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In general, visual clusters are preferred over large data sets; this is an attempt to take 

advantage of cluster techniques to reduce the mathematical complexity of small data sets. 

To identify the possibility of implementing the clustering technique in a small dataset, the 

wear observations of PLA/Cu composite samples printed using the Fused Deposition Model 

(FDM) is taken into consideration. In this study, the Self Organizing Map (SOM) tool as a 

non-supervised Neural Network (NN) is used to visualize the data. Here, SOM combinations 

with vector quantification and projection are used to identify or rank the wear machinability 

parameters on the new composite filament printed under different FDM conditions. The 

competitive layer in SOM will classify the given parameters of the wear machine (vectors) 

at any number of dimensions may be into several groups of layer neurons. The limitation of 

SOM is map size which cannot exceed 1000 units of training. However, for the small data 

set under consideration, the extent of these limits will not affect performance. The SOM 

algorithm developed for the study of wear provides the outlet within the acceptable range. 

In addition, the linear regression analysis is carried out for the output response to measure 

the wear characteristics of the machining observation. 
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1. INTRODUCTION

FDM is a renowned production method due to its ease of 

performing the complicated work required in developing the 

final product. But, according to Mohamed et al. [1] several 

machining factors in the FDM effect component creation, 

which leads to unsatisfactory production. Therefore, before 

printing the samples, a comprehensive analysis of the various 

factors involved in the FDM is required. Motaparti et al. [2] 

evaluated the mechanical properties of the sample prepared on 

FDM at various machining settings and found that anisotropic 

properties are present according to the materials and the 

machining conditions. 

According to Fafenrot et al. [3] adding metals to polymers 

reduces the mechanical properties of the composite filament 

and makes it necessary to examine the composite filament. 

According to Uddin et al. [4] reinforced metal powders in the 

PLA as a medium has gained interest because of their ability 

to support all instinctual and sophisticated forms. According 

to Gawande et al. [5] the abundant quantity of copper particles 

on earth as natural materials can be synthesized/processed via 

the chemical route; this attribute makes it a viable material for 

many engineering fields. Salea et al. [6] fabricated 3D printed 

samples with copper reinforcement and sintering to transform 

copper into copper oxide semiconductors to form a 3D 

semiconductor that is highly sensitive to light, pressure, and 

temperature.  

According to previous research, the post-machining 

procedure to improve the quality characteristics of the fused 

deposition model result cannot be overlooked and some 

meaningful conversation about such an issue is necessary that 

included as part of this paper. The determination of the most 

achievable orientation of FDM printing will greatly reduce the 

probability of post-machining [7]. The use of machining 

process in the complex geometry created by FDM will 

increase the machining flow of the surface roughness model. 

The linear surface distribution model is developed using a 

genetic algorithm and computational technique, significantly 

reducing the post-processing of FDM components [8]. The 

studies have identified the numerous techniques required to 

improve the surface characteristics of FDM printed samples. 

In summary, four identical techniques are proposed: 

optimization of machining settings, slicing technique, 

selection of appropriate construction direction, and post-

treatment. As it turns out, the post-processing method 

improves the geometric integrity of objects [9]. 

During the post-treatment phase, identical manufactured 

replicas are exposed to hot acetone vapors, and variations in 

surface varnish, shore hardness, and size accuracy are 

examined. The analysis revealed that post-treatment ABS 

copies with hot acetone vapors improved surface gloss and 

hardness of the edge while causing minor changes in part 

dimensions [10]. 

Market segmentation is accomplished by categorizing 

people based on their purchasing behavior. Data mining 

approaches include sharing data into related subsets and 

bioinformatics analysis, such as grouping genes with similar 

expression models. The Neural Clustering program will allow 

you to choose data, build a network and evaluate its results 

using a variety of visualization tools. The neurons of the layer 
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are organized in 2D topology, which allows it to reflect the 

distributions and to approach the structure of the dataset in two 

dimensions. In the system, the SOM batch methodology is 

used. 

