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Abstract

Motivation: Tandem mass spectrometry (MS/MS) has the potential to substantially improve metabolomics

by acquiring spectra of fragmented ions. These fragmentation spectra can be represented as a molecular

network, by measuring cosine distances between them, thus identifying signals from the same or similar

molecules. Metrics that enable comparison between pairs of samples based on their metabolite profiles

are in great need. Taking inspiration from the successful phylogeny-aware beta-diversity measures used

in microbiome research, integrating chemical similarity information about the features in addition to

their abundances could lead to better insights when comparing metabolite profiles. Chemical Structural

and Compositional Similarity (CSCS) is a recently published similarity metric comparing the full set of

signals and their chemical similarity between two samples. Efficient, scalable and easily accessible

implementations of this algorithm is currently lacking. Here, we present an easily accessible and scalable

implementation of CSCS in both python and R, including a version not weighted by intensity information.

Results: We provide a new implementation of the CSCS algorithm that is over 300 times faster

than the published implementation in R, making the algorithm suitable for large-scale metabolomics

applications. We also show that adding chemical information enriches existing methods. Furthermore,

the R implementation includes functions for exporting molecular networks directly from the mass spectral

molecular networking platform GNPS for ease of use for downstream applications.

Contact: brejnrod@sund.ku.dk

Availability: github.com/askerdb/rCSCS, github.com/askerdb/pyCSCS

1 Introduction

Liquid chromatography tandem - mass spectrometry (LC-MS/MS) is

gaining more and more popularity in the metabolomics field with a

wide range of applications (e.g. [11, 9, 13, 12]). As an extension of

LC-MS, one of the most frequently used analytical platforms in mass

spectrometry-based metabolomics [27, 4], LC-MS/MS does not only

provide a high coverage and sensitivity towards semi-polar metabolites,

but also provides chemical structural information of the metabolites

investigated. In LC-MS/MS, metabolites are ionized and fragmented and

the resulting fragmentation fingerprints of mass-to-charge ratios (m/z) are

characteristic to the molecular structure of the metabolite. Furthermore,

metabolites resulting in similar fragmentation patterns presumably exhibit

similar chemical structures [24, 25]. The similarity of these fingerprints can

be calculated using the cosine score and represented as a graph, resulting

in so-called mass spectral molecular networks (recently reviewed in [14]).

This approach, popularized by the user-friendly Global Natural Products

Social Molecular Networking (GNPS) platform [24], has been highly

effective in visualizing structural chemical relatedness across samples

as well as in aiding the structural identification of metabolites. Several

studies have focused on deriving and applying new distance metrics to

1
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metabolomics profiles to compare pairs of samples [16, 15, 8]. Among

these, the chemical structural and compositional similarity (CSCS) as

proposed by Sedio and collaborators [19, 17, 18], accounts for the chemical

structural similarity across metabolites by integrating the similarity of their

MS/MS fragmentation patterns through the cosine score. Even though

metabolites can be identified for only about 2 % of all signals in a typical

LC-MS/MS experiment [1], CSCS has the advantage to integrate chemical

structural information without depending on metabolite identification, thus

enabling a comparison of the entire range of detected molecules. CSCS can

be used to visualize chemical differences across samples by using Principal

Coordinate Analysis (PCoA) plots [5] or distance based hypothesis testing

of differences. Here, we implement CSCS in user-friendly python and R

packages, and demonstrate its performance by computing commonly used

metrics on nearly 500 LC-MS/MS samples of the American Gut Project

[9] as well as fecal samples obtained from children with Crohn’s disease

at different time points during nutritional therapy [22].

2 Methods

2.1 Mathematical exposition

Consider two samples A and B with the union of features [1, ..., C], and

intensity vectors A = [Ia1, ..., IaC ] and B = [Ib1, ..., IbC ]. Calculation of

the Chemical Structural and Compositional Similarity (CSCS) takes the

following inputs: a chemical similarity matrix, CSS, and the two vectors

of ion intensities, A and B. CSS is defined as a matrix of pairwise cosine

distances

CSS =







cosΘ1,1 ... cosΘ1,C

cosΘ2,1 ... cosΘ2,C

cosΘC,1 ... cosΘC,C







In practice this matrix can be calculated from a file specifying pairwise

cosine distances across nodes in a mass spectral molecular network, which

can be downloaded from GNPS.

The CSCS as defined by Sedio and collaborators [19], referred to here as

weighted CSCS (CSCSw) is then defined as:

CSCSw =
CSS ×ABT

max(CSS ×AAT , CSS ×BBT )

where × is element-wise multiplication.

Analogously, we here define the unweighted CSCSu where all

elements of A and B are dichotomized into 1 or 0 upon presence or

absence of a signal in the sample, respectively. CSCS is a metric of

similarity. However, many downstream analyses within metabolomics

rely on a dissimilarity matrix (e.g. PCoA), thus our libraries return a

dissimilarity matrix, corresponding to 1-CSCS.

2.2 Implementation

Implementations are available at https://github.com/askerdb/

rCSCS as an R [21] package, which can be installed through devtools [26],

and at https://anaconda.org/askerdb/pycscs as a python

package, which can be installed through conda. The R package depends

on the packages foreach [2], igraph [3] and Rcurl[7], wheras the python

package depends on numpy [23], pandas [10], scikit bio (http://

scikit-bio.org) as well as the sparