ratio of the execution time of the

reference C implementation and the dual-MAP imple-

mentation, TCPU/TMAP. This ratio indicates the rela-

tive performance improvements between different im-

plementations. Since we take into account the time

spent by each implementation to perform all the oper-

ations necessary to obtain the final set of results (bin

counts in this case), it is fair to consider this ratio as

the measure of the overall algorithm speedup. Thus,

Fig. 5(b) indicates that the speedup of the dual-MAP

implementation approaches 90×; in other words, our

parallel implementation of the TPACF algorithm effec-

tively achieves a performance improvement of 90× as

compared to the reference C implementation.

The measurements presented in Fig. 4 (right bar)

for a dataset consisting of 8,000 points show that

loading the data from file and converting to Carte-

sian coordinates requires T I/O ≈ 1.55 seconds. Over-

all execution time of our dual-MAP implementation

of the algorithm for the same 8,000 data points is

TMAP ≈ 6.63 seconds. We can increase the compu-

tational throughput of the algorithm until the I/O be-

comes the dominant factor by just adding a few extra

MAP pairs; in fact, just 4 MAP pairs will be almost

sufficient: TMAP/T I/O ≈ 4.

The number of MAP pairs, of course, depends on

the size of the dataset processed. The plot in Fig. 6(a)

shows dependency between the dataset size and the

time it takes our parallel algorithm to execute one or

another task with the corresponding dataset. Thus, the

process of loading (and pre-processing) a dataset is

linearly proportional to the dataset size. The overall

execution time of the parallel algorithm very closely

follows the execution time of the cross-correlation

subroutine, which is the dominant component in the

algorithm. The gap between the overall execution time

and the time necessary to load the required datasets

increases with the dataset size. This suggests that in

order to stay I/O-bound, we would need to use addi-

tional MAP pairs as the dataset size increases. Fig-

ure 6(b) shows a projection of the number of MAP

pairs that are necessary for different dataset sizes. The

256 V.V. Kindratenko et al. / Implementation of the two-point angular correlation function on an HPRC

(a) (b)

Fig. 5. (a) Execution time as a function of dataset size, (b) overall algorithm execution speedup as a function of dataset size.

(a) (b)

Fig. 6. (a) Execution time of various parallel threads as a function of dataset size, (b) projection of the number of MAP pairs necessary to stay

I/O-limited as the dataset size increases. The projection is based on the extrapolation from the proposed model.

projected number of MAP pairs is computed as a

(rounded to the next integer) ratio of the overall ex-

ecution time to the time necessary to load the corre-

sponding dataset (which we consider to be our overall

execution time target). For example, overall execution

time achieved on one dual-MAP system for a dataset

consisting of 20,480 data points is TMAP ≈ 42.49 sec-

onds and the time necessary to load this data from the

disk is T I/O ≈ 3.68 seconds. In order for the appli-

cation to become disk I/O-bound, we would need to

decrease the overall execution time to be equal T I/O

time. This can be achieved if we split the calculations

among TMAP/T I/O ≈ 12 MAP pairs. Adding more

than 12 MAP pairs will not improve the performance

as the overall execution time of the algorithm at this

point will become limited by the time necessary to load

(and pre-process) the data from disk.

Figure 6(b) indicates that if we attempt to stay I/O-

bound, we will very quickly require a large number of

MAPs. Thus, for a dataset consisting of 81,920 points

V.V. Kindratenko et al. / Implementation of the two-point angular correlation function on an HPRC 257

we will require 46 pairs of MAPs. With this number

of MAPs, we can process the data in approximately

the same amount of time as it takes to load the data

from the disk. Of course in this analysis we assumed

that data I/O and MAP computations are fully over-

lapped and CPU and Hi-Bar switch are not the bot-

tleneck, which is the case for our dual-MAP system.

These assumptions, however, may not hold on larger

multi-MAP systems. In addition, we will likely en-

counter other system scalability issues that are not im-

mediately apparent on a machine as small our dual-

MAP system.

8. Discussion and lessons learned

Application performance improvements achieved on

the dual-MAP system need to be considered in the con-

tent of system acquisition cost, power requirements,

and application development efforts in order to fully

understand the potential and shortcomings of recon-

figurable computing. While several multi-FPGA sys-

tems are readily available, including SRC-6, their use

requires a careful match between the application char-

acteristics and the technology capabilities in order to

achieve the desirable level of performance while opti-

mally utilizing the available resources. Application de-

velopment efforts necessary to transform a sequential

application into a working FPGA implementation us-

ing Carte development environment are not that signifi-

cant. However, development efforts necessary to arrive

at an efficient FPGA implementation that fully utilizes

all available FPGA resources are substantial. As a case

in point, the following steps were involved in adapting

and optimizing the TPACF algorithm for the SRC-6 re-

configurable computer:

• Loop pipelining that enables simultaneous exe-

cution of the entire loop body in a single clock

cycle (fine-grain parallelism). In order to take

advantage of this feature, however, we had to

manually unroll the binary search loop into an

equivalent of a sequence of if/if else statements.