In a SOM, a competitive layer will classify a collection of 

vectors with any number of dimensions in as many groups as 

the neurons in the layer. It preprocesses, initializes, and forms 

datasets in a wide variety of topologies and ranges. The map 

is then divided into groups as a function of the relationships of 

the variable. Variables may be attributes of an element or a set 

of measurements collected at a given time. The cornerstone of 

mass parallel data processing and large-scale parallel 

computing is the theory of IN. The NN is a highly nonlinear 

dynamic system that can be used to grasp intelligent thinking, 

control activities, and make decisions [11]. 

Each sensor node functions in a homogenous or 

heterogeneous mode and is limited in terms of energy and 

memory. To collect information only under risk conditions in 

the sensor network over a large region and a long period, an 

effective protocol is necessary. In terms of network life and 

energy use, the proposed protocol exceeds the standard 

PEGASIS protocol. The weight of the winner and its 

surrounding neurons in the SOM topology is modified 

irrespective the input vector. When updating the weight, the 

neurons most distant and closest to the winning neuron, as well 

as the winning frequency of each neuron, are discovered and 

considered. The new SOM calculates learning output using 

three standard variables that are also utilized in input datasets 

for later stages. The SOM method family will effectively cover 

the entire detection area. The base station sends and receives 

data through related SOM clustered head nodes [12]. 

The observed decomposition technique divides the 

information into a set of foundational type functions derived 

from the error function. To create fuzzy entropy, the proposed 

approach combines the fuzzy function. The use of this 

combination in building vectors reflects the difficulty and 

irregularity of each functional variable [13]. Examining key 

elements reduces the size of entity vectors. The results of the 

proposed technology demonstrate that it properly assesses 

bearing degradation and detects high-sensitivity defects for a 

range of bearing defects [14]. The many types of faults and 

malfunctions in the diagnostic data of the sensors were 

examined using time series. The SOM algorithm in NN was 

introduced to demonstrate that it senses errors better than 

standard NN. In addition, faults are successfully isolated [15]. 

The SOM learning node selects the neuron closest to the input 

data as the victor. To change the surrounding neurons, the 

distance between the input data and itself is used. Compared 

to the current knowledge discovery system, the fault tolerance 

level is 92.37% [16].  

The unsupervised Deep SOM design is unique and adheres 

to the same in-depth learning algorithm principles. This 

architecture has the potential to be very valuable in a Big Data 

context for machine learning applications. Experiments have 

been conducted on how the proposed design achieves this 

performance [17]. The semi-supervised diagnostic technique 

for machine fault detection and classification is based on a 

distance-preserving SOM, which can also be used to directly 

view SOM learning outcomes. An experimental study on a 

gearbox and bearings revealed that the proposed technique is 

effective in identifying early gear pitting failures and 

categorizing various bearing defects and degrees of ball 

bearing defects [18].  

The visual clustering technique for machine-part cell 

creation uses the SOM algorithm and an unsupervised neural 

network to enhance the efficiency of group technology, the 

efficiency of cell formation, and the accuracy of SOM. The 

findings demonstrate that the suggested technique not only 

produces the best and most accurate answer but also in certain 

cases, the results obtained are even superior to the previously 

stated results [19]. Relational Perspective Mapping (RPM) is 

used to create more realistic images of hyperspectral data. The 

SOM result is fed into the RPM method, which is a nonlinear 

dimensionality reduction approach that generates a two-

dimensional map from high-dimensional data. RPM provides 

additional distance information using topologic information 

provided by the SOM. Consequently, the color scheme 

accurately represents the local spectral distances of the data 

between the pixels [20]. 

Three comparative simulation experiments and a suggested 

application to digital innovation data demonstrate the 

proposed S-resilience SOM and efficacy. Additional 

documents are available for this purpose [21]. The study 

proposes hybrid models that use vibration signals in 

conjunction with SOMs to forecast cutting power and 

waviness in the circular sawing process of Douglas-fir wood 

at very high feed speeds. SOM is suggested for automatic 

functions in machining or monitoring the state of the tool, 

where the selection of human functions is difficult due to the 

unpredictability of the process. When SOM is coupled with an 

ANN or ANFIS, it creates a strong intelligent model for 

monitoring complicated operations like wood circular sawing 

[22].  

While the new technology has made recording 

hyperspectral data cheaper, the acquisition of baseline data 

(ground truth) remained costly and time-consuming. 

Methodological techniques that process datasets with much 

more hyperspectral input data than standard data are needed. 

Supervised Self-organizing Maps (SuSi) is introduced, which 

can perform an unsupervised, supervised, and semi-supervised 

classification, as well as regression on large-scale data [23]. 

 

 

2. MATERIALS AND METHODS 

 

A new PLA/Cu composite filament for FDM is successfully 

fabricated using a hot extrusion process [24]. The fabricated 

filament is printed to an identified FDM condition to the 

sample size of 10x10x50mm. FDM conditions like raster angle, 

infill density is maintained to be as constant as 45o and 100%, 

respectively [25]. The printed samples are tested using Pin-on-

Disc wear tester machine for the varied parameters to Taguchi 

L27 orthogonal array. The test samples are grounded to fine 

surface finish through emery paper (80 grit size), then through 

polish machine using acetone as etchant. New flat surface is 

formed due to the rubbing action will have a complete contact 

with the flat disc and it has to be ensured. The test samples are 

mounted in the fixture and fit perpendicular to the disc. The 

disc (Counter material) is made of EN 31 steel. The pin is 

loaded with the counter weight material on the other side by 

dead weight mechanism, which could keep the pin in contact 

with the disc. The disc surface is cleaned with the acetone to 

remove the dust particles. As the disc rotates at specified rpm, 

the wear occurs in the test sample is measured through height 

loss method. The wear rate is calculated and the same is 

expressed in terms of wear loss per unit sliding distance. The 

FDM machine and the wear tester are shown in Figure 1. The 

parameters and the levels of the wear test study are illustrated 
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in Table 1. Here, load, track diameter and speed are taken as 

the independent parameters (machining parameters) and wear 

rate and the frictional force are taken as the dependent 

parameters (output responses). 

 

 
(a) 3D printer set up for sample preparation 

 
(b) The wear tester 

 

Figure 1. Experimental arrangements for PLA/Copper 

filament and wear study 

 

Table 1. Wear parametric conditions and the output 

responses 

 
Load 

(N) 

Diameter 

(mm) 

Speed 

(rpm) 

Wear Rate 

(mm/sec) 

Frictional Force 

(N) 

20 40 400 101.01 06.8 

20 40 500 164.98 10.2 

20 40 600 214.00 07.6 

20 50 400 138.87 08.1 

20 50 500 201.01 08.9 

20 50 600 229.75 10.7 

20 60 400 243.21 09.0 

20 60 500 282.64 10.1 

20 60 600 356.09 13.6 

30 40 400 144.59 10.1 

30 40 500 235.03 11.6 

30 40 600 283.48 12.5 

30 50 400 265.92 12.8 

30 50 500 334.37 13.4 

30 50 600 388.01 14.1 

30 60 400 393.25 13.1 

30 60 500 399.01 14.1 

30 60 600 536.14 14.7 

40 40 400 340.64 14.3 

40 40 500 393.09 15.2 

40 40 600 466.53 16.9 

40 50 400 448.98 16.0 

40 50 500 507.42 15.9 

40 50 600 585.87 17.7 

40 60 400 586.31 17.3 

40 60 500 609.75 18.7 

40 60 600 601.01 19.1 

 

3. SOM ALGORITHM 

 

SOM is a combination of vector projection and vector 

quantification algorithm and it is made up of low-dimensional 

neurons arranged in a grid. A dimensional weight vector wi = 

[wi1, wi2, ..., wid] is used to represent each neuron. The size of 

the input vectors is denoted by d. The topology, or map 

structure, of neurons, is determined by their connections to 

neighboring neurons through a neighborhood relationship as 

shown in Figure 2. 

