
International Journal of Networking and Computing – www.ijnc.org
ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 1, Number 2, pages 260–276, July 2011

Implementations of a Parallel Algorithm for Computing Euclidean Distance Map
in Multicore Processors and GPUs

Duhu Man, Kenji Uda, Hironobu Ueyama, Yasuaki Ito, and Koji Nakano
Department of Information Engineering,

Hiroshima University
1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739–8527, Japan

Received: January 31, 2011
Revised: May 20, 2011

Accepted: June 20, 2011
Communicated by Sayaka Kamei

Abstract

Given a 2-D binary image of size n×n, Euclidean Distance Map (EDM) is a 2-D array of the
same size such that each element is storing the Euclidean distance to the nearest black pixel. It
is known that a sequential algorithm can compute the EDM in O(n2) and thus this algorithm
is optimal. Also, work-time optimal parallel algorithms for shared memory model have been
presented. However, the presented parallel algorithms are too complicated to implement in
existing shared memory parallel machines. The main contribution of this paper is to develop
a simple parallel algorithm for the EDM and implement it in two different parallel platforms:
multicore processors and Graphics Processing Units (GPUs). We have implemented our parallel
algorithm in a Linux server with four Intel hexad-core processors (Intel Xeon X7460 2.66GHz).
We have also implemented it in the following two modern GPU systems, Tesla C1060 and GTX
480, respectively. The experimental results have shown that, for an input binary image with
size of 9216 × 9216, our implementation in the multicore system achieves a speedup factor of
18 over the performance of a sequential algorithm using a single processor in the same system.
Meanwhile, for the same input binary image, our implementation on the GPU achieves a speedup
factor of 26 over the sequential algorithm implementation.

Keywords: Euclidean Distance Map, Proximate Points, Multicore Processors, GPUs

1 Introduction

In many applications of image processing such as blurring effects, skeletonizing and matching, it
is essential to measure distances between featured pixels and nonfeatured pixels. For a 2-D binary
image with size of n × n, treating black pixels as featured pixels, Euclidean Distance Map (EDM)
assigns each pixel with the distance to the nearest black pixel using Euclidean distance as underlying
distance metric. We refer reader to Figure 1 for an illustration of Euclidean Distance Map. Assuming
that points p and q of the plane are represented by their Cartesian coordinates (x(p), y(p)) and
(x(q), y(q)), as usual, we denote the Euclidean distance between the points p and q by d(p, q) =√

(x(p) − x(q))2 + (y(p) − y(q))2.
Many algorithms for computing EDM have been proposed in the past. Breu et al. [1] and Chen

et al. [2, 3] have presented O(n2)-time sequential algorithm for computing Euclidean Distance Map.

260

International Journal of Networking and Computing

������ ������� �� ��� ������� ��� ���������� ��� ������� ��� ������ ������� �� ��� ������� ��� ���������� ��� ������� ����� �� ���� � ��� �� ��� ��� �� � � �� �� � ��� �� � � �� � 	������ ������ ��
�
Figure 1: Illustrating Euclidean Distance Map

Since all pixels must be read at least once, these sequential algorithms with time complexity of
O(n2) is optimal. Since in any EDM algorithm, each of the n2 pixels has to be scanned at least
once. Roughly at the same time, Hirata [7] presented a simpler O(n2)-time sequential algorithm to
compute the distance map for various distance metrics including Euclidean, four-neighbor, eight-
neighbor, chamfer, and octagonal. On the other hand, for accelerating sequential ones, numerous
parallel EDM algorithms have been developed for various parallel models. Lee et al. [9] presented an
O(log2 n)-time algorithm using n2 processors on the EREW PRAM. Pavel and Akl [17] presented
an algorithm running in O(log n) time and using n2 processors on the EREW PRAM. Clearly, these
two algorithms are not work-optimal. Fujiwara et al. [5] have presented a work-optimal algorithm
running in O(log n) time using n2

log n EREW processors and in O(log n
log log n) time using n2 log log n

log n

CRCW processors. Later, Hayashi et al. [6] have exhibited a more efficient algorithm running in
O(log n) time using n2

log n processors on the EREW PRAM and in O(log log n) time using n2

log log n
processors on the PRAM. Since the product of the computing time and the number of processors is
O(n2), these algorithms are work optimal. Also, it was proved that the computing time cannot be
improved as long as work optimality is satisfied, these algorithms are also work optimal. Thus, these
algorithms are work-time optimal. Recently, Chen et al. [4] have proposed two parallel algorithms
for EDM on Linear Array with Reconfigurable Pipeline Bus System [10]. Their first algorithm can
compute EDM in O(log n log log n

log log log n) time using n2 processors and second algorithm can compute EDM

in O(log n log log n) time using n2

log log n processors.

In practice, now many applications have employed both general multicore processors and emerg-
ing GPUs (Graphics Processing Unit) as real platforms to achieve an efficient acceleration. We have
also implemented and evaluated our parallel EDM algorithm in the both platforms, a Linux server
with four Intel hexad-core processors (Intel Xeon X7460 2.66GHz [8]) and two different GPU (Graph-
ics Processing Unit) systems, Tesla C1060 [15] and GTX 480 [11], respectively. The experimental
results show that, for an input binary image with size of 9216 × 9216, our parallel algorithm can
achieve 18 times speedup in the multicore system over the performance of a sequential algorithm.
Further, for the same input image, our parallel algorithm for the GPU system achieves a speedup
factor of 26.

The remainder of this paper is organized as follows: Section 2 introduces the proximate points
problem for Euclidean distance metric and discusses several technicalities that will be crucial ingre-
dients to our subsequent parallel EDM algorithm. Section 3 shows the proposed parallel algorithm
for computing Euclidean Distance Map of a 2-D binary image. In Section 4, we show access modes
for Steps 1 and 2 in our algorithm. Section 5 exhibits the performance of our proposed algorithm
on various multicore platforms. Finally, Section 6 offers concluding remarks.

261

Implementations of a Parallel Algorithm for Computing Euclidean Distance Map

2 Proximate Points Problem

In this section, we review the proximate problem [6] along with a number of geometric results that
will lay the foundation of our subsequent algorithms. Throughout, we assume that a point p is
represented by its Cartesian coordinates (x(p), y(p)).

Consider a collection P = {p1, p2, ..., pn} of n points sorted by x-coordinate, that is, such that
x(p1) < x(p2) < ... < x(pn). We assume, without loss of generality, that all the points in P have
distinct x-coordinates and that all of them lie above the x-axis. The reader should have no difficulty
to confirm that these assumptions are made for convenience only and do not impact the complexity
of our algorithms.

Recall that for every point pi of P the locus of all the points in the plane that are closer to pi

than to any other points in P is referred to as the Voronoi polygon associated with pi and is denoted
by V (i). The collection of all the Voronoi polygons of points in P partitions the plane into the
Voronoi diagram of P (see [18], p. 204). Let Ii, (1 ≤ i ≤ n), be the locus of all the points q on the
x-axis for which d(q, pi) ≤ d(q, pj) for all pj , (1 ≤ j ≤ n). In other words, q ∈ Ii if and only if q
belongs to the intersection of the x-axis with V (i), as illustrated in Figure 2. In turn, this implies
that Ii must be an interval on the x-axis and that some of the intervals Ii, (2 ≤ i ≤ n − 1), may be
empty. A point pi of P is termed a proximate point whenever the interval Ii is nonempty. Thus, the
Voronoi diagram of P partitions the x-axis into proximate intervals. Since the point of P are sorted
by x-coordinate, the corresponding proximate intervals are ordered, left to right, as I : I1, I2, ..., In.
A point q on the x-axis is said to be a boundary point between pi and pj if q is equidistance to pi and
pj , that is, d(pi, q) = d(pj , q). It should be clear that p is boundary point between proximate points
pi and pj if and only if the q is the intersection of the (closed) intervals Ii and Ij . To summarize
the previous discussion, we state the following result;

Proposition 2.1. The following statements are satisfied:

1) Each Ii is an interval on the x-axis;

2) The intervals I1, I2, ..., In lie on x-axis in this order, that is, for any nonempty Ii and Ij with
i < j, Ii lies to the left of Ij.

3) If the nonempty proximate intervals Ii and Ij are adjacent, then the boundary point between pi

and pj separates Ii ∪ Ij into Ii and Ij.

Referring again to Figure 2, among the seven points, five points p1, p2, p4, p6 and p7 are proximate
points, while the others are not. Note that the leftmost point p1 and the rightmost point pn are
always proximate points. �� �� �� �� �� ���� �� �� �� ����	
���

Figure 2: Illustrating proximate intervals

Given three points pi, pj , pk with i < j < k, we say that pj is dominated by pi and pk whenever
pj fails to be a proximate point of the set consisting of these three points. Clearly, pj is dominated
by pi and pk if the boundary of pi and pj is to the right of that of pj and pk. Since the boundary
of any two points can be computed in O(1) time, the task of deciding for every triple (pi, pj , pk),
whether pj is dominated by pi and pk takes O(1) time using single processor.

262

International Journal of Networking and Computing

Consider a collection P = {p1, p2, ..., pn} of points in the plane sorted by x-coordinate, and a
point p to the right of P , that is, such that x(p1) < x(p2) < ... < x(pn) < x(p). We are interested
in updating the proximate intervals of P to reflect the addition of p to P , as illustrated in Figure 3.������ ���� �� ���� � ������ ����� ������� ���

Figure 3: Illustrating the addition of p to P = {p1, p2, p3, p4}

We assume, without loss of generality, that all points in P are proximate points and let I1, I2, ..., In

be the corresponding proximate intervals. Further, let I ′1, I
′
2, ..., I

′
n, I ′p be the updated proximate

intervals of P ∪{p}. Let pi be a point such that I ′i and I ′p are adjacent. By point 3 in Proposition 2.1,
the boundary point between pi and p separates I ′i and I ′p. As a consequence, point 2 implies that
all the proximate intervals I ′i+1, ..., I

′
n must be empty. Furthermore, the addition of p to P does

not affect any of the proximate intervals Ij , 1 ≤ j ≤ i. In other words, for all 1 ≤ j ≤ i, I ′j = Ij .
Since I ′i+1, ..., I

′
n are empty, the points pi+1, ..., pn are dominated by pi and p. Thus, every point pj ,

(i < j ≤ n), is dominated by pj−1 and p; otherwise, the boundary between pj−1 and p would be
to the left of that of that between pj and p. This would imply that the nonempty interval between
these two boundaries corresponds to I ′j , a contradiction. To summarize, we have the following result:

Lemma 2.2. There exists a unique points of pi of P such that:

• The only proximate points of P ∪ {p} are p1, p2, ..., pi, p.

• For 2 ≤ j ≤ i, the point pj is not dominated by pj−1 and p. Moreover, for 1 ≤ j ≤ i − 1,
I ′j = Ij.

• For i < j ≤ n, the point pj is dominated by pj−1 and p and the interval I ′j is empty.

