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Abstract
Three of the important, generic, implementation issues encountered when developing controllers for

pitch-regulated constant-speed wind turbines are considered, namely, (1) accommodation of the
strongly nonlinear rotor aerodynamics; (2) automatic controller start-up/shut-down; and (3)
accommodation of velocity and acceleration constraints within the actuator.  Both direct linearisation
and feedback linearisation methods for accommodating the nonlinear aerodynamics are investigated and
compared.  A widely employed technique for accommodating the nonlinear aerodynamics, originally
developed on the basis of physical insight, is rigorously derived and extended to cater for all wind
turbine configurations.  A rigorous stabilit y analysis of controller start-up is presented for the first time
and novel design guidelines are proposed which can significantly reduce the power transients at
controller start-up.  The relation to anti-wind-up is noted and several aspects of an existing wind-turbine
controller start-up strategy are observed to be novel in the anti-wind-up context.  Restrictive position,
velocity and acceleration constraints may all be present in wind turbines and the dynamic behaviour of
the actuator cannot be neglected.  A novel, and quite general, anti-wind-up method, based on the start-
up strategy, is proposed which caters for all these circumstances.  The separate strategies for resolving
the implementation issues are combined to achieve an elegant controller realisation which
accommodates all the implementation issues in an integrated manner.  The importance of adopting an
appropriate controller realisation is considerable and is ill ustrated for a 300 kW wind turbine.  The
implementation issues encountered in this paper are, of course, not confined to wind turbines but are of
wider concern.

1.   Introduction

Wind turbine technology has undergone rapid development in recent years in response to
widespread demands for the increased use of renewable sources of energy.  The standard commercial
design of wind turbine is a horizontal-axis grid-connected up-wind machine with a rating of
approximately 300 kW to 500 kW (medium-scale).  It is anticipated that the next generation of wind
turbines, which are presently being developed, will i nclude large-scale designs with a rating of around 1
MW.  The rotor usually has two or three blades, and in pitch regulated machines the pitch angle of
either the full span of the blades, or just the outer tips, can be varied.  The control design task for
constant-speed pitch-regulated machines is to exploit this capabilit y in order to regulate the power
output whilst minimising the load transients and thereby reducing fatigue damage.  The objectives and
design of the SISO control system are discussed fully by Leithead et al. (1991a, b, 1992a).

In this paper, three of the important implementation issues encountered, when developing
controllers for pitch-regulated constant-speed wind turbines, are investigated, namely,

1. Compensation of the strongly nonlinear rotor aerodynamics.
2. Automatic controller start-up/shut-down.
3. Accommodation of velocity and acceleration constraints within the actuator.

These issues are, of course, not confined to wind turbines but are of wider concern.
The first implementation issue relates to the aerodynamic behaviour of the turbine blades.  Whilst a

linearised plant representation is typically employed during the synthesis of the controller transfer
function, a wind turbine is a nonlinear system; in particular, the aerodynamic behaviour is highly
nonlinear.  Since the role of the turbine rotor in converting wind energy into mechanical energy is a
central one, the nonlinear behaviour of the rotor exerts a substantial influence on the characteristics of
the whole wind turbine and cannot be neglected (see, for example, Leithead et al. 1991a, 1992a).

The second implementation issue relates to the wind turbine operational requirements.  Below a
certain ‘ rated wind speed’ , the power generated is less than the turbine rating and no control action is
required.  However, when the wind speed rises above rated, the power output is regulated at the rated
value of the turbine, ‘ rated power’ , by suitably adjusting the pitch angle of the rotor blades.  Hence, it is



necessary to automatically start-up and shut-down the controller as the wind speed fluctuates.  (In very
low wind speeds, there is insuff icient energy to sustain power generation and the turbine is shut down.
In very high wind speeds, the turbine is shut down to prevent damage.  Start-up and shut-down of the
entire turbine, rather than just the controller, is not considered here).  The controller has integral action
to ensure rejection of steady wind disturbances and suitable low frequency shaping (Leithead et al.
1991a, 1992a) to ensure rejection of gusts (ramp-like increases or decreases in wind speed which persist
over several seconds).  Consequently, controller start-up requires to be treated with some care to avoid
prolonged transients and minimise the loads on the wind turbine.

The third implementation issue relates to the actuator physical constraints, neglected during the
controller transfer function synthesis.  In low wind speeds, when the sensitivity of the aerodynamic
torque  to changes in the pitch angle is lowest, it is often necessary to move the blades of the turbine
rapidly in order to achieve adequate power regulation.  The hard limits on the accelerations (or torques)
and velocities, internal to the actuator, are, therefore, often encountered during normal operation near
rated wind speed.  At present, the impact of the hard actuator limits on stabilit y and performance, in the
context of wind turbine applications, has received littl e consideration.

Although strategies adopted to resolve these implementation issues are often proprietary in nature,
strategies, which adequately address the implementation issues, are reported in the open literature by
Leithead et al. (1989, 1990a, b, 1991a, 1992a).  (Their effectiveness has been confirmed in field trials
(Leithead & Agius 1991)).  However, these strategies were developed on the basis of physical insight,
supported by simulation studies, and a more rigorous analytic approach remains desirable.  A re-
examination and analytic investigation of the implementation issues is further warranted by the recent
development of high performance nonlinear controllers (Leith & Leithead 1995a, b, c, 1996a, b), which
operate the control system at its limits to a much greater extent than conventional li near controllers, and
by the progression of the wind turbine rating from medium-scale to large-scale with the consequent
trend towards a considerable tightening of the physical constraints on the control system.

The paper is organised as follows.  Section two contains a brief discussion of those aspects of wind
turbine modelli ng and control relevant to the present context and section three a review of strategies for
the resolution of the implementation issues considered in this paper.  The rigorous compensation of the
nonlinear aerodynamics is considered in section four, controller start-up/shut-down in section five and
accommodation of actuator velocity and acceleration constraints in section six.  The individual
strategies to resolve the implementation issues, considered separately in sections four, five and six, are
combined in section seven to produce an integrated controller realisation and the performance
improvement achieved is ill ustrated by an example.  Finally, in section eight the conclusions are
summarised.

2.  Wind Turbine Control Preliminaries

In this paper, the controller implementation issues are mainly ill ustrated with respect to a medium-
scale 300 kW two-bladed grid-connected up-wind constant-speed full -span pitch-regulated wind turbine
which is dynamically representative of commercial machines of its class.  A block diagram
representation of the system dynamics is depicted in figure 1.

Although there is no such thing as the ‘wind speed’ experienced by a wind turbine, since the rotor is
subject to a spatially and temporally distributed wind field, it may be considered to experience an
effective wind speed which, in some sense, is an average over the rotor disc.  (It should be noted that
this makes a direct measurement of wind speed impossible).  The aerodynamic torque, T, depends
nonlinearly on both the pitch angle, p, and the effective wind speed, V, as in figure 2a; that is,

T = T(p,V) (1)

(Throughout this paper it is assumed that T is differentiable as required).  For each effective wind
speed, V, above rated wind speed, the rated aerodynamic torque, To, is attained at a unique pitch angle,
pV.  These pitch angles together with their corresponding effective wind speeds define the locus of
equili brium operating points, (pV, V), of the system.  Locally to a specific equili brium operating point,
(pV, V), the nonlinearity (1) may be linearised as depicted in figure 2b, where δ indicates perturbations
about the nominal values.  The partial derivatives, at the equili brium points, of the aerodynamic torque
with respect to pitch angle and wind speed, ∂T/∂p and ∂T/∂V respectively, are tabulated in table 1.  It
can be seen that, over the operational envelope of the wind turbine, the behaviour of the aerodynamic
torque varies considerably.