Once this loop is unrolled, the next innermost

loop – cycling through the points in the second

dataset – can be pipelined by the SRC Carte com-

piler. The cost of manually unrolling the binary

search loop is high as it resulted in a fixed size im-

plementation (32 bins max) and required a signif-

icant amount of FPGA random logic and routing

resources, thus limiting our ability to unroll the

outer loop. Yet, the advantage is significant: the-

oretical peak performance of the pipelined loop
in our application is 500 MFLOPS (three multi-
plications and two additions are required to com-
pute the dot product, running at 100 MHz and ex-
cluding data transfer overhead), or nearly 4 GOPS
when counting the comparison operators.

• Partial loop unrolling that enables simultaneous
execution of several loop iterations across multi-
ple FPGAs. In order to take advantage of this fea-
ture, we had to duplicate some of the data across
the multiple BRAMs on the FPGAs as well as to
implement additional control flow logic to avoid
simultaneous access to OBM banks from multi-
ple loop body instances. The extent to which the
outer loop can be unrolled is limited by the avail-
able FPGA random logic as well as the off-chip
memory bandwidth necessary to sustain the fully
pipelined inner loop. At the end, we were able to
place only three loop body instances per chip on
the MAP Series E processor, resulting in the the-
oretical peak performance of 3 GFLOPS, and two
loop body instances per chip on the MAP Series C
processor, resulting in the theoretical peak perfor-
mance of 2 GFLOPS.

• Replacing full double-precision floating-point
numbers with 41-bit fixed point numbers and
implementing a custom comparison operator re-
sulted in a substantial reduction of the FPGA ran-
dom logic and routing resources, which, in turn,
enabled to implement two additional loop body
instances per chip on the MAP Series E proces-
sor. This brings the theoretical peak performance
of the MAP Series E processor implementation
to 5 GFLOPS, and the MAP Series C proces-
sor implementation to 4 GFLOPS. While the first
two techniques are rather common when optimiz-
ing applications for running on the reconfigurable
hardware, this last optimization technique, while
powerful, is suitable for only some applications
and could be difficult to implement as it requires
an in-depth analysis of the numerical characteris-
tics of the algorithm.

• Scaling up the application to multiple reconfig-
urable processors (exploiting coarse-grain paral-
lelism at the system level). This requires that the
problem can be expressed as a set of indepen-
dent tasks that can be executed simultaneously. In
the case of the TPACF application, such indepen-
dent tasks are readily available and their execu-
tion can be scheduled simultaneously, thus bring-
ing the theoretical peak performance of the entire
application to 9 GFLOPS.

258 V.V. Kindratenko et al. / Implementation of the two-point angular correlation function on an HPRC

Once implemented, these steps resulted in over
1,100 lines of MAP C code compared to just 50 lines
of the reference C implementation of the kernel. While
the code transformation and optimization techniques
used by us are not specific to any particular FPGA de-
vice or system, the resulting code is not portable to
FPGA-based systems other than those offered by SCR
Computers because the MAP C compiler and Carte de-
velopment environment only support SRC Computers
line of reconfigurable processors.

While using OpenMP to orchestrate the execution of
multiple tasks on the dual-MAP system was straight-
forward, it did not result in the even utilization of the
reconfigurable processors. Remember that the overall
execution time of the autocorrelation subroutine im-
plemented on the MAP Series C processor is propor-
tional to N2/16 whereas the execution time of the
cross-correlation subroutine executed on the MAP Se-
ries E processor is proportional to N2/10 where N is
the number of points in the dataset. Thus, MAP Series
C processor finishes its work before the MAP Series E
processor. We measured that in practice MAP Series C
processor is idle nearly one-fifth of the time whereas
MAP Series E processor is fully utilized and the ac-
tual measured performance of our final implementa-
tion is just 7.4 GFLOPS. The 1.6 GFLOPS drop from
the theoretical peak performance is partially due to the
non-load-balanced implementation and partially due to
the data transfer and control logic overheads encoun-
tered in our FPGA implementation. Load-balanced im-
plementation is more involved as it requires additional
data partitioning and dynamic job scheduling, which is
beyond the scope of this article. This issue has been
addressed in a separate conference paper [10].