• I ′i and I ′p are consecutive on the x-axis and are separated by the boundary point between pi and
p.

Let P = {p1, p2, ..., pn} be a collection of proximate points sorted by x-coordinate and let p be a
point to the left of P , that is, such that x(p) < x(p1) < x(p2) < ... < x(pn). For further reference,
we now take note of the following companion result to Lemma 2.2. The proof is identical and, thus,
omitted.

Lemma 2.3. There exists a unique points of pi of P such that:

• The only proximate points of P ∪ {p} are p, pi, pi+1, ..., pn.

• For i ≤ j ≤ n, the point pj is not dominated by p and pj+1. Moreover, for i + 1 ≤ j ≤ n,
I ′j = Ij.

• For 1 ≤ j < i, the point pj is dominated by p and pj+1 and the interval I ′j is empty.

• I ′p and I ′i are consecutive on the x-axis and are separated by the boundary point between p and
pi.

The unique point pi whose existence is guaranteed by Lemma 2.2 is termed the contact point
between P and p. The second statement of Lemma 2.2 suggests that the task of determining the
unique contact point between P and a point p to the right or the left of P reduces, essentially, to
binary search.

263

Implementations of a Parallel Algorithm for Computing Euclidean Distance Map

Now, suppose that the set P = {p1, p2, ..., p2n}, with x(p1) < x(p2) < ... < x(p2n) is partitioned
into two subsets PL = {p1, p2, ..., pn} and PR = {pn+1, pn+2, ..., p2n}. We are interested in updating
the proximate intervals in the process or merging PL and PR. For this purpose, let I1, I2, ..., In and
In+1, In+2, ..., I2n be the proximate intervals of PL and PR, respectively. We assume, without loss
of generality, that all these proximate intervals are nonempty. Let I ′1, I

′
2, ..., I

′
2n be the proximate

intervals of P = PL ∪ PR. We are now in a position to state and prove the next result which turns
out to be a key ingredient in our algorithms.

Lemma 2.4. There exists a unique pair of proximate points pi ∈ PL and pj ∈ PR such that

• The only proximate points in PL ∪ PR are p1, p2, ..., pi, pj , ..., p2n.

• I ′i+1, ..., I
′
j−1 are empty, and I ′k = Ik for 1 ≤ k ≤ i − 1 and j + 1 ≤ k ≤ 2n.

• The proximate intervals I ′i and I ′j are consecutive and are separated by the boundary point
between pi and pj.

Proof. Let i be the smallest subscript for which pi ∈ PL is the contact point between PL and a point
in PR. Similarly, let j be the largest subscript for which the point pj ∈ PR is the contact point
between PR and some point in PL. Clearly, no point in PL to the left of pi can be proximate point
of P . Likewise, no point in PR to the left of pj can be a proximate point of P .

Finally, by Lemma 2.2, every point in PL to the left of pi must be a proximate point of P .
Similarly, by Lemma 2.3, every point in PR to the right of pi must be a proximate point of P , and
proof of the lemma is complete.

The points pi and pj whose existence is guaranteed by Theorem 2.4 are termed the contact points
between PL and PR. We refer the reader to Figure 4 for an illustration. Here, the contact points
between PL = {p1, p2, p3, p4, p5} and PR = {p6, p7, p8, p9, p10} are p4 and p8.����� ������������ ���� ���	 �
 �� ������	 �
 �� ��

(a) Proximate interval of each point in two sets����� ������������� ������ �	�
 �������	 �������
(b) Merge of two point sets and their contact points

Figure 4: Illustrating the contact points between two sets of points

Next, we discuss a geometric property that enables the computation of the contact points pi and
pj between PL and PR. For each point pk of PL, let qk denote the contact point between pk and PR

as specified by Lemma 2.3. We have the following result.

264

International Journal of Networking and Computing

Lemma 2.5. The point pk is not dominated by pk−1 and qk if 2 ≤ k ≤ i, and dominated otherwise.

Proof. If pk, (2 ≤ k ≤ i), is dominated by pk−1 and qk, then I ′k must be empty. Thus, Lemma 2.4
guarantees that pk, (2 ≤ k ≤ i), is not dominated by pk−1 and qk. Suppose that pk, (i+1 ≤ k ≤ n),
is not dominated by pk−1 and qk. Then, the boundary point between pk and qk is to the right of that
between these two boundaries corresponds to I ′k, a contradiction. Therefore, pk, (i + 1 ≤ k ≤ n), is
dominated by pk−1 and qk, completing the proof.

Lemma 2.5 suggests a simple, binary search-like, approach to finding the contact points pi and
pj between two sets PL and PR. In fact, using a similar idea, Breu et al. [1] proposed a sequential
algorithm that computes the proximate points of an n-point planar set in O(n) time. The algorithm
in [1] uses a stack to store the proximate points found.

3 Parallel Euclidean Distance Map of 2-D Binary Image

A binary image I of size n × n is maintained in an array bi,j , (1 ≤ i, j ≤ n). It is customary to
refer to pixel (i, j) as black if bi,j = 1 and as white if bi,j = 0. The rows of the image will be
numbered bottom up starting from 1. Likewise, the columns will be numbered left to right, with
column 1 being the leftmost. In this notation, pixel b1,1 is in the south-west corner of the image, as
illustrated in Figure 5(a). In Figure 5(a), each square represents a pixel. For this binary image, its
final distance mapping array is shown in Figure 5(b).��� ������������ ������������	
 �	��
����
�	�	
 �������� ���������� �������������� ���������������� ������������ �������������� ���������� �������� �������� ���������� �������������� ���������������� ������������ �������������� ���������� ������������	 ����	����	����	

(a) Binary image (b) Mapping array

Figure 5: A binary image and its mapping array

The Voronoi map associates with every pixel in I the closest black pixel to it (in the Euclidean
metric). More formally, the Voronoi map of I is a function v : I → I such that, for every (i, j),
(1 ≤ i, j ≤ n), v(i, j) = v(i′, j′) if and only if

d((i, j), (i′, j′)) = min{d((i, j), (i′′, j′′)) | bi′′,j′′ = 1},

where d((i, j), (i′, j′)) =
√

(i − i′)2 + (j − j′)2 is the Euclidean distance between pixels (i, j) and
(i′, j′).