The combined dynamics of the drive-train, generator and power transducer, G, are essentially linear
and, together, are modelled by the transfer function

 46460.9
G(s) =   (2)
           (s5+81.27s4+3683.90s3+120773.6s2+1474504.0s+36857450.0)

The actuator position is physically constrained to the range [-2.0, 60.0] degrees and the velocity to
the range [-10.0, 10.0] degrees/second.  Since the pitch angle control demand is constrained to the range
[0.0, 45.0] degrees, the former constraint can be neglected and the actuator dynamics, A, represented by
the block diagram depicted in figure 3.  The dynamic terms, Mo, M1 and T, are modelled by the transfer
functions

Mo(s) = 1.00; M1(s) = 14.0; T(s) = 50.0/(s+50.0) (3)

Within the velocity constraint, the actuator is effectively linear with bandwidth 20.7 r/s.  Hence, for

control purposes, its dynamics, Au, when unsaturated, can be modelled by 
�

A u (s) where

        20.7
�

A u (s) =  (4)

      s+20.7

Although a similar representation of the system dynamics was adopted in Leithead & Agius (1991)
and Leith & Leithead (1995a, b, c, 1996a, b), a different representation had been adopted previously
(Leithead et al. 1989, 1990a, 1991a, 1992a) whereby an additional term representing dynamic inflow
(also known as induction lag) was included between the aerodynamics and the drive-train dynamics in
figure 1.  The dynamic inflow is modelled as a simple lead-lag but its representation is subject to
considerable uncertainty and the frequencies of the pole and zero depend on the wind speed.  However,
since the pole and zero are at very low frequencies, the dynamic inflow has littl e impact on the synthesis
of the controller transfer function, except, perhaps, requiring an adjustment in the gain, and the
controller synthesis models need not include it.  (Note, it does not necessarily follow that it has littl e
impact on the controller implementation and can be omitted altogether from the control design models).
In addition, no evidence for the presence of dynamic inflow could be discerned during experimental
control studies (Leithead & Agius 1991), raising some doubt concerning its influence on the system
dynamics.  Hence, as in Leithead & Agius (1991) and Leith & Leithead (1995a, b, c, 1996a, b), the
dynamic inflow may be omitted in the context of controller transfer function synthesis provided the gain
is confirmed from measured data.

The aerodynamic behaviour of the wind turbine is highly nonlinear and strongly dependent on wind
speed.  However, its representation, described above, is very basic and subject to considerable
uncertainty.  In addition, the aerodynamics may change over time due to contamination of the blade
surfaces.  Consequently, a good gain margin, in conjunction with a good phase margin, is particularly
important in order to achieve adequate stabilit y margins.  If adequate stabilit y margins are not achieved,
the system must sometimes destabili se, although not necessarily become unstable, in which case the
wind turbine would experience large load fluctuations.  Because of the complexity of the interaction of
the rotor with the wind-field, it is not possible to quantify the uncertainty in the aerodynamic models but
practical experience indicates that 10 dB is an appropriate gain margin and roughly 60 degrees the
appropriate phase margin.

A controller transfer function, C(s), is synthesised, for the equili brium operating point
corresponding to a wind speed of 12 m/s, such that

C(s) = Couter(s) Cinner(s) (6)

with

    (s+1.5)(s+1.6) (7)

Cinner(s) = 7.50  
  s(s+0.3)(s+3.7)



           (s2+7.243s+38.637)(s2+1.5s+104.04)(s2+6s+416.16)
Couter(s) = 133.60  (8)

        (s+20)(s+50)(s2+11s+104.04)(s2+10s+416.16)(s2+65.8s+2209)

The Bode plot of the open-loop transfer function is shown in figure 4.  It exhibits the low frequency
shaping to improve disturbance rejection referred to in section 1, high frequency roll -off to reduce
actuator activity and notches at 2P and 4P (where P is the rotational speed of the rotor) to reduce
actuator activity and reduce enhancement of the loads induced by spectral peaks, due to rotational
sampling of the wind-field, at these frequencies.  The cross-over frequency is 1.87 r/s and the gain and
phase margins are 10.2 dB and 51 degrees, respectively.

Both the quantitative and qualitative behaviour exhibited by medium and large scale machines can
differ substantially.  In particular, due to the increased physical size and inertia of the blades, the
bandwidth of the actuator of a large-scale machine may be reduced to such an extent that it is similar to
the closed-loop system bandwidth.  In addition, the actuator constraints may become tighter and it may
be required to operate close to the limits over a wide range of wind speeds.  Accordingly, in this paper
the controller implementation issues are, in addition to the 300 kW machine, also occasionally
ill ustrated with reference to a 1 MW wind turbine (Rogers & Leithead 1994) with an actuator
bandwidth of 2.5 r/s and a speed limit of 7 degrees/second.

3.   Review of Previous Strategies

The success of a strategy adopted to resolve the implementation issues may be assessed against two
criteria: first, the reduction or elimination of large transient loads, as measured by the generated power;
second, the extent to which the stabilit y margins are maintained without compromising performance
(adequate stabilit y margins must, of course, be attained following the adoption of a particular strategy;
if necessary by revising the linear control algorithm).  Strategies devised previously to resolve the
implementation issues are briefly reviewed below.

3.1 Compensating for the Nonlinear Aerodynamics

Fluctuations in the wind speed induce variations in the aerodynamic torque and it is emphasised that
the wind speed, and hence the torque, vary rapidly and continuously, in a stochastic manner, over the
whole operational envelope.  The requirement is to devise a means of accommodating the nonlinear
aerodynamic behaviour such that a fixed linear control algorithm may be employed over the whole
operational envelope.  The discussion is confined, for the moment, to the issue of accommodating the
nonlinear aerodynamics.

One solution to this task, proposed by Leithead et al. (1990a, b, 1991a), is ill ustrated in figure 5a.
The controller is augmented with a nonlinear gain corresponding to the reciprocal of the sensitivity of
the aerodynamic torque to pitch changes, ∂T/∂p.  As noted in section 2, a direct measurement of the
wind speed cannot be employed to adjust this gain.  However, irrespective of actuator bandwidth, the
controller should attempt to ensure that the pitch angle is appropriately set at each wind speed.
Consequently, assuming that the pitch angle is close to pv, the need for a measurement of wind speed is
avoided;  that is, the wind speed may be inferred directly from the pitch angle.  (Of course, a degree of
error, adding to general system uncertainty, can be expected).  It is known that the performance of this
approach to aerodynamic compensation is strongly dependent on the positioning of the nonlinear gain,
see figure 6, and that the appropriate position is after the main controller dynamics but before the pure
integrator term (Leithead et al 1990a, b, 1991a).  (Since the controller has integral action, the
differentiation is trivially absorbed by the controller).

The approach depicted in figure 5a, or approaches which are essentially equivalent, are widely
employed and are remarkably effective on current medium-scale machines.  However, whilst
engineering insight provides a basis for understanding the effectiveness of this approach, a rigorous
analysis is lacking and it is uncertain whether the method is appropriate for other wind turbine
configurations; in particular, for large-scale machines which, owing to physical restrictions, can have
very low bandwidth actuators.

3.2 Controller Start-Up/Shut-Down



A common approach to controller start-up is to simply freeze the controller integral action when
below rated operation is detected; that is, when the demanded pitch angle of the turbine blades falls
below a specified threshold value (zero degrees here), the accumulation sum in the integral calculation
is suspended.  However, this approach is not always effective in preventing large start-up transients; for
example, the power output during a typical start-up, depicted in figure 7, rises to over 600 kW (twice
the rated value) when this method is employed on the 300 kW machine.  Intuitively, whilst this
approach prevents the pure integrator in the controller from adopting an inappropriate state during
below-rated operation, it does not cater for the low frequency pole in the controller with which the
prolonged start-up transients are associated.

Leithead et al. (1990a, b, 1991a, 1992a) propose an alternative start-up technique whereby a minor
feedback loop is introduced within the controller which mimics the action of the physical wind turbine
and switches in to permit the controller to continue operating below rated wind speed (equivalent to a
negative pitch angle demand).  Designing the controller, such that Couter may be interpreted as an
approximation to the inverse of the plant dynamics and Cinner may be interpreted as an approximation to
the open-loop system, the minor loop may be implemented in a straightforward manner by partitioning
the controller as depicted in figure 8.  In the minor feedback loop, the high bandwidth filter, F,
attenuates any switching transients and the feedback gain approximates the plant aerodynamic gain.
Since the minor feedback loop may become active whilst the actual pitch angle is greater than zero, the
feedback gain is scheduled, with respect to the actual pitch angle, in a similar manner to the controller
nonlinear gain.  The start-up transients are substantially reduced with this strategy, as indicated in figure
7.  When the dynamic inflow is thought to contribute significantly to the aerodynamics, it is natural to
assume that a component, corresponding to the dynamic inflow, should be included in Couter (Leithead et
al. 1990a, b).  However, superior performance is obtained when it is omitted (Leithead et al. 1991a,
1992a).  Hence, since it makes littl e impact on the control design task, either with respect to synthesis of
the controller transfer function or design of the strategy to cater for the implementation issues, the
dynamic inflow can be omitted altogether from the control design models as in (Leithead & Agius 1991,
Leith & Leithead 1995a, b, c, 1996a, b) and here.  The distinction between the dynamics of Couter and
Cinner is now that the controller is partitioned such that the slow dynamics are contained in Cinner.