Since the computational complexity of our problem
is O(N2), we have not fully explored data transfer hid-
ing techniques – another commonly used performance
optimization strategy on HPRC systems. The amount
of time necessary to transfer the required data from
the main system memory to the OBM banks is linearly
proportional to the dataset size, thus, it is responsible
only for a small fraction of the overall execution time.

Reference C implementation of the algorithm is un-
constrained at run-time by the number of bins and
by the bin boundary values. However, this is not the
case with the FPGA-based implementation. In order
to achieve maximum performance, we implemented
41-bit fixed-point comparison operator which does not
allow us to use bin boundaries smaller than 0.01 ar-
cminute. In order to do so, we will need to increase
the size of the numerical types used in the application.
While trivial to implement, this change however will

result in increased random logic utilization, which will
result in reduced number of compute engines per chip,
thus decreasing the overall performance. The opposite
is true too: for bin boundaries that require fewer bits
to represent them, we can decrease the random logic
utilization, thus potentially implementing larger num-
ber of compute engines, and thus increasing the overall
performance. The ability to implement arbitrary-sized
numerical types and arithmetic operators is unique
to FPGAs, it cannot be accomplished on any other
processor technology.

Number of bins used in the application is currently
hardcoded to 32. Decreasing the number of bins at run-
time is not an issue as we can simply ignore unused
bins. However, increasing the number of bins will re-
quire modifying the source code and will lead to in-
creased random logic utilization.

The cost/power benefits of reconfigurable comput-
ing technology for different applications and systems
have been examined extensively in [3,5]. Overall
power consumed by our dual-MAP system, includ-
ing the dual-CPU motherboard and hardware inter-
faces necessary to drive the MAPs, is about 290 Watt.
A 90-CPU cluster consisting of 45 dual-Xeon nodes
that theoretically could deliver the same application
performance as our dual-MAP system, consumes about
9,000 Watt. Thus, the FPGA-based solution uses 3.2%
of the power of the CPU-based solution. Our dual-
MAP system was acquired in 2006 for about $100K,
which would have been comparable to the cost of a
low-end 90-CPU cluster consisting of 45 dual-Xeon
nodes. It is interesting to note however that the new
generation SRC-7 MAPStation with a single Series
MAP H reconfigurable processor has more capabil-
ity than our dual-MAP system and costs only half as
much.

9. Conclusions

In this case study, we have demonstrated how a mul-
tithreaded multi-MAP application that involves com-
putations on large datasets can be implemented on an
SRC-6 reconfigurable computer. Our parallel imple-
mentation of the TPACF algorithm uses two MAPs and
outperforms a similar sequential implementation exe-
cuted on a 2.8 GHz Intel Xeon microprocessor by a
factor of over 90. We have shown the techniques ap-
plied to the reference C implementation for transform-
ing the code for a multi-MAP execution and demon-
strated their impact on the performance. Our analy-
sis also indicates that the computational throughput of
this implementation can be increased by adding extra

V.V. Kindratenko et al. / Implementation of the two-point angular correlation function on an HPRC 259

MAPs until the overall execution time becomes limited

by our ability to read (and pre-process) data from the

disk. We have shown that the exact number of MAPs

that are necessary to stay I/O-bound depends on the

size of the analyzed dataset and we have provided an

empirical estimate of the number of MAPs required as

a function of the dataset size.

In this initial study we have investigated the perfor-

mance of a naïve, brute-force O(N2) algorithm. We

realize, however, that this is not the final step. It has

been demonstrated that the calculation of the separa-

tion distributions DD, DR and RR for N total points

can be done in N log N steps using kd-tree space par-

titioning [16]. Our next step is to implement the kd-

tree-based computational kernel and to study and com-

pare the performance achieved by this more efficient

sequential algorithm.

Acknowledgments

This work was funded by NASA grant

NNG06GH15G. We would like to thank David Caliga,

Dan Poznanovic, and Jeff Hammes, all from SRC

Computers Inc., for their help and support with SRC-6

system. Special thanks to Trish Barker from NCSA’s

Office of Public Affairs for help in preparing this pub-

lication.

References

[1] J. Abello and G. Cormode, Discrete Methods in Epidemiology:

Dimacs Workshop, Data Mining and Epidemiology, American

Mathematical Society, Boston, MA, 2004.