The Euclidean Distance Map of image I associates with every pixel in I in the Euclidean distance
to the closest black pixel. Formally, the Euclidean Distance Map is a function m: I → R such that
for every (i, j), (1 ≤ i, j ≤ n), m(i, j) = d((i, j), v(i, j)).

We now outline the basic idea of our algorithm for computing the Euclidean Distance Map of
image I. We begin by determining, for every pixel in row j, (1 ≤ j ≤ n), the nearest black pixel, if
any, in the same column of I. More precisely, with every pixel (i, j) we associate the value

di,j = min{d((i, j), (i′, j′)) | bi′,j′ = 1, 1 ≤ j′ ≤ n}.

265

Implementations of a Parallel Algorithm for Computing Euclidean Distance Map

If bi′,j′ = 0 for every 1 ≤ j′ ≤ n, then let di,j = +∞. Next, we construct an instance of the
proximate points problem for every row j, (1 ≤ j ≤ n), in the image I involving the set Pj of points
in the plane defined as Pj = {pi,j = (i, di,j) | 1 ≤ i ≤ n}.

Having solved, in parallel, all these instances of the proximate points problem, we determine, for
every proximate point pi,j in Pj , its corresponding proximity interval Ii. With j fixed, we determine,
for every pixel (i, j) (that we perceive as a point on the x-axis), the identity of the proximity interval
to which it belongs. This allows each pixel (i, j) to determine the identity of the nearest pixel to
it. The same task is executed for all rows 1, 2, ..., n in parallel, to determine, for every pixel (i, j) in
row j, the nearest black pixel. The details are spelled out in the following algorithm:

Algorithm : Euclidean Distance Map(I)

Step 1 For each pixel (i, j), compute the distances

di,j = min{|k − i| | bk,j = 1, 1 ≤ k ≤ n}

to the nearest black pixel in the same column.

Step 2 For every j, (1 ≤ j ≤ n), let Pj = {pi,j = (i, di,j) | 1 ≤ i ≤ n}. Compute the proximate
points E(Pj) of Pj .

Step 3 For every point p in E(Pj) determine its proximity interval of Pj .

Step 4 For every i, (1 ≤ i ≤ n), determine the proximate interval of Pj to which the point (i, 0)
(corresponding to pixel (i, j)) belongs.

We assume that there are n processors PE(1), PE(2), ..., PE(n) available. The parallel imple-
mentation of above algorithm is shown as follows:

Step 1 We assign the i-th column (1 ≤ i ≤ n) to processor PE(i) to computes the distance to
the nearest black pixel in the same column. First, each PE(i) (1 ≤ i ≤ n) reads pixel values
in the i-th column from up to bottom to compute that distance, as illustrated in Figure 6(a)
(its original input image is shown in Fig 5). Second, each processor PE(i) (1 ≤ i ≤ n) read�������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� ���������	
 �	� �	� �	�	� �	� �	� �	� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� ���������	
 �	� �	� �	�	� �	� �	� �	�

(a) process with up to bottom (b) process with bottom to up

Figure 6: Process each column with two directions

pixel values in the i-th column from bottom to up to compute that distance, as illustrated in
Figure 6(b). Finally, each processor selects a minimum value of calculated two distances as
final value of the distance. It is clear that the time complexity of this step is O(n).

Step 2 Again, we compute Euclidean Distance Map of input image I along with row wise.

Step 2.1 For every i-th row (1 ≤ i ≤ n), each processor PE(i) computes the proximate points
using the theorem of proximate points problem as foundation, as illustrated in Figure 7 and

266

International Journal of Networking and Computing �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� ���������	
�	��	��	�	��	��	��	� ����� ���������� �����
Figure 7: Processing with row wise

Figure 8. In Figure 8, the Voronoi polygons correspond to 5th row (shaded row) of the image
illustrated in Figure 7. The obtained proximate points are saved in a stack. It should be
clear that each column has its own corresponding stack. Therefore, in order to add a new
proximate point to the stack, we need to calculate boundary points of this new point and
existed proximate points which are kept in the stack. Then according to locus of boundary
points, we decide which points need to be deleted from the stack.���������	
�� ������	
� ������	
�� ������	
�� ������	
	� ������	
�� ������	
�� ������	
��������

Figure 8: Voronoi polygons

Step 2.2 For every i-th row (1 ≤ i ≤ n), each processor PE(i) determines proximate intervals of
obtained proximate points by computing boundary point of each pair of adjacent proximate
points. The boundary point of each pair of adjacent proximate points can be obtained by
calculating the intersection point of two lines, one line is x-axis and another is the normal line
of the line which connects two adjacent proximate points. We refer reader to Figure 9 for the
illustration. Each pair of adjacent proximate points can be obtained from the stack.

Step 2.3 According to the locus of boundary points obtained from Step 2.2, each processor
determines the closest black pixel to each pixel of input image. The distance between a given
pixel and its closest black pixel is also calculated in the obvious way.

It should be clear that, the whole Step 2 can be implemented in O(n) time using n processors.

Theorem 3.1. For a given binary image I with the size of n×n, Euclidean Distance Map of image
I can be computed in O(n) time using n processors.

Suppose that we have k processors (k < n). If this is the case, a straightforward simulation of n
processors by k processors can achieve optimal slowdown. In other words, each of the k processors
performs the task of n

k processors in our Euclidean Distance Map algorithm. For example, in Step 1,

267

Implementations of a Parallel Algorithm for Computing Euclidean Distance Map���������	
�� ������	
� ������	
�� ������	
�� ������	
	� ������	
�� ������	
�� ������	
���������� �������� �������� ��������
Figure 9: Proximate intervals

the i-th processor (1 ≤ i ≤ k) computes the nearest black pixel within the same column for rows
from (i − 1) · n

k + 1-th to i · n
k . This can be done in O(n · n

k) = O(n2

k) time. Thus, we have,

Corollary 3.2. For a given binary image I with the size of n×n, Euclidean Distance Map of image
I can be computed in O(n2

k) time using k processors.

4 Access Modes

As known, in general, a matrix is stored in a row-major fashion in memory. In other words, the
(i, j)-th element of a matrix is arranged to the i ·w + j-th element in an array in the memory, where
w is the width of the matrix as illustrated in Figure 10.(0; 0)(1; 0)(2; 0) (0; 1)(1; 1)(2; 1) (0; 2)(1; 2)(2; 2) (0; 0) (0; 1) (0; 2) (1; 0) (1; 1) (1; 2) (2; 0) (2; 1) (2; 2)matrix memory0 1 2 3 4 5 6 7 8

Figure 10: Arrangement of a 3 × 3 matrix into a memory

The key part of our Euclidean Distance Map algorithm is Step 1 and Step 2. We will define
several access modes which affect the performance of our algorithm. Recall that in Step 1, pixel
values are read in column wise, and the distances to the nearest black pixel are written in column
wise. Instead, we can write the distances to the nearest black pixel in row wise. In other words, we
can read the pixel values in column wise (i.e. Vertical), or in row wise (i.e. Horizontal) and write
the distances in column wise (i.e Vertical) or in row wise (i.e. Horizontal). The readers should refer
to Figure 11 for illustrating the possible four access modes of Step 1.

Let di,j denote the resulting distances of Step 1. For each access mode we can write di,j as
follows:

VV (Vertical-Vertical) di,j = min{|k − i| | bk,j = 1, 1 ≤ k ≤ n}

VH (Vertical-Horizontal) dj,i = min{|k − i| | bk,j = 1, 1 ≤ k ≤ n}

HH (Horizontal-Horizontal) di,j = min{|k − j| | bi,k = 1, 1 ≤ k ≤ n}

268

International Journal of Networking and Computing

0123
1012 012

0 11100 1 2 31 0 111 1 020 20 1
VV (Verital-Verital) aess mode

0101
1001

1110

VH (Vertial-Horizontal) aess mode

HV(Horizontal-Vertial) aess mode
HH(Horizontal-Horizontal) aess mode

0 1 0 11 0 01 1 0111111

1 1 1 1

Figure 11: Access modes for Step 1

269

Implementations of a Parallel Algorithm for Computing Euclidean Distance Map

HV (Horizontal-Vertical) dj,i = min{|k − j| | bi,k = 1, 1 ≤ k ≤ n}

Note that, for VH and HV access modes, the resulting values stored in the two dimensional array is
transposed.

In the same way, we can define four possible access modes VV, VH, HH, HV for Step 2. For
example, in VV mode, the distances are read in column wise and the resulting values of Euclidean
Distance Map are written in column wise.

The readers should have no difficulty to confirm that possible combinations of access modes for
Steps 1 and 2 are VVHH, HHVV, VHVH, and HVHV, because the access mode satisfy the
following two conditions:

Condition 1 If the resulting values in Step 1 are stored in a transposed array, those in Step 2 also
must be transposed. Otherwise, the resulting Euclidean Distance Map is transposed.

Condition 2 The writing directions of Step 1 and Step 2 must be orthogonal.

Therefore, in the notation r1w1r2w2 of access modes, w1 and r2 must be distinct from Condition 1
and the number of H in r1, w1, r2, and w2 must be even from Condition 2. Therefore, the possible
access modes are VVHH, HHVV, VHVH, and HVHV.

5 Experimental Results

We have implemented and evaluated our proposed parallel EDM algorithm in the following two
different platforms, a general multicore processor system and modern GPU systems, respectively.
The multicore processor system is a Linux server with four Intel hexad-core processors (Intel Xeon
X7460 2.66GHz [8]), that is, there are twenty four cores available. Each multicore processor has
its own local three-level caches that are 64KB L1 cache, 3MB L2 cache and 16MB L3 cache. The
capacity of the main memory is 128GB. One of the experimental GPU systems is a Tesla C1060 [15]
which consists of 240 Streaming Processor Cores and 4GB Global Memory. Another one is GTX
480 [11] which consists of 480 Streaming Processor Cores and 1.5GB Global Memory. GTX 480 can
provide L1 and L2 caches to Global Memory [13].