However, whilst the operation of the foregoing strategy for controller start-up might be understood
intuitively, a rigorous analysis, particularly of stabilit y, is lacking and the relation between these
methods, developed for a specific application, and existing control design techniques, developed in a
more general context, has not been investigated.

3.3 Accommodating Actuator Velocity/Acceleration Saturation

In the context of wind turbine applications, the presence of hard actuator limits is known (Leithead
et al. 1991a) to degrade performance by causing a reduction in stabilit y.  However, this reduction is
much less (Leithead et al. 1991a) when the nonlinear controller gain, which caters for the nonlinear
aerodynamic behaviour, is scheduled on the demanded pitch angle, as in Leithead et al. (1992a), rather
than the actual pitch angle.  In the context of medium-scale wind turbines, when the bandwidth of the
actuator is relatively large, the pitch angle demand is an equally effective choice of scheduling variable
in comparison to actual pitch angle.  (When the actuator bandwidth is smaller, as might be the case in a
large-scale wind turbine, choosing the pitch angle demand may be less appropriate).  Of course, the
scheduling variable for the minor feedback loop gain must then also be scheduled on pitch angle
demand (Leithead et al. 1992a).  The nonlinear controller gain is constant below rated wind speed,
being held at the value for zero degrees, and, since the minor feedback loop only becomes active in
below rated wind speed, the feedback loop gain can, and should, also be constant.

Other than the above, the impact of the hard actuator limits on stabilit y and performance has
received littl e consideration.  Traditionally, the control specification requires that the controller avoids
operating the actuator at its hard limits; for example, the permitted standard deviation of the constrained
quantities may be suitably restricted.  Nevertheless, in order to achieve satisfactory performance, it may
be necessary to relax such restrictions, particularly for large-scale machines (Rogers & Leithead 1994).
However, an analysis of the impact of hard actuator limits, particularly on the stabilit y margins of wind
turbines, is lacking.

The complete strategy, proposed by Leithead et al. (1991a, 1992a) to resolve the implementation
issues, is depicted in figure 9.

4.   Compensating for the Nonlinear Aerodynamics



4.1 Gain-Scheduling

The gain-scheduling approach to compensation of the nonlinear aerodynamics is to incorporate the
reciprocal of the aerodynamic ‘gain’ , ∂T/∂p(pv, V), within the controller and schedule this gain with
respect to a variable which parameterises the locus of equili brium operating points.  (Since scheduling
on a direct measurement of wind speed is impossible, the pitch angle may be employed provided the
pitch angle is always suff iciently close to pV).  When the system is suff iciently weakly nonlinear (or,
equivalently, the operating point of the system remains suff iciently close to the locus of equili brium
operating points and varies suff iciently slowly), the stabilit y of the gain-scheduled nonlinear system
may be inferred from the stabilit y of the members of the family of linear systems consisting of the
linearisations of the nonlinear system at each equili brium operating point (see, for example, Desoer &
Vidyasagar 1975, Shamma & Athans 1990, Khalil & Kokotovic 1991).

However, the wind speed fluctuations are highly stochastic and the operating point of the wind
turbine varies rapidly and continuously over the whole operating envelope.  Whilst the bandwidth of the
linearised closed-loop system is typically about 3 r/s, the operating point might cover its full range,
corresponding to an order of magnitude or greater change in the aerodynamic gain, in a few seconds.
Moreover, large, rapid fluctuations in wind speed are common, in particular gusts; that is, steady
increases or decreases in the wind speed which persist for relatively long periods and produce
substantial and prolonged perturbations from equili brium.  Hence, a priori, the system cannot be
assumed to be weakly nonlinear.  A simple test, for a system with integral control action, is to compare
the behaviour of the closed-loop system with the nonlinear controller gain positioned before and after
the integrator (Leith & Leithead 1996a); for weakly nonlinear systems, the behaviours should not differ
substantially.  From figure 6, it is clear that an assumption of weak nonlinearity is not warranted.
Consequently, the emphasis must be on the nonlinear and non-local behaviour and performance of the
controller.

Leith & Leithead (1996a) propose that, with regard to a gain-scheduled controller, appropriate non-
local behaviour may be ensured by adopting a controller realisation which satisfies an extended local
linear equivalence condition.  (Briefly, the gain-scheduled controller is obtained by interpolating
between the members of a family of linear controllers designed for specific operating points.  The
extended local li near equivalence condition requires that the linearisation of the gain-scheduled
controller should match the appropriate member of the linear family at every operating point, both
equili brium operating points and non-equili brium operating points).  For the wind turbine controller,
this is achieved by placing the scheduled gain after the main controller dynamics but before the pure
integrator term and by incorporating a model of the actuator dynamics and its inverse1 in the controller
as depicted in figure 5b (Leith & Leithead 1996a).  When the actuator bandwidth is suff iciently large,
figure 5b reduces to figure 5a; that is, to the approach of Leithead et al. (1990a, b, 1991a).

However, for appropriate non-local behaviour, it is required that the complete system, not just the
controller, must satisfy the extended local li near equivalence condition.  Since this is not the case here,
analytic support for the nonlinear gain-scheduled controller is, really, only provided by the above
discussion for suff iciently slow perturbations which are local to the locus of equili brium operating
points and not for prolonged non-local perturbations.  A nonlinear analysis of the nonlinear gain-
scheduled controller is required.

4.2 Separability of the Nonlinear Aerodynamics

It is known that the dependence, on pitch angle and wind speed, of the aerodynamic pitching
moment of the turbine blades can be explicitly separated (Leithead et al. 1992b).  The same
methodology may be applied to the aerodynamic torque (Leithead et al. 1995).  Since the aerodynamic
torque is constant along the locus of equili brium operating points, the partial derivatives of T are related
on the locus by

∂T                   dp(V) ∂T
 (pV,V)  =  -     (pV,V) (9)
∂V                    dV     ∂p

                                                          
1 When a first order model of the actuator is suff icient, the inverse model is combined with the pure
integrator within the controller to attain a proper realisation.  When a higher order model is necessary
an approximate, realisable, inverse model is employed (Leith & Leithead 1996a).



where dp(V)/dV is the rate of change, with respect to wind speed, of pitch angle along the locus.  It
follows that (h(p)-g(V)) is constant on the locus of equili brium operating points provided h and g satisfy
the conditions

dh       ∂T       dg         ∂T
  =   (pV,V);   =  -   (pV,V) (10)
dp       ∂p  dV         ∂V

for all (pV,V).  Of course, (10) defines, within a constant, h(•) for all pitch angles and g(•) for all above
rated wind speeds.  Without loss of generality, (h(p)-g(V)) can be chosen to be zero on the locus.
Hence, locally to the locus of equili brium operating points,

T(p,V)  ≡  τ(ε); ε  =  h(p)-g(V) (11)
for some function τ such that,

τ(0)  =  To; dτ/dε(0)  =  1 (12)
since, locally to any point (pV,V) on the locus,

                   ∂T                ∂T
τ(h(pV+δp)-g(V+δV))  ≈  To +  (pV,V) δp +  (pV,V) δV             (13a)

                   ∂p                ∂V

        ≈  T(pV+δp,V+δV)             (13b)
The relationship of the aerodynamic torque to pitch demand can, therefore, be represented by (11)
locally to the locus of equili brium operating points with g(•) embodying the time-varying nonlinear
dependence on wind speed and τ(•) representing the nonlinear dependence on displacement from the
locus of equili brium operating points (see figure 2c).

The preceding analysis indicates that the local separabilit y, embodied by (11), is a quite general
property which pertains to a broad class of nonlinear regulation problems.  It is stressed that (11) is
valid non-locally in the sense that it is not confined to describing the behaviour about a single
equili brium operating point but rather describes the behaviour in a neighbourhood about the complete
locus of equili brium operating points.  In the present application, the neighbourhood of the locus of
equili brium points for which (11) is an adequate representation of the nonlinear aerodynamics is
substantial (Leithead et al. 1995).  For example, for the 300 kW wind turbine it can be seen from figure
10 that (11) is accurate when the aerodynamic torque, and so power, is kept below 2.5 times its rated
value and that τ(•) is almost linear with unity gain in this region.  There is no diff iculty in achieving this
requirement with existing control systems (see , for example, figure 6).