 

 
 

Figure 2. Structure of SOM layer 

 

3.1 Algorithm for sequential training 
 

Step 1: The input dataset is selected from a random sample 

vector x. 

Step 2: The Euclidean distance calculation is used to 

calculate the distance between all weight vectors. 

 

d=√[(x2
2–x1

1)2+(y2
2–y1

1)2] 

 

where, 

(x1
1, y1

1) are the coordinates of one point. 

(x2
2, y2

2) are the coordinates of the other point. 

d is the distance between (x1
1, y1

1) and (x2
2, y2

2). 

Step 3: Using Eq. (1), the neuron with the weight vector 

closest to the input vector x is called the Best-Matching Unit 

(BMU).  

 

||𝑦 − 𝑤𝑐|| = min{||𝑦 − 𝑤𝑡||} (1) 

 

where, ||. || denotes the unit of distance, which is usually the 

Euclidean distance. 

Step 4: The SOM weight vectors are modified after the 

BMU is found, bringing the BMU closer to the input space. 

Step 5: The BMU's topological neighbors are viewed in the 

same way. 

Step 6: The t-weight vector's update rule is shown in Eq. (2): 

 

wt(x+1)=wt(x)+α(x)pct(x)[y(x)-wt(x)] (2) 

 

The function α(x) is the learning rate, and x indicates time. 

y(x) is a random input vector of the input dataset. Around the 

winning unit c, the function pct(x) is a neighborhood Kernel. 

Let V and W be vector spaces over a field (or more generally, 

modules over a ring) and let T be a linear map from V to W. If 

0W is the zero vector of W, then the kernel of T is the preimage 

of the zero subspace {0W}; that is, the subset of V consisting 

of all those elements of V that are mapped by T to the element 

0W. The kernel is usually denoted as ker T, or some variation 

thereof: Ker T={vV: T(V)=0w}. 

Step 7: Repeat steps 2 to 6 until getting the optimized result. 

 

 

4. RESULTS AND DISCUSSIONS 

 

4.1 Training wear parameters using SOM 

 

In SOM, fixing the bound limit (Lower Bound (LB) and 
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Upper Bound (UB)) was always a challenging task for the 

researcher. The significance of changing the levels in the 

bound considerably affects the performance of the system to 

the greater effect [26]. So to execute a new task, based upon 

the required performance of the system and all the demand of 

need the bound limits can be fixed to the requirements [27]. In 

this L27 dataset (Table 1), the LB and UB are set as 5 and 10 

respectively. The number of training iterations is determined 

by the initialization and configuration of nodes. As the bound 

level takes the square of its value to form the grids. Since LB 

set as 5, it would result to have 25 grids which were shown in 

Figures 3 and 4. 

 

 
 

Figure 3. LB = 5 training iterations 

 

 
 

Figure 4. SOM topology of 25 grids 

 

The three main steps in the training are: i) choosing an input 

vector, ii) determining the BMU for the input vector, iii) 

updating the weight vectors of SOM nodes using parameters 

like learning rate and neighborhood function. A learning rate 

is a number that decreases with the increase in the number of 

iterative steps. 

• p=5√𝑚 is the number of cartographic units, and m is the 

number of data samples.  

• The map is made up of a hexagonal lattice pattern on a 

rectangular board. The lateral length ratio is the ratio of 

the two largest eigenvalues of the data covariance matrix. 

• The neighborhood function is Gaussian pct(x)=𝑒
𝛿𝑐𝑡

2

2𝑟 (𝑥2) 

where, 𝛿𝑐𝑡
2  on the map grid, is the distance between the 

units c and t and calculated the weight.  

• The radius of the neighborhood per hour x is r(x). The 

radius, like the rate of learning, is a monotonously 

decreasing function of time. The starting radius is 

determined by the chart's height, but the end radius is 

always a. The learning rate starts at 0.5 and goes down to 

(almost) zero.  

• Periods are used to calculate the duration of training: each 

period corresponds to a data transfer. The number of time 

frames is proportional to the number of map units divided 

by the number of data samples, or p=m. 