Our proposed algorithm has implemented in C language with OpenMP 2.0 (Open Multi-Processing)
in that of multicore processor system. The OpenMP is an application programming interface that
supports shared memory environments [16]. It consists of a set of compiler directives and library
routines. Using OpenMP, it is relatively easy to create parallel applications in FORTRAN, C, and
C++. Table 1 shows the performance of our proposed algorithm with different access modes in
the multicore processor system. The size of the input image is 9216 × 9216. In the table, each
measurement is an average value of 20 experiments and, Step 1 and Step 2 are corresponding steps
of our proposed parallel algorithm. It is clear that, in HVHV access mode, our implementation
can achieve the best performance and it can obtain approximate 18 times speedup. The table also
exhibits the scalability of the proposed algorithm. As shown, our proposed algorithm can scale
well with the number of using cores smaller than or equal to 4. Actually we have implemented
the proposed algorithm in a multiprocessor system with 4 multicore processors. Therefore when
the number of using cores is smaller than or equal to 4, all the using cores will be distributed into
different multicore processors. Consequently each level cache of a multicore processor is occupied by
only one core. It means only one core utilizing all the available cache. However, when the number of
using threads is more than 4, the scalability of our implementation is decreasing significantly. One
main reason of the phenomenon is that, when the number of using cores is larger than 4, L2 and L3
cache of each multicore processor will be shared by multiple cores. It will decrease the efficiency of
our implementation significantly. Meanwhile, many other factors such as Memory-CPU bus band-
width, communication overhead and synchronization overhead also play the important roles in the
scalability. Hence we can understand why the real speedup is decreasing along with increasing the
number of using processors.

In another way, our proposed algorithm has been implemented in that of GPU systems using
CUDA (Compute Unified Device Architecture) [12], a general purpose parallel computing architec-
ture. Actually, CUDA is a new parallel programming model and instruction set architecture. CUDA

270

International Journal of Networking and Computing

comes with a software environment that allows developers to use C-like high-level programming lan-
guage.

As known, an important programming issue on GPUs is the reduction of heavy access latency
of Global Memory [13]. Fortunately, the CUDA can provide a technique known as coalescing [13]
to hide the access latency of the Global Memory. When 16 (or 32) sequential threads access 16 (or
32) sequential and aligned values in the Global Memory, the GPU will automatically combine them
into a single transaction.

 0

 0.5

 1

 1.5

 2

 2.5

VHVH VVHH HVHV HHVV

E
xe

cu
tin

g
T

im
e

[s
]

Different Access Mode

Step1
Step2

 0

 0.2

 0.4

 0.6

 0.8

 1

VHVH VVHH HVHV HHVV
E

xe
cu

tin
g

T
im

e
[s

]

Different Access Mode

Step1
Step2

(a) Performance on Tesla C1060 (b) Performance on GTX 480

Figure 12: Performance of the proposed algorithm on different GPU systems with different access
mode (n=9216)

Figure 12 shows the performance of our proposed algorithm with different access modes in that
of GPU systems. The input image is the same image used in the multicore implementation. Recall
that the size of input image is 9216 × 9216. As shown in the Figure, different with the multicore
implementation, our proposed algorithm can achieve the best performance in VHVH access mode
on the GPUs.

For clear explanation, first we describe the details of the GPU implementation of the proposed
parallel Euclidean Distance Map algorithm. Here we just describe the GPU implementation of
VHVH access mode. For other access modes, their implementations can be understood in the same
way.

For implementing Step 1 of the proposed algorithm, we partition the original input image into
(n

k) subimages along with column wise. It means that there are (n
k) CUDA blocks [13] and each

CUDA block processes each corresponding subimage independently. The number of threads in each
CUDA block is k and we configure the value of k according to the occupancy [13] of CUDA. For
example, for processing image with size of 4608 × 4608, if we set the number of using threads as
512, then there is only 9 CUDA blocks created and as the result, only 9 streaming processors are
in active. However, in Tesla C1060 system, there are 30 streaming processors are available. It
means that there are 21 streaming processors in idle status. Therefore considering the occupancy,
we can set the number of using threads in a CUDA block as 128 or 64. Each thread of a CUDA
block processes each corresponding column of the sumbimage. We refer reader(s) to Figure 13 as
an simple illustration. In Figure 13, each Ti represents a thread of a CUDA block and each arrow
represents an access of a pixel value by one thread. It is clear that, for a sumbimage, the access of
each row can be performed in coalescing.

By following Step 1 of the proposed parallel EDM algorithm, we can easy to know that, each
thread need to access each pixel value of the corresponding column two times. One is for computing
results of up-to-bottom process and another one is for computing results of bottom-to-up process.
After selecting a minimum value for each pixel, each thread writes the selecting result into an extra
array, which stores the results of Step 1, along with row wise. It is clear that, the both up-to-bottom
process and bottom-to-up process can benefit from full coalescing. But the writing of the extra array

271

Implementations of a Parallel Algorithm for Computing Euclidean Distance Map���������	

� ���������������������������
������������� �������������

������� !" ������� !#$%&'()
Figure 13: Mapping CUDA Blocks into subimages

cannot benefit from the coalescing at all (recall that now we are describing the implementation of
VHVH access mode). However, in the implementation of VVHH access mode, the writing of the
extra array is also can benefit from the full coalescing. Therefore in VVHH access mode, the
implementation of Step 1 can achieve the most significant performance (as shown in Figure 12).
Differently, in HHVV access mode, the whole implementation of Step 1 can not benefit from the
coalescing at all. Therefore Step 1 of the HHVV access mode achieved the worst performance (as
shown in Figure 12). Other than the Step 1 of HHVV access mode, in Step 1 of HVHV access
mode, the extra array can be written by using the coalescing. Therefore it can achieve a little better
performance than HHVV access mode (as shown in Figure 12).