The separabilit y of the nonlinear aerodynamics is not unexpected because there are underlying
physical reasons why the representation (11) should hold for a wide neighbourhood for all wind
turbines.  The aerodynamic torque largely stems from the outer third of the rotor but, in this region, the
velocity of the blade is much greater than the wind velocity.  It follows that the direction of the wind
velocity, relative to the blades, changes almost linearly as the wind speed varies but its magnitude
changes littl e.  Hence, the aerodynamic torque is largely a function of the angle of attack of the wind on
the outer third of the blades, which is simply the difference in the direction of the relative velocity of the
wind and the pitch angle.

4.3 Direct Linearisation

Owing to the separabilit y of the nonlinear aerodynamics, the compensation problem may be
reformulated as one of linearising the SISO memoryless nonlinearity, h(p), whilst accommodating the
dynamics of the actuator (which lie between the controller and the nonlinearity).  It follows immediately

that this is achieved by the approach depicted in figure 11a, where 
�

h−1 , 
�

A u, 
�

A u
−1  are suitable

approximations to, respectively, h-1, the actuator dynamics and the inverse actuator dynamics. (Exact
linearisation is achieved when there is no approximation error).  Of course, h-1(•), must exist (which
requires dh/dp(•), and so ∂T/∂p(pv,V), to be monotonic).

The strategy of figure 11a is, however, not unique.  For example, from figure 11a,
�

p  =
�

h−1 (
�

φ ) (14)

and, differentiating with respect to time,
� �

�

� (
�

)

� �

p
dh

dp
p

 =  
1

φ (15)



Hence, it follows that figure 11a may be reformulated as depicted in figure 11b.  (The differentiation
operator in this formulation can be incorporated without diff iculty into the linear controller owing to the
integral action of the latter).  The non-local li nearisation, figure 11b, is essentially identical in form to
the local li nearisation, figure 5b, derived in section 4.1 using gain-scheduling methods.  Hence, the
gain-scheduling approach to accommodating the nonlinear aerodynamics, whilst derived on the basis of
local analysis, in fact achieves, albeit inadvertently, non-local li nearisation.  Moreover, when the
actuator bandwidth is suff iciently large, figure 11b reduces to figure 5a, thereby, providing a rigorous
theoretical basis for the approach of Leithead et al (1990a, b, 1991a, 1992a).  However, when the
actuator bandwidth is low, the approach of Leithead et al. (1990a, b, 1991a, 1992a) may not be
appropriate.  The performance of the representative 1 MW machine, with and without compensation for
the slow actuator dynamics in the aerodynamic linearisation, is ill ustrated by figure 12; a rather
substantial difference, with a maximum of about 400 kW, is evident in the generated power.

In practice, when implementing the linearisations of figure 11, nominal models for Au and Au
-1 are

employed.  Furthermore, the representation of the aerodynamic behaviour of the turbine rotor is subject
to considerable uncertainty with h(•) only inexactly known.  With regard to the sensitivity to errors in

�

A u, 
�

A u
−1 , 

�

h−1and dh dp
�

/
�

, the linearisations, in figure 11a and figure 11b, are equivalent and it

suff ices to consider the latter alone.  In figure 11b, the actuator dynamics and aerodynamics are directly

inverted so that, nominally, φ equals 
�

φ .  To achieve effective linearisation, this inversion must retain

reasonable accuracy for all admissible signals, 
�

φ , despite the approximation errors.  It is necessary,

therefore, to assess the impact of these on the effectiveness of the linearisation; that is, to assess the
robustness.

In the present application, and in general, a requirement on the controller is to strongly attenuate
high frequency signals; for example, to protect the actuator from high frequency wind disturbances and
measurement noise and to avoid exciting unmodelled plant dynamics.  Moreover, all physical actuators

attenuate high frequency signals as must 
�

A u.  Hence, the spectrum of 
�

φ  may be assumed to have littl e

energy at high frequencies.  Furthermore, in order to meet the demanding performance specification, the
actuator behaviour must be reasonably well known over the range of admissible control signals;  that is,
for a linear actuator, its transfer function must be known over the control bandwidth of the system.
(Straightforward laboratory or field tests can be employed to determine the actuator characteristics).  It

follows that 
�

A u
−1  may be selected such that Au

�

A u
−1 , essentially, has unity gain for the admissible

signals, 
�

p ; that is, for a near linear actuator, discrepancies between the transfer functions of 
�

A u
−1  and

Au
-1 are confined to high frequencies where the spectrum of 

�

p  has littl e energy.  Therefore,

p  =  
�

p +ε (16)

where ε is small; i ndeed, it is inherent to the controller specification that the controller is designed to
ensure ε is small .

Since
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dh

dp
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dh

dp
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dh

dp
p
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(17)

figure 11b may be reformulated, using (14) and (15), as figure 11c.  Hence, figure 11c, and so the
complete system, may be interpreted to be entirely linear except for a gain-scheduled controller which
satisfies the extended linear equivalence condition (Leith & Leithead 1996a).  For such a system, the
dynamic properties may be inferred from those of the family of linear systems obtained by linearising
about the equili brium operating points.  Hence, provided the nonlinearity of K(

�

p ) is not excessively

strong , variation in K(
�

p ) from unity is easily accommodated by the stabilit y margins of the members

of the family of linear systems.  Consequently, the strategy for accommodating the nonlinear
aerodynamics depicted in figure 11b or, equivalently, figure 11a, is robust for the class of applications
considered.

4.4 Feedback Linearisation

Two specific strategies to accommodate the nonlinear aerodynamics are derived directly in the
preceding section.  However, this objective may also be achieved, within a more general framework, by



considering the actuator dynamics in combination with the nonlinear aerodynamics to be a nonlinear
dynamic system and applying feedback linearisation (see, for example, Isidori 1989, Slotine & Li
1991).

Let h:ℜn→ℜ be a smooth (suff iciently differentiable) scalar function and f, g:ℜn→ℜn be smooth
vector fields on ℜn.  The Lie derivative, or directional derivative, with respect to f is the scalar function
defined by Lfh = ∇∇h⋅f. Higher order Lie derivatives are defined recursively by Lf

ih = Lf
oLf

i-1h, Lf
oh = h;

similarly, LgLfh = ∇∇Lfh⋅g.  Consider the SISO nonlinear dynamic system
�x = f(x) + g(x)z;     p  = Cx;    φ  =  h(p)  =  H(x) (18)

where, in the present application, p is the pitch angle, z is the input applied to the actuator and f, g
define the (perhaps nonlinear) actuator dynamics.  When z satisfies

z =  
-L +  vr

r-1
f

g f

H 

L L H
(19)

where r is the relative degree of the system (defined by LgLf
i=0 for 0≤i<r-1, LgLf

r-1≠0), the nonlinear
system, (18), is linearised in the sense that

φ(r) = v (20)
where φ(r) denotes d(r)φ/dt(r).

In order to confine the linearisation to the nonlinear aerodynamics, thereby avoiding inversion of the
actuator dynamics, v is chosen to be

v = C
�

x (r) (21)

where 
� � � �

x f x g x =  ( ) +  ( )u  with boundary condition C
�

x (0) = φ(0), and u is the input to the linearised

system.
Although, it is, of course, straightforward to extend the analysis to accommodate higher order

actuator dynamics, assume the actuator dynamics may be adequately represented by the first order
system

�p  = -a-1p + a-1z (22)

with a-1≠0; that is, in (18), x = p, f(x) = -a-1p, g(x) = a-1, C = 1.  In practice, a first order representation
of the actuator is often adequate since a high gain feedback loop is typically employed internally to
ensure that the actuator output follows its input.  The first order Lie derivatives of (22) are

LgH = 
dh

dp
 a-1, LfH = -

dh

dp
 a-1 p              (23a)

From (23a), the relative degree, r, of the system is unity when 
dh

dp
≠0, a-1≠0.  The former condition is

necessary for the wind turbine to be controllable whilst, from (22), the latter is satisfied.  Hence,
applying (20) and (21) to (22),

�

φ  = v = 
� �

x  = -a-1φ + a-1u             (23b)

Hence, (19) becomes

z = (
dh

dp
p - h(p) + u)/ 

dh

dp
(24)

which corresponds to the block diagram representation depicted in figure 13a.  Clearly, in figure 13a, a
positive feedback loop, which essentially cancels with the actuator internal feedback to leave it open-
loop, encloses the actuator.