 

4.2 Training wears parameters using SOM for LB 5 

 

The SOM neighboring neuron connections of 25 grids are 

shown in Figure 5(a). The simulation time is directly 

proportional to the number of neurons, as it is important to 

maximize the active neurons while minimizing the number of 

inactive neurons through simulation time. Figure 5(b) shows 

the distribution of active and inactive neurons for the LB 5. All 

yellow color grids represent the active neurons whereas the 

wide range of orange color represents the inactive neurons. A 

decrease in the orange color in inactive neurons may have the 

possibility to enter into the optimized zone. The black color 

region represents the error message of SOM. 

 

 
(a) 

 
(b) 

 

Figure 5. (a) SOM neighbor connections of 25 grids; (b) 

SOM neighbor connections of 25 grids with weight distances 

of active and inactive neurons between clusters 

 

The SOM architecture design is given to each wear machine 

condition. Through this for LB 5 that has 25 grids shows the 

identical clusters for every wear parametric condition. The 

SOM representation for L27 wears observations as shown in 

Figure 6. Since the black regions represent the active neurons, 

the dark-colored grids cannot enter into the neighbor 

classification irrespective of colors. Pale colors have some 

possibilities to enter into the neighboring clusters. Based on 

the micro-level analysis of each experiment, the weight from 

the input image shown in Figure 6 represents different colors. 

The micro level error back propagation scheme to train SOM 

directly based on spiking activities. The rate-coded error is 

defined and efficiently computed and back-propagated across 

the microscopic levels. Since the black regions represent the 

active neurons, the dark-colored grids cannot enter into the 

neighbor classification irrespective of colors. Each color has 

its weightage error over the considered value. For example 

input, 25 figures have 6 color grids (three orange, one brown, 

one pale brown, one yellow). The severity of the error is 

represented by the darkness of the color. For instance, here 

brown and pale brown color is out of classification but has 

close relation with each to its value. Pale brown can enter into 

the neighbor cluster and it further confirms the error rate is 

considerably less than a dark brown grid. Ultimately, the error 

rate on each observation can be easily identified and can be 

grouped from Figure 6. 
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Figure 6. SOM neighbor connections of 25 grids for L27 

input data with active and inactive neurons 

 

To identify the insignificant grids for LB=5, the hit value 

examination was conducted for the proposed 25 grids. The 

training results are shown in Figure 7. Among the available 25 

grids, 5 grids show the hit point value and identified 

insignificant grids. These 5 grids have error values greater than 

the neighborhood grids and fail to form clusters. The accuracy 

of clustering for LB 5 can be calculated by Equation 3. 

 

Accuracy rate = 
(Available grids – Hit grids)

Available grids 
∗ 100 (3) 

 

By using Eq. (1) the rate of accuracy is predicted to 80%. 

SOM weight positions of active neuron classification are 

shown in Figure 8. From Figure 8 it was well clear to infer that 

the given L27 wear observations are being categorized into 25 

grids based on the given LB=5 display 10 neuron classification. 

Due to error difference, the hit grids have a position with their 

classification and were represented with blue color. The 

remaining 20 active neuron grids are being classified into 5 

groups and displayed as green color. Among the active neuron 

classification, one set of the group is far away from the 

remaining active 4 groups is because of the high level of wear 

machining condition and its output response. This can be 

verified from Figure 8. To identify the numbers of grids in 

each active neuron classification can be validated or it can be 

verified from Figure 6. 

 

 
 

Figure 7. SOM neighbor hit connections 

 

 
 

Figure 8. SOM weight positions of active neuron 

classification 

 

4.3 Training wears parameters using SOM for UB=10 

 

In the present study, the UB is set to 10 and there would be 

100 grids, as seen in Figures 9 and 10. Figures 11(a) and 11(b) 

illustrate the SOM adjacent neuron connections of 100 grids 

and the distribution of active and inactive neurons for the UB 

10. The discussion on the color representation of each grid for 

the UB=10 is similar to LB (please ref. Training wears 

Parameters using SOM for LB 5). Every situation of the wear 

machine is provided by the SOM architecture design. As a 

result, each parametric condition of wear for UB 10, which 

contains 100 grids, exhibits similar clusters. Figure 12 shows 

the observations in the SOM representation for L27 for UB=10. 