In Step 2 of the proposed algorithm, a stack is needed for computing boundary points of each
column. Therefore we need to allocate a 2-D array in Global memory for keeping all the stacks. We
use each column of the 2-D array as the stack for each corresponding column of input image. Each
thread accesses elements of corresponding column of the extra array, which stores the results of Step
1, to obtain elements of corresponding stack (recall that now we are describing the implementation
of VHVH access mode). However the push-pop operations of all stacks are not uniform. Therefore
the access of the extra array can not be performed in full coalescing. In the same way, the access of
the stacks also can not be performed in full coalescing. This is reason to why the implementation
of Step 2 can not achieve a significant performance even in HHVV access mode. After computing
boundary points, we compare the y-coordinate of each boundary point with the y-coordinate of each
pixel to obtain the distance to closest black pixel. If we assume that the mapping results will be
stored in a 2-D array named output array, it needs all threads accesses the output array along with
row wise. In other words, each thread will access the corresponding row of the output array, and it
can not utilize the coalescing (recall that now we are describing the implementation of HVHV access
mode). However, in Step 2 of VVHH access mode, its whole implementation can not benefit from
the coalescing at all. This is reason to why Step 2 of HVHV access mode can be little faster than
Step 2 of VVHH access mode.

On the other hand, we have also evaluated the proposed parallel algorithm with the different sized
input images. Figure 14 shows the performance of the proposed parallel algorithm for processing
images with different sizes on different parallel systems. The maximum number of available threads
on a CUDA block is always proportion to 512. Therefore the size of input images is also configured
to be proportion to 512. For each system, we have shown the performance of the corresponding
implementation with the most efficient access mode.

Actually the proposed parallel EDM algorithm is simple. However it also can give us the fol-

272

International Journal of Networking and Computing

 0

 5

 10

 15

 20

 25

 30

single-CPU Multi-core Tesla-C1060 GTX-480

E
xe

cu
tin

g
T

im
e

[m
s]

Implementations Using Different Processors

Step1
Step2

 0

 500

 1000

 1500

 2000

 2500

single-CPU Multi-core Tesla-C1060 GTX-480

E
xe

cu
tin

g
T

im
e

[m
s]

Implementations Using Different Processors

Step1
Step2

(a) n=512 (b) n=4608

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

single-CPU Multi-core Tesla-C1060 GTX-480

E
xe

cu
tin

g
T

im
e

[m
s]

Implementations Using Different Processors

Step1
Step2

(c) n=9216

Figure 14: Performance of the proposed algorithm on different parallel systems for processing images
with different sizes

273

Implementations of a Parallel Algorithm for Computing Euclidean Distance Map

lowing information. Each processor will be mapped into each subimage statically and sizes of all
subimages are almost same. Therefore the proposed algorithm can achieve a perfect loading balance
for all processors. On the other hand, each processor processes each subimage independently. There
is no any data sharing between any two processors. It means there is no any communication between
processors. Considering all of this, it is clear that why the multi-core implementation of the proposed
algorithm can achieve such good performance (as shown in Figure 14). Figure 14 also show that,
comparing with the performance of multi-core implementation, the performance of the GPU imple-
mentation on Tesla C1060 is not so good. Actually from explanation of Figure 12, we know that,
the coalescing access of Global memory plays an important role in GPU programming. However,
no one implementation of proposed four access modes can benefit from the coalescing in all imple-
menting steps. Therefore, for processing image with size of 9216 × 9216, the GPU implementation
on Tesla C1060 have just achieved 9 times speedup. However, other than in Tesla C1060, the GPU
implementation have achieved about 26 times speed up on that of GTX 480. Since, GTX 480 can
be programmed in new generation of CUDA architecture named Fermi [14]. In Fermi architecture,
the number of active threads in a CUDA block is increased to 32 (full wrap [13]). Differently, in
the old CUDA architecture, the number of active threads is just 16 (half wrap). Additionally, other
than Tesla C1060, GTX 480 can provide two level L1 and L2 caches to global memory and, in the
Step 2 of our proposed algorithm, we have used stack which is very sensitive to caches.

As shown in Figure 14, for processing small sized images, our implementations can not obtain a
significant speedup factor in all parallel systems, because in comparison with total execution time,
there is considerable overhead due to parallel processing.

6 Concluding remarks

In this paper, we have presented an optimal parallel algorithm for computing Euclidean Distance
Map (EDM) of a 2-D binary image. Using proximate points problem as preliminary foundation,
we have proposed a simple but efficient parallel EDM algorithm which can achieve O(n2

k) time
using k processors. To evaluate the performance of the proposed algorithm, we have implemented
it in a Linux server with four Intel hexad-core processors (Intel Xeon X7460 2.66GHz) [8] and two
different GPU (Graphics Processing Unit) systems, Tesla C1060 [15] and GTX 480 [11], respectively.
The experimental results have shown that, for an input binary image with size of 9216 × 9216, the
proposed parallel algorithm can achieve 18 times speedup in the multicore system, comparing with
the performance of general sequential algorithm. Meanwhile, for the same input image, the proposed
parallel algorithm can achieve 26 times speedup in that of GPU systems.

References

[1] Heinz Breu, Joseph Gil, David Kirkpatrick, and Michael Werman. Linear time euclidean dis-
tance transform algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence, 17(5):529–
533, May 1995.

[2] Ling Chen. Optimal algorithm for complete euclidean distance transform. Chinese Journal
Computers, 18(8):611–616, 1995.

[3] Ling Chen and Henry Y. H. Chuang. A fast algorithm for euclidean distance maps of a 2-d
binary image. Information Processing Letters, 51:25–29, 1994.