[2] R. Brunner, V. Kindratenko and A. Myers, Developing

and deploying advanced algorithms to novel supercomput-

ing hardware, in: Proc. NASA Science Technology Conference

(NSTC’07), Adelphi, MD, 2007.

[3] S. Craven and P. Athanas, Examining the viability of FPGA

supercomputing, EURASIP J. Embedded Syst. 1 (2007), 13.

[4] B. Draper, J. Beveridge, A. Bohm, C. Ross and M. Chawathe,

Accelerated image processing on FPGAs, IEEE Trans. Image

Proces. 12(12) (2003), 1543–1551.

[5] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko

and D. Buell, The promise of high-performance reconfigurable

computing, IEEE Computer 41(2) (2008), 78–85.

[6] L. Feyen and J. Caers, Multiple-point geostatistics: a power-

ful tool to improve groundwater flow and transport predictions

in multi-modal formations, in: Proc. Fifth European Confer-

ence on Geostatistics for Environmental Applications, Neuchâ-

tel, Switzerland, 2004.

[7] M.B. Gokhale and P.S. Graham, Reconfigurable Computing:

Accelerating Computation with Field-Programmable Gate Ar-

rays, Springer-Verlag, Dordrecht, 2005.

[8] V. Kindratenko, Code partitioning for reconfigurable high-

performance computing: A case study, in: Proc. International

Conference on Engineering of Reconfigurable Systems and Al-

gorithms (ERSA’06), Las Vegas, NV, 2006.

[9] V. Kindratenko and R. Brunner, Accelerating cosmological

data analysis with FPGAs, in: Proc. IEEE Symposium on Field-

Programmable Custom Computing Machines, Napa, CA, 2009.

[10] V. Kindratenko, R. Brunner and A. Myers, Dynamic load-

balancing on multi-FPGA systems: a case study, in: Proc. 3rd

Annual Reconfigurable Systems Summer Institute (RSSI’07),

Urbana, IL, 2007.

[11] V. Kindratenko, R. Brunner and A. Myers, Mitrion-C appli-

cation development on SGI Altix 350/RC100, in: Proc. IEEE

Symposium on Field-Programmable Custom Computing Ma-

chines (FCCM’07), Napa, CA, 2007.

[12] V. Kindratenko and D. Pointer, A case study in porting a

production scientific supercomputing application to a recon-

figurable computer, in: Proc. IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM’06),

Napa, CA, 2006.

[13] D. Knuth, The Art of Computer Programming, Vol. 3: Sorting

and Searching, 3rd edn, Addison-Wesley, Reading, MA, 1997,

pp. 409–426.

[14] S.D. Landy and A.S. Szalay, Bias and variance of angular cor-

relation functions, Astrophys. J. 412 (1993), 64–71.

[15] D. Meixner, V. Kindratenko and D. Pointer, On using Simulink

to program SRC-6 reconfigurable computer, in: Proc. Mili-

tary and Aerospace Programmable Logic Device (MAPLD’06),

Washington, DC, 2006.

[16] A. Moore et al., Fast algorithms and efficient statistics: N-point

correlation functions, in: Mining the Sky Proc. MPA/ESO/MPE

Workshop, A.J. Banday, S. Zaroubi and M. Bartelmann, eds,

Springer-Verlag, Heidelberg, 2001, pp. 71–82.

[17] A.D. Myers, R.J. Brunner, G.T. Richards, R.C. Nichol, D.P.

Schneider, D.E. Vanden Berk, R. Scranton, A.G. Gray and

J. Brinkmann, First measurement of the clustering evolution

of photometrically classified quasars, Astrophys. J. 638 (2006),

622–634.

[18] P.J.E. Peebles, The Large Scale Structure of the Universe,

Princeton University Press, Chichester, 1980.

[19] SRC Computers Inc., SRC Systems and Servers Datasheet,

Colorado Springs, CO, 2005.

[20] SRC Computers Inc., SRC C Programming Environment v 2.1

Guide, Colorado Springs, CO, 2005.

[21] K. Underwood, FPGAs vs. CPUs: Trends in peak floating point

performance, in: Proc. 12th ACM/SIGDA International Sym-

posium on Field Programmable Gate Arrays, Monterey, CA,

2004, pp. 171–180.

[22] T. Wollinger, J. Guajardo and C. Paar, Security on FPGAs:

State-of-the-art implementations and attacks, ACM Trans. Em-

bed. Comput. Syst. 3 (2004), 534–574.

[23] D.G. York et al., The sloan digital sky survey: Technical sum-

mary, Astronom. J. 120 (2000), 1579–1587.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