The discussion in Figure 12 is similar to LB. Finally, each 

observation's error rate may be easily determined and 

aggregated. 

 

 
 

Figure 9. UB = 10 training iterations 
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Figure 10. SOM topology of 100 grids 

 

 
(a) 

 
(b) 

 

Figure 11. (a) SOM neighbor connections of 100 grids; (b) 

SOM neighbor connections of 100 grids with weight 

distances of active and inactive neurons between clusters 

 

 

 

 
 

Figure 12. SOM neighbor connections of 100 grids for L27 

input data with active and inactive neurons 

 

The assessment of the impact value for the predicted 100 

grids was undertaken to determine the grids without 

consequence for UB=10. Figure 13 shows the outcomes of the 

training. Of the 100 available grids, 5 grids display the contact 

point value and identify non-significant grids. All five grids 

have higher error values than neighborhood grids, so they are 

not able to form clusters. Eq. (3) can be used to compute the 

clustering accuracy for UB=10. The SOM method could 

effectively discern the result states, and the rate of clustering 

accuracy could exceed 95%. SOM weight positions of active 

neuron classification are shown in Figure 14. 

 

 
 

Figure 13. SOM neighbor hit connections 

 

 
 

Figure 14. SOM weight positions of active neuron 

classification 
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Training criteria affect it. Due to the random order of the 

points, it can produce different solutions for the same data, 

particularly in 3D for range images with complex boundaries. 

A trial exercise is performed for UB=8 to understand the 

effect of change in the accuracy rate. For the UB=8 (64 grids), 

5 hit grids occurred in SOM. Applying for this number in Eq. 

(3) will yield 92.2% accuracy. In the case of increasing UB 

beyond 10 increases the hit grid value and progress to have a 

reduced accuracy rate. For L27 Orthogonal Array-

Experimental conditions UB=10 provides an acceptable range 

of accuracy. Between this range (LB=5 and UB=10) has 

provided the same hit grid values of 5. Decreasing the LB no 

change in the grid is observed whereas the adverbs effect was 

noted for UB. 

 

4.4 Regression analysis for wear rate  

 

Fit model linear regression analysis is conducted for the 

wear rate observations (Table 2) using Matlab. The 

significance of each wear parameter is evaluated through the 

ANOVA table. Through analysis, it is proven that the applied 

load provides greater wear on the machined sample when 

compared to speed and track diameter with a contribution of 

62%. The track diameter shows the significant effect of 25% 

followed by the speed with 9% of the contribution. From the 

model summary, residual squares and adjacent residual 

squares are greater than 95% close to the acceptable range of 

tolerance. The linear regression Equation 4 developed through 

this model is shown below. From the normal probability, the 

plot was observed that all the experiments are linearly fit with 

one other shown in Figure 15. 

 

Table 2. Fit model linear regression analysis for wear rate 

observations 

 
Analysis of 

variance source 
DF Adj_MS Adj_SS Contribution 

Regression 6 98552.9 591317 96.70% 

Load (N) 1 1518.1 1518 61.80% 

Diameter (mm) 1 2707.6 2708 25.16% 

Speed (rpm) 1 4186.6 4187 9.05% 

Load 

(N)*Diameter 

(mm) 

1 3164.2 3164 0.52% 

Load (N)*Speed 

(rpm) 
1 128.5 129 0.02% 

Diameter 

(mm)*Speed (rpm) 
1 959.4 959 0.16% 

Error 20   3.30% 

Total 26   100.00% 

Model Summary R-sq=96.70%, R-sq(adj)= 95.71% 

 

Wear Rate (mm/sec) = -853 + 8.01 Load + 8.84 

Diameter + 1.100 Speed + 0.1624 Load * Diameter - 

0.00327 Load * Speed - 0.00894 Diameter * Speed 

(4) 

 

 
 

Figure 15. Residual plots for wear rate 

4.5 Regression analysis for frictional force  

 

Regression study is conducted for frictional force, from the 

ANOVA observation from Table 3, load shows the significant 

contribution of 78% followed by track diameter and speed of 

11% and 6% respectively. Residual squares and adjacent 

residual squares show the consistency of 95% was acceptable. 