In contrast to the direct linearisation approach of section 4.3, the feedback linearisation approach
requires that measurements of certain quantities be available.  When the actuator dynamics are first
order, a measurement of the pitch angle is required.  More generally, when the actuator transfer function
is nth order, measurements of the first (n-1) derivatives of the pitch angle are required for exact
linearisation.  For example, when the actuator has the second-order transfer function 1/(a2s

2+a1s+1), the
linearising feedback becomes

z = (- a
d h

dp
p2

2

2
2� +

dh

dp
p - h(p) + u)/ 

dh

dp
(25)

An alternative linearisation is obtained by incorporating integral action into the actuator such that
a � �p + �p  = �z (26)

For these augmented dynamics



LgH = 0;  LgLfH = 
dh

dp
 a-1;    Lf

2H = -
dh

dp
a-1 �p + 

d h

dp

2

2 ( �p )2;    v = -
dh

dp
a-1 �p + a-1 �

u

Hence, with the same conditions as in the previous linearisation, the relative degree is 2 and

�

( � ) �

z

h

dp
p

 =  

-a
d

 +  u

dh

dp

2

2
2

(27)

which corresponds to the block diagram representation depicted in figure 13b.  In general, when the
actuator transfer function is nth order, measurements of the first n derivatives of the pitch angle are

required with this formulation.  When the actuator bandwidth is suff iciently high, the term, a
d h

dp

2

2 ( �p )2,

in (27) arising from the actuator dynamics may be neglected, and figure 13b reduces to figure 5a, the

approach of Leithead et al. (1990a, b, 1991a, 1992a).  However, the term, a
d h

dp

2

2 ( �p )2,  may be

significant when the actuator bandwidth is low.  Indeed, it provides an exact statement of the
circumstances under which the bandwidth of the actuator may be considered to be low.  (It is noted that
this measure depends, as might be expected, not only on the bandwidth of the actuator but also on the

strength of the nonlinearity and the rate at which the operating point changes).  Since 
d h

dp

2

2  is negative

for wind turbines, the term in (27) arising from the actuator dynamics is always positive.  It follows that
its omission introduces a bias in the controller velocity demand which, in turn, introduces a bias in the
power output that is most pronounced when the pitch velocity is large (see, for example, figure 12).

4.5 Relationship Between Direct & Feedback Linearisation

Strategies for accommodating the nonlinear aerodynamics are derived both by direct linearisation
(section 4.3) and by application of feedback linearisation (section 4.4).  Clearly, it is necessary to
determine their relationship, if any, to each other.

Consider, firstly, the approach of figure 11a, for which, for first order actuator dynamics,

a
� �

φ +
�

φ  = u; 
�

p  = 
�

h−1 (
�

φ );  z =
�

p +a
��

p (28)

It follows immediately that

a
� �

φ  = a
dh

dp

�

�

� �

p  = (u-
�

φ ) (29)

and z = (
dh

dp

�

�

�

p  - 
�

h (
�

p ) + u)/ 
dh

dp

�

� (30)

Neglecting measurement noise and uncertainties in the actuator dynamics and the aerodynamics, it can
be seen that (30) is identical to (24) and, thus, figures 11a and 13a are nominally equivalent.  Secondly,
it may be shown for the approach of figure 11b
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� (
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�

�

z

h

dp
p

 =  

- a
d

 +  u

dh

dp

2

2
2

(31)

Consequently, figures 11b and 13b are, also, nominally equivalent.  Therefore, all four schemes,
depicted in figures 11 and 13, are nominally equivalent.

Nevertheless, the formulations are not equivalent with regard to several important implementation
issues.

1. The approach of figure 13b requires measurements of both the pitch angle and the pitch rate.  Rate
measurements are, in general, more diff icult to obtain than position measurements and are often
rather noisy (which impacts on both performance and stabilit y).  Consequently, this approach is less
attractive than, for example, that of figure 13a for which a measurement of the pitch angle alone
suff ices.  Of course, the extension of the approach of figure 13a to accommodate higher order



actuator dynamics (when, for example, a first-order representation of the actuator dynamics is
inadequate over the control bandwidth) also requires derivative measurements (see section 4.4).
Under these circumstances, the approaches based on feedback linearisation may be unsuitable and
the direct linearisations of figure 11 might be preferred.

 
2. In wind turbine applications, dh/dp is readily obtained from ∂T/∂p along the locus of equili brium

points.  The function h-1, required for the formulation in figure 11a is then calculated as

 h p
s

ds− ∫1( )
( )

 =  
1

dh

ds

0
p

 with suitable boundary conditions.  However, the approach of figure 11b avoids this step and is,
therefore, more direct for wind turbine applications than that of figure 11a.

 
3. When the actuator bandwidth is much greater than that of the controlled system, such that the

feedback term, a
d h

dp

2

2 ( �p )2, is small , the approaches of figures 11b and 13b reduce to the existing

approach of Leithead et al. (1990a, b, 1991a, 1992a).  For low bandwidth actuators, however, the
approach of figure 11b requires the availabilit y of an adequate actuator model.  Whilst this
information is often available, or easily determined, the approach of figure 13a avoids altogether
any need for detailed actuator knowledge provided that a measurement of pitch angle is available
and the actuator exhibits first order behaviour over the control bandwidth.  Furthermore, the latter
approach can accommodate actuators whose characteristics vary slowly over time (see, for example,
Desoer & Vidyasagar 1975, Shamma & Athans 1990, Khalil & Kokotovic 1991 for theoretical
results relating to the stabilit y of slowly-varying linear and nonlinear systems).

 
4. The approach of figure 13a encloses the actuator in a positive feedback which, essentially, cancels

with the actuator internal feedback leaving it open-loop; under nominal conditions, the negative

feedback of 
�

φ  ensures that φ is dynamically linearly related to u.  However, the linearity of the

negative feedback is dependent on mutual cancellation, via the open-loop actuator dynamics, of the

nonlinear functions, 
�

h  and 
dh

dp

�

� .  Significant nonlinearities, which can be expected to influence the

foregoing mutual cancellation in a complex manner, are, typically, present internally within real
actuators.  It follows that this approach can be expected to be rather less robust, in general, with
respect to the actuator nonlinearities, than the other linearisation approaches (which benefit from the
linearising action on the actuator of its internal high gain feedback).

Whilst the linearisation approaches which have been derived are nominally equivalent, they differ
with respect to a variety of implementation issues.  The foregoing discussion clearly indicates that the
choice of the appropriate implementation of the linearisation is, in general, strongly application
dependant.  With regard to wind turbine applications, the conventional feedback linearisation approach
of figure 13a is judged to be unsuitable owing to the requirement for a positive feedback loop around
the actuator, with consequent robustness implications.  The alternative formulation, figure 13b, is also
judged to be unsuitable owing to the requirement for a measurement of pitch rate.

5.  Controller Start-Up/Shut-Down
5.1 Stability Analysis of Controller Start-up/Shut-Down

In order to facilit ate stabilit y analysis, the controller start-up strategy of Leithead et al. (1990a, b,
1991a, 1992a), figure 8, is reformulated as depicted in figure 14.  The two formulations are equivalent
(ignoring, for the moment, the controller terms which compensate for the aerodynamic nonlinearity).
The Small Gain theorem, and criteria derived from it such as the Circle Criterion, (see, for example,
Desoer & Vidyasagar 1975) may be employed to provide straightforward suff iciency conditions for the
stabilit y of the nonlinear closed-loop system with the controller start-up/shut-down strategy of figure 14.
In order to apply small gain analysis, the controlled system in figure 14 is reformulated as a SISO linear
time-invariant block with transfer function Cinner(F-Couter GAu)/(1+CinnerF) and nonlinear feedback
provided by a saturation element with a lower limit of zero.  The nonlinear saturation element is an



operator with induced L2 norm in the range (0,1]; therefore, by direct application of the Small Gain
theorem, the closed-loop system is stable provided the magnitude of the transfer function Cinner(F-Couter

GAu)/(1+CinnerF) does not exceed unity.  From figure 15, it is clearly seen that this condition is satisfied
for the representative 300 kW machine when the controller start-up strategy of figure 14 is employed.