[4] Ling Chen, Yi Pan, Yixin Chen, and Xiao hua Xu. Efficient parallel algorithms for euclidean
distance transform. The Computer Journal, 47(6):694–700, 2004.

[5] Akihiro Fujiwara, Toshimitsu Masuzawa, and Hideo Fujiwara. An optimal parallel algorithm for
the euclidean distance maps of 2-d binary images. Information Processing Letters, 54:295–300,
1995.

274

International Journal of Networking and Computing

[6] Tatsuya Hayashi, Koji Nakano, and Stephan Olariu. Optimal parallel algorithm for finding
proximate points, with applications. IEEE Transactions on Parallel and Distributed Systems,
9(12):1153–1166, December 1998.

[7] Tomio Hirata. A unified linear-time algorithm for computing distance maps. Information
Processing Letters, 58:129–133, 1996.

[8] Intel Corporation. Intel Xeon Processor 5000 Sequence.
http://www.intel.com/products/processor/xeon7000/.

[9] Yu-Hua Lee, Shi-Jinn Horng, Tzong-Wann Kao, Ferng-Shi Jaung, Yuung-Jih Chen, and Horng-
Ren Tsai. Parallel computation of exact euclidean distance transform. Parallel Computing,
22(2):311–325, 1996.

[10] Keqin Li, Yi Pan, and Si-Qing Zheng. Parallel Computing Using Optical Interconnections.
Kluwer Academic Publishers, Boston, USA, 1998.

[11] NVIDIA Corporation. GetForce GTX 480.
http://www.nvidia.com/object/product getforce gtx 480 us.html.

[12] NVIDIA Corporation. NVIDIA, CUDA Architecture.
http://www.nvidia.com/object/cuda home new.html.

[13] NVIDIA Corporation. NVIDIA CUDA C Programming Guide.
http://developer.download.nvidia.com/compute/cuda/3 1/toolkit/docs/
NVIDIA CUDA C ProgrammingGuide 3.1.pdf.

[14] NVIDIA Corporation. NVIDIA, Fermi Architecture.
http://www.nvidia.com/object/fermi architecture.html.

[15] NVIDIA Corporation. Tesla C1060 Computing Processor.
http://www.nvidia.com/object/product tesla c1060 us.html.

[16] OpenMP.org. OpenMP Application Program Interface.
http://www.openmp.org.

[17] Sandy Pavel and Selim G. Akl. Efficient algorithms for the euclidean distance transform. Parallel
Processing Letters, 5(2):205–212, 1995.

[18] Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Introduction. Berlin:
Springer-Verlag, third corrected printing edition, 1990.

275

Implementations of a Parallel Algorithm for Computing Euclidean Distance Map

Table 1: Performance of proposed algorithm in multicore processor system with different access
mode (n=9216)

(a) HVHV access mode
Num of using cores Step 1 [s] Speedup Step 2 [s] Speedup Total [s] Speedup

1 1.7120 1.00 6.9570 1.00 8.6690 1.00
2 0.8690 1.97 3.5556 1.95 4.4246 1.95
4 0.5001 3.42 1.7429 3.99 2.2430 3.86
8 0.2899 5.90 0.9009 7.72 1.1908 7.27
12 0.2199 7.78 0.6824 10.19 0.9023 9.60
16 0.1616 10.59 0.5579 12.46 0.7195 12.04
20 0.1515 11.30 0.4689 14.83 0.6204 13.97
24 0.1501 11.40 0.3164 21.98 0.4665 18.58

(b) HHVV access mode
Num of using cores Step 1 [s] Speedup Step 2 [s] Speedup Total [s] Speedup

1 0.5010 1.00 11.0020 1.00 11.5030 1.00
2 0.2510 1.99 5.5998 1.96 5.8508 1.96
4 0.1621 3.09 2.9361 3.74 3.0982 3.71
8 0.0986 5.08 1.4365 7.65 1.5351 7.49
12 0.0945 5.30 1.2510 8.79 1.3455 8.54
16 0.0901 5.56 0.9557 11.51 1.0458 10.99
20 0.0921 5.43 0.8223 13.37 0.9144 12.57
24 0.0954 5.25 0.9221 11.93 1.0175 11.30

(c) VVHH access mode
Num of using cores Step 1 [s] Speedup Step 2 [s] Speedup Total [s] Speedup

1 4.6215 1.00 6.0230 1.00 10.6445 1.00
2 2.3666 1.95 2.9645 2.03 5.3311 1.99
4 1.1999 3.85 1.5451 3.89 2.7450 3.87
8 0.6189 7.46 0.7774 7.74 1.3963 7.62
12 0.5892 7.84 0.5221 11.53 1.1113 9.57
16 0.5718 8.08 0.3912 15.39 0.9630 11.05
20 0.5426 8.51 0.3021 19.93 0.8447 12.60
24 0.6198 7.45 0.2697 22.33 0.8895 11.96

(d) VHVH access mode
Num of using cores Step 1 [s] Speedup Step 2 [s] Speedup Total [s] Speedup

1 2.4126 1.00 8.6009 1.00 11.0135 1.00
2 1.2169 1.98 4.3899 1.95 5.6068 1.96
4 0.6201 3.89 2.2158 3.88 2.8359 3.88
8 0.3621 6.66 1.3003 6.61 1.6624 6.62
12 0.2479 9.73 0.8125 10.58 1.0604 10.38
16 0.2319 10.40 0.6415 13.40 0.8734 12.60
20 0.1789 13.48 0.5211 16.50 0.7000 15.73
24 0.1625 14.84 0.4497 19.12 0.6122 17.99

276