The regression equation frictional force is shown as Equation 

3. From the normal probability plot, three observations show 

inconsistency fit with the linear model which could be 

measured through Residual R2 value in Figure 16. These 3 

variations are occurred due to the improper dispersion of 

copper particles while printing the sample. Further study is 

required to explore the reason for the deviation in observations.  

 

Table 3. Fit model linear regression analysis for Frictional 

Force observations 

 
Analysis of 

variance source 
DF Adj_MS Adj_SS Contribution 

Regression 6 49.6207 297.724 95.48% 

Load (N) 1 4.2056 4.206 77.85% 

Diameter (mm) 1 0.0300 0.030 10.69% 

Speed (rpm) 1 0.1401 0.140 6.71% 

Load 

(N)*Diameter 

(mm) 

1 0.0300 0.030 0.01% 

Load (N)*Speed 

(rpm) 
1 0.3008 0.301 0.10% 

Diameter 

(mm)*Speed 

(rpm) 

1 0.4033 0.403 0.13% 

Error 20   4.52% 

Total 26   100.00% 

Model Summary R-sq=95.48%, R-sq(adj)=94.13% 

 

Frictional Force (N) = -7.20 + 0.421 Load + 0.029 

Diameter + 0.0064 Speed + 0.00050 Load * 

Diameter - 0.000158 Load * Speed + 0.000183 

Diameter * Speed 

(5) 

 

 
 

Figure 16. Residual plots for frictional force 

 

From the regression analysis, it is confirmed that for both 

the considered output responses (wear rate and frictional force) 

the load plays the major contribution. Due to the increase in 

the load the wear rate and the frictional force gets increased 

drastically when compared to the other two considered 

parameters (track diameter and speed). The wear rate of FDM 

printed PLA/Copper samples was greatly limited because of 

the reinforced copper particle. At wear operating conditions, 

the thermal energy was dissipated through the sample. This 

energy loses the PLA structure and avoids the slipping of 

copper particles. When compared to other metals copper tends 

to wear hence the energy observed by the copper is 

transformed into two phases (Copper wear on its particles ii) 

high heat transfer to the neighborhood particles). If the wear 
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region posses the excess copper particle may lead to wear 

resistance and temperature transfer among which directly 

signifies the output parameters. An adverse effect is observed 

in the absence of copper particles in the wear sample. The 

uniform distribution of the copper particle on the FDM printed 

sample may not be possible irrespective of any technique 

adopted while preparing the sample. This action may greatly 

influence the output parameter which significantly disturbs the 

machining condition while performing the classification for 

the machining parameter like SOM.  

 

 

5. CONCLUSION 

 

An attempt has been made by implementing this SOM 

technique in NN for wear study to analyze and to provide 

customized algorithms which were expected to work for this 

small dataset effectively. The SOM inherent characteristics 

enable it to detect the grid orientation and sub-boundaries 

automatically (visual mode only). SOM when compared with 

other parameterization methods, SOM involves all sample 

points for grid creation, not only considering boundary points. 

SOM recognizes the grid orientation as well as the four sub-

boundaries locations. SOM does not require any previous 

network structure decisions, such as the number of nodes or 

grid in the output layer and it reduces the search and 

computational time and cost. The proposed system condition 

for the given LB and UB produces an accuracy of 80% and 

95% respectively. Change in the level of UB will change the 

hit grid value and retain the accuracy level as UB=10. For any 

system having a small dataset (<30 observations) the proposed 

LB=5 and UB=10 will be sufficient to get an acceptable level 

of accuracy rate. 
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