An assessment of stabilit y robustness is also necessary and may be performed rigorously by
replacing G by G(1+Γ), reformulating the system in figure 14 as a MIMO linear block with one
feedback via Γ and a second via the saturation element, and then applying small gain analysis once
again.  However, the rigour of this approach is counter-balanced by its inherent conservativeness which
greatly restricts the utilit y of the stabilit y margins thereby derived.  Consequently, it is important that
less conservative results are obtained.  This may be achieved using harmonic balance techniques (see,
for example, Atherton 1982) at the cost of reduced rigour.  The dominant source of uncertainty typically
lies in the aerodynamic behaviour of the turbine blades and may be considered largely as a gain
uncertainty.  Since the describing function of a real memoryless nonlinear gain is real, the gain margin
is indicated to be a useful measure of robustness which  may be assessed by increasing the plant gain
and analysing the stabilit y of the closed-loop system.  With the controller start-up approach of figure 14
the 300 kW machine is determined to possess a gain margin of 10 dB; that is, the gain margin of the
linear open-loop system is preserved.

5.2 Design Guidelines

The controller start-up/shut-down approach of Leithead et al. (1990a, b, 1991a, 1992a) introduces
additional design freedoms into the controller;  that is, a variety of parameters which require to be
selected appropriately.  Leithead et al. (1991a, 1992a) suggest, on the basis of physical insight, that the
closed-loop transfer function of the start-up/shut-down loop within the controller should be similar to
that of the overall closed-loop system.  Whilst this guideline gives rise to acceptable performance in
many cases, it can be seen from figure 7 that, although the approach of Leithead et al. (1991a, 1992a)
greatly reduces the power transients at start-up, these transients remain significantly larger than those
experienced during continuous above-rated operation at low wind speeds; for example, around 40% (40
kW) higher in figure 7.  Consequently, design guidelines to achieve improved performance are
desirable.

The dynamics of the wind turbine drive-train introduce a lag between changes in the wind speed and
the corresponding changes in the power output;  that is, when the wind speed rises above rated, there is
a lag before the power output responds and control action is resumed.  It follows that the start-up
performance might be improved by anticipating the transition from below to above rated power
generation and, thereby, compensating somewhat for the dynamics of the drive-train.  Predictive action
may be achieved by augmenting the Couter block with a filter, P, possessing suitable phase lead.  In order
to recover the controller transfer function for above-rated operation, the inverse of this filter must be
included in the Cinner block (the modification to the characteristics of the start-up minor feedback loop is
negligible).  It is required that both the filter transfer function, P(s), and its inverse, P-1(s), are stable and
both CouterP and CinnerP

-1 are realisable.  For the 300 kW machine, a simple filter with transfer function
(s+0.75)/(s+1.5) introduces appropriate phase lead and reduces the start-up power transient by over 50
kW in figure 7 in comparison with the conventional approach of Leithead et al. (1991a, 1992a).  The
start-up transient is now well within the range of power fluctuation experienced during normal above-
rated operation at low wind speeds;  that is, extending present design guidelines to include appropriate
shaping of the partitioned controller transfer functions can lead to a substantial improvement in start-up
performance.
5.3 Relationship to Anti-wind-up

In the context of linear analysis, generation of rated power requires the pitch angle to be negative
when the wind speed is below the rated.  However, with regard to the nonlinear plant, the actual pitch
angle is physically constrained to be positive and a negative pitch demand by the controller corresponds
to below rated operation.  The control action is suspended on encountering the lower limit on the pitch
angle, which the blades can adopt, and reactivated by movement of the blade pitch angle off this limit.
This interpretation enables a connection to be made between the, apparently rather specific, wind
turbine controller start-up/shut-down problem and the general field of constrained control.

With regard to constrained control design, approaches which directly account for the presence of
actuator constraints have been devised using optimal control theory (Frankena & Sivan 1979, Garcia et
al. 1989), Lyapunov methods (Gutman & Hagander 1985), invariant set theory (Wredenhagen &
Belanger 1994) and others (for example, Sussman & Sontag 1994).  However, in practice the most



widespread approach involves first designing a linear controller, ignoring control input constraints, and
then adding some form of compensation which minimises any adverse effects of the constraints on
closed-loop performance (Kothare et al. 1994).  Whilst a great variety of (sometimes rather ad hoc)
compensation methods have been devised (see, for example, Fertik & Ross 1967, Shinsky 1967,1988,
Buckley 1971, Astrom & Wittenmark 1984, Hanus et al. 1987, Campo & Morari 1990), many of the
techniques can be accommodated within more general approaches (Walgama & Sternby 1990, Kothare
et al. 1994).  Historically, performance degradation due to actuator saturation has often been considered
in the context of PI/PID controllers and has been attributed to so-called integrator (or reset) ‘wind-up’
(early references include Shinsky 1967, Fertik & Ross 1967).  In qualitative terms (see, for example,
Astrom & Wittenmark 1984), when the actuator is saturated the control feedback loop is broken and the
plant no longer responds to the controller.  However, the pure integrator in the controller continues to
be driven by the control error and its output increases in magnitude or ‘winds-up’ .  Consequently, on
returning to unsaturated operation transients develop which can lead to a loss of performance and
instabilit y.  Wind-up, as described above, is only exhibited by a non-stable element such as an
integrator (Astrom & Wittenmark 1984).  However, performance is also known to be degraded by
stable dynamic elements with suff iciently slow dynamics (Doyle et al. 1987, Campo & Morari 1990).
Nevertheless, compensation methods for reducing the performance deterioration associated with hard
actuator limits are widely referred to as ‘anti-wind-up’ techniques and this term is, therefore, also
adopted here.

The transients associated with wind turbine controller start-up may be attributed to some form of
‘wind-up’ within the controller, whilst operating below rated, and start-up strategies for reducing these
transients may be considered within the anti-wind-up context.  General results from the field of
constrained control may then be applied to wind turbine controller start-up and, similarly, solutions
developed for the latter problem may be directly generalised to a broad class of constrained control
problems.  The formulation depicted in figure 14 of the controller start-up strategy of Leithead et al.
(1990a, b, 1991a, 1992) supports this connection to the anti-wind-up context for both the particular,
essentially single-sided, position constraint in figure 14 and for more general position constraints.  The
discussion is confined to the issue of controller start-up and ignores, for the moment, the other
implementation issues considered in this paper.

The approach of freezing the controller integral action during below rated operation is immediately
seen to correspond to the conditional integration method, commonly described in the anti-wind-up
literature (see, for example, Fertik & Ross 1967, Astrom & Rundquist 1987), of halting integral action
when a hard limit is encountered and the control demand and its derivative have the same sign.  The
formulation of figure 14 subsumes the conditional integration approach which corresponds to the
special case when the controller is partitioned such that the anti-wind-up feedback loop contains only a
pure integrator and high (formally, infinite) gain.  Whilst this simple approach works well for certain
applications (Astrom & Rundquist 1987), the performance can be poor, see figure 7, when the
technique is applied to wind turbine control.  The poor performance of the conditional integration
approach in figure 7 is attributed to prolonged transients associated with the low frequency dynamics in
the controller (Leithead et al. 1991a, 1992a).  The improved performance of the approach of Leithead
et al. (1990a, b, 1991a, 1992a) in figure 7 is associated with applying corrective feedback to both the
pure integrator and the low frequency controller dynamics.

A further connection may be made with the high gain conventional anti-wind-up approach
described by Kothare et al. (1994) (a fairly direct generalisation of the back-calculation approach
(Fertik & Ross 1967, Astrom & Wittenmark 1984, Hanus et al. 1987)).  However, this approach is not
equivalent to that of Leithead et al. (1990a, b, 1991a, 1992a), since the formulation of Leithead et al.
(1990a, b, 1991a, 1992a) employs dynamic feedback whilst the conventional anti-wind-up approach of
Kothare et al. (1994) is expressly confined to static anti-wind-up feedback.  Moreover, Leithead et al.
(1990a, b, 1991a, 1992a) partition the controller such that only part of the dynamics of the controller
are enclosed within the anti-wind-up loop whereas Kothare et al. (1994) apply high gain feedback
around the entire controller.  The performance of the high gain conventional anti-wind-up approach is
not generally effective when applied to wind turbines.  Figure 14 also reveals the similarity between the
approach of Leithead et al. (1989, 1990a, b) and the model-based anti-wind-up approach independently
proposed by Irving and briefly outlined by Hanus (1989) (but apparently not developed, beyond this
initial suggestion, to the point of being practicable).  However, it differs from the approach of Leithead
et al. (1991a, 1992a) in several important respects, particularly with regard to the treatment of slow
plant dynamics (see the discussion in section 3.2 concerning the dynamic inflow).

Campo et al. (1987) and Kothare et al. (1994) have proposed a rigorous synthesis approach, based
on µ-theory, for selecting anti-wind-up parameters.  However, this approach is apt to be both rather



conservative and relatively complex.  Hence, it is often necessary, and indeed common practice, to
exploit physical insight to minimise conservativeness and to develop simple heuristic tuning guidelines
(Astrom & Rundquist 1989 in the context of PI/PID control) such as those developed in section 5.2.

Whilst consideration is almost always restricted, in the general anti-wind-up context, to static
compensation, the results discussed here indicate that, in appropriate circumstances, dynamic
compensation can achieve superior anti-wind-up performance.

6.   Actuator Velocity/Acceleration Saturation

It is well known that the hard limits present in all actuators can give rise to a degradation in control
performance and may lead to a reduction in the stabilit y margins and, indeed, instabilit y.  However,
whilst it is noted in section 5 that a constraint on the output of the actuator can have a considerable
impact on closed-loop performance, the effect on performance of velocity and acceleration constraints
within the actuator is typically less marked since these constraints are normally only encountered for
short periods of time.  Velocity and acceleration constraints may, nevertheless, degrade the closed-loop
stabilit y margins.  This is ill ustrated in figure 16 for the representative medium-scale turbine.  Whilst
the unconstrained system possesses a nominal gain margin of 10 dB, the closed-loop system becomes
unstable, exhibiting a large amplitude limit cycle, when actuator velocity constraints are introduced and
the loop gain is increased by a factor of 2.5; that is, the actuator velocity constraints reduce the gain
margin by 20%.  This type of behaviour is likely to be exacerbated in large-scale machines for which
the increased size and inertia of the turbine rotor can require the actuator to be operated closer to its
hard limits in order to meet the performance specification (Rogers & Leithead 1994).

Although actuators are almost always subject to a combination of several constraints, the literature
(with the notable exception of Fertik & Ross 1967) is largely confined to the consideration of a simple
position constraint on the output of the actuator.  Moreover, the actuator dynamics are almost always
neglected.  Figure 16 indicates that the actuator limits on velocity and acceleration in wind turbines
cannot be ignored implying, in turn, that the actuator dynamics cannot be neglected.  Some
simpli fication is possible, however, since it is almost always the case that only one of the velocity and
acceleration constraints proves restrictive in practice and it is, therefore, suff icient to consider actuators
with a single velocity or acceleration constraint.  The discussion in this section is confined to a single
velocity/acceleration constraint in the actuator.

The requirement is to devise a method to accommodate the presence of a velocity/acceleration
constraint within the actuator.  Other than requiring compatibilit y with the controller start-up
arrangements discussed in section 5, the other implementation issues considered in this paper are
ignored.  A reset type of anti-wind-up formulation, whereby integral action is obtained via positive
feedback (see, for example, Astrom & Wittenmark 1984, Walgama & Sternby 1990, Kothare et al.
1994), is unattractive owing to the compatibilit y requirements and the presence of significant actuator
dynamics.  Instead, the approach depicted in figure 17 directly extends the controller start-up/anti-wind-
up approach, developed in section 5, to accommodate velocity/acceleration constraints (Rogers &
Leithead 1994, Leith & Leithead 1995c).  This formulation employs feedback of the difference,

between the output of the real actuator, A, and a linear (unconstrained) model, 
�

A u, to the input of the
Cinner block in the controller via a suitable filter, F.  A measurement of the control demand is always
available within the controller and, when the actuator output is not measured, it may be estimated from
an appropriate model of the actuator which includes a representation of the velocity/acceleration
constraints (in a similar manner to the approaches proposed by Astrom & Wittenmark 1984, Doyle et
al. 1987, and others).

The stabilit y analysis techniques discussed in section 5 may also be applied to provide suff iciency
conditions for the stabilit y of the controlled system when the foregoing velocity/acceleration constraint
compensation approach is employed.  Applying small gain analysis to the example medium-scale wind
turbine, let y denote the input to the velocity saturation and x denote the output.  In closed-loop
operation, y is related to x by the transfer function

       ( MoCinnerF
�

A u -MoCinnerCouterG-CinnerF
�

A uT-T)M1/s
y =    x (32)

                             1 + CinnerF
�

A u



and the system may, therefore, be re-formulated with this linear transfer function in the forward path
and with feedback via the velocity saturation nonlinearity.  When F is selected to be a gain of unity, the
small gain theorem indicates that, with anti-wind-up, the closed-loop system is stable for any saturation
both in nominal conditions and with the loop gain increased by a factor of 2.5.  A plot of the magnitude
of (32), when the saturation element is replaced by a fixed gain of 0.6, is shown in figure 18; the
magnitude is less than 1.664, indicating stabilit y for the class of position nonlinearities with norm in the
range (-0.001,1.201) which, of course, encompasses the saturation nonlinearity.  When the loop gain is
increased by 3.15, the system is indicated to be stable for the norm of the saturation nonlinearity lying
in the range (0.087, 1.003); that is, for the input to the saturation nonlinearity less than 11.5 times the
saturation limit (115.0 degrees/second).  The velocity is extremely unlikely to exceed such a large value
in practice and the system may be taken as stable for practical purposes with the required gain margin of
10 dB.

7.   Integrated Controller Realisation

In the preceding sections, the implementation issues (compensation of the nonlinear aerodynamics,
automatic controller start-up and accommodation of actuator constraints) are considered separately and
appropriate strategies for their resolution are developed.  It remains to combine these strategies to
achieve a controller realisation which caters for all of the implementation issues in an integrated
manner.  The analysis of section 4 is clearly valid when operating above rated with the actuator
unsaturated.  It follows immediately that, in these circumstances, the controller realisation should
appropriately linearise the nonlinear aerodynamics in accordance with the results in section 4.  In
contrast, during below rated operation and/or during actuator saturation the control loop is effectively
broken and linearisation of the aerodynamics is, therefore, not required.  Instead, the objective is to
ensure that the transition to above rated/ unsaturated operation is, in some sense, smooth.

Whilst, of course, small gain methods and µ-theory may be employed to rigorously analyse a system
with multiple saturation nonlinearities, the very conservative nature of the results obtained often greatly
limits their utilit y in practice.  Owing to the manner of wind turbine operation, the constraints on the
control demand and actuator velocity/acceleration are rarely encountered simultaneously.
Consequently, they can be considered separately, assuming that the controlled system is suff iciently
robust to accommodate this approximation.  Simulation results, employing a well -validated
methodology, confirm the validity of this separation for wind turbines (Leith & Leithead 1995c, 1996b).
This approach permits a useful compromise to be achieved between rigour and conservativeness.

The controller realisations developed by Leithead et al. (1990a, b, 1991a, 1992a) achieve smooth
controller start-up by incorporating a minor feedback loop which, in some sense, mimics the plant
dynamics and enables the controller to continue operating when below rated.  This start-up strategy
compensates for the controller nonlinear gain in a natural manner by incorporating a nonlinear gain
equal to ∂T/∂p, see figure 8, in the minor feedback loop.  However, whilst both the controller and the
minor loop contain a gain, which varies nonlinearly in above rated operation, these gains are constant
during below rated operation.  It follows that, with this strategy, the control loop is effectively linear
with respect to the aerodynamics during both above and below rated operation.  Whilst Leithead et al.
(1991a, 1992a) developed this controller start-up strategy for a specific approach to aerodynamic
linearisation, it is easily seen to be compatible with all of the linearisation techniques developed in
section 4.3.  However, the linearisation approaches of figure 13 are judged to be unsuitable for wind
turbines, see section 4.3, and attention is, therefore, confined to the direct linearisation strategies of
figure 11.

The anti-wind-up strategy, developed in section 6 to accommodate actuator velocity/acceleration
saturation, is a fairly direct generalisation of the start-up strategy of Leithead et al. (1990a, b, 1991a,
1992a).  It might be expected, therefore, that the strategy for accommodating the nonlinear
aerodynamics of the plant, discussed above for controller start-up, might extend to this case.  However,
the controller nonlinear gain need not, now, be constant when the actuator is saturated and nonlinear
analysis of the minor loop gain therefore becomes necessary.  In the light of the discussion in section 4,
a nonlinear gain equal to ∂T/∂p (without associated integral action) is insuff icient for modelli ng the
nonlinear behaviour of the aerodynamics with respect to the pitch angle.  It follows, therefore, that an
appropriate solution, which is compatible with the linearisation methods of section 4.3, is to incorporate

the function, 
�

h (•), in the anti-wind-up feedback loop in order to compensate for the controller
nonlinear gain.  The controller start-up and anti-wind-up strategies may be combined immediately to



give a single minor feedback loop which is active during below rated operation and when the actuator is
saturated.

When the aerodynamic linearisation strategy of figure 11b is employed, the foregoing considerations
lead to the controller realisation depicted in figure 19.  This realisation provides an integrated strategy
for resolving the issues of nonlinear aerodynamics, controller start-up and actuator saturation.  Its
effectiveness has been confirmed by extensive simulation studies (Leith & Leithead 1995c).  When the
actuator dynamics are suff iciently fast and the actuator saturation limits are such that they may be
neglected, the realisation of figure 19 reduces, essentially, to that of Leithead et al. (1991a, 1992a).  An
equivalent realisation, based on the linearisation strategy of figure 11a, is readily obtained.

The importance of adopting an appropriate controller realisation is ill ustrated by figure 20 for the
medium-scale wind turbine.  The appropriate controller realisation enables a substantial improvement in
performance to be obtained in comparison to a poor controller realisation (with the nonlinear
aerodynamic gain positioned after the pure integrator in the controller, conditional integration anti-
wind-up at start-up, no velocity anti-windup and consequently the requirement for a reduction in the
controller gain in order to maintain adequate stabilit y margins).  The poor controller realisation is quite
plausible and, indeed, its use has been observed on commercial wind turbines.  Note that the example in
figure 20 ill ustrates the performance for a moderate wind speed in order to emphasise the considerable
importance of the controller realisation even under relatively benign wind conditions; at higher wind
speeds the performance gains associated with an appropriate realisation become still more pronounced.

8.   Summary and Conclusions

In this paper, three of the important, generic, implementation issues encountered when developing
controllers for pitch-regulated constant-speed wind turbines are considered, namely

1. Compensation of the strongly nonlinear blade aerodynamics.
2. Automatic controller start-up/shut-down.
3. Accommodation of velocity and acceleration constraints within the actuator.

It is shown that the aerodynamic behaviour of the rotor possesses a local separabilit y property
whereby the dependence of the aerodynamic torque on the effective wind speed and the blade pitch
angle may be explicitly de-coupled.  Whilst this property is local to a neighbourhood of the locus of
equili brium operating points, the neighbourhood is suff iciently large to include the normal operating
envelope.  The local separabilit y property enables several strategies to be rigorously established to
accommodate the nonlinear aerodynamics both by direct linearisation and by feedback linearisation.
Although nominally the same, the strategies differ with respect to many important practical issues,
including the prior knowledge necessary, robustness, sensor requirements, degree of complexity (and,
related to this, the scope for simpli fication in certain circumstances) and compatibilit y with controller
start-up and anti-wind-up strategies.  The existing strategy for accommodating the nonlinear
aerodynamics, originally developed on the basis of physical insight, is rigorously derived but it is
determined that this strategy is only valid when the actuator bandwidth is suff iciently large.  Whilst this
requirement is typically satisfied in medium-scale wind turbines, it may not be for large-scale machines.
However, the analysis enables the existing strategy to be directly extended to cater for all machines.

With respect to the issue of automatic start-up/shut-down of the wind turbine controller, a rigorous
stabilit y analysis is presented for the first time and novel design guidelines are proposed which can
significantly reduce the power transients at controller start-up (by over 50 kW for a machine rated at
300 kW).  It is noted that a close connection exists between the, apparently rather specific, requirement
of ensuring appropriate automatic controller start-up/shut-down as the wind speed fluctuates and the
general issue of anti-wind-up in the field of constrained control.  This connection is exploited to
observe that solutions, developed for the specific wind turbine problem, are, in general, directly
applicable to a broad class of constrained control problems.  Several aspects of one particular wind-
turbine controller start-up strategy are noted to be novel in the anti-wind-up context and of quite general
application.  Whilst consideration in the general anti-wind-up context is almost always restricted to
static compensation, the results presented here demonstrate that, in appropriate circumstances, dynamic
compensation can achieve superior anti-wind-up performance.

Whilst it is well known, particularly in the context of process control, that hard actuator limits can
degrade performance and reduce the stabilit y margins or, indeed, induce instabilit y, this issue has
previously been neglected in wind turbine applications.  Typically, an actuator velocity constraint can
reduce the gain margin of a pitch-regulated wind turbine by around 20%.  If adequate stabilit y margins



are not achieved a wind turbine system must sometimes destabili se, although not necessarily become
unstable, in which case the wind turbine would experience large load fluctuations.  The reduction in the
stabilit y margins is, furthermore, likely to be exacerbated on large-scale machines where, owing to the
increased size and inertia of the turbine blades, the actuator may require to be operated at its hard limits
to a greater extent in order to meet the performance specification.  Since actuator constraints are always
present, it follows that it is necessary, unless alternative corrective measures are employed, to de-tune
the controller in comparison to the linear unconstrained situation in order to achieve adequate stabilit y
margins.  Strategies for recovering adequate stabilit y margins without de-tuning the controller are
described in the anti-wind-up literature.  However, these are rather limited in scope and are not directly
applicable, in general, to wind turbines (and many other application areas) for which restrictive
position, velocity and acceleration constraints may all be present and the dynamic behaviour of the
actuator cannot be neglected.  A novel, and quite general, anti-wind-up strategy is proposed which
caters for these circumstances.

The separate strategies for resolving the implementation issues are combined to achieve an elegant
controller realisation which accommodates all the implementation issues in an integrated manner.  The
importance of adopting an appropriate controller realisation is considerable and is ill ustrated for a 300
kW wind turbine.

The implementation issues considered in this paper are, of course, not confined to wind turbines but
are of wider concern..
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Figure 1  Block diagram representation of wind turbine control loop
Figure 2a  Dynamic relationship of aerodynamic torque to pitch angle and effective wind speed
Figure 2b  Local li nearisation of aerodynamic non-linearity.
Figure 2c  Block diagram decomposition of aerodynamic non-linearity
Figure 3  Actuator configuration
Figure 4 Bode plot of open-loop transfer function of 300 kW machine
Figure 5a  Block diagram representation of aerodynamic compensation approach of Leithead et al.
(1990a, b, 1991a).
Figure 5b  Block diagram representation of gain-scheduling aerodynamic compensation.
Figure 6 Typical power time histories for 300 kW machine at 16 m/s mean wind speed with nonlinear
gain positioned before & after pure integrator in controller2

Figure 7 Typical below to above rated transition for 300 kW machine2

Figure 8 Controller start-up approach of Leithead et al. (1990a, b, 1991a)
Figure 9 Strategy of Leithead et al. (1991a, 1992a) to resolve the implementation issues
Figure 10  Plot of aerodynamic torque point values vs. ε ill ustrating the range over which a function
τ(ε) provides an accurate representation.
Figure 11a  Direct linearisation
Figure 11b  Direct linearisation with velocity form
Figure 11c  Reformulation of figure 11b for robustness analysis.
Figure 12 Typical power time histories for 1 MW machine at 12 m/s mean wind speed with & without
compensation for the actuator dynamics2.
Figure 13a  Conventional feedback linearisation.
Figure 13b  Velocity form of feedback linearisation.
Figure 14 Reformulation of controller start-up approach of Leithead et al. (1990a, b, 1991a, 1992a)
Figure 15 Plot of  |Cinner(F-GAu)/(1+FCinner)| for 300 kW wind turbine
Figure 16 Limit cycle induced by velocity constraints without anti-wind-up and corresponding stable
response when anti-wind-up is employed2.
Figure 17  Anti-wind-up arrangement for velocity/acceleration saturation
magnitude
Figure 18  Small gain analysis of closed-loop system with loop gain increased by a factor of 2.5.
Figure 19 Controller realisation which addresses the implementation issues in an integrated manner1.
Figure 20  Impact of controller implementation on power output of medium-scale example machine (16
m/s mean wind speed, 20% turbulence intensity).

Table 1 Aerodynamic coeff icients for medium-scale wind turbine

                                                          
2 except for the specific details noted in the text the integrated realisation discussed in section 7 was
employed.
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Figure 4 Bode plot of open-loop transfer function of 300 kW machine
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Wind speed
(m/s)

∂T/∂p
Nm/deg.

∂T/∂V
Nm/(m/s)

11 -2400 14600
13 -8500 16200
15 -12400 19200
17 -16800 21600
19 -18500 23800
21 -22500 25200
23 -24200 25800
25 -26400 27200

Table 1 Aerodynamic coeff icients for medium-scale wind turbine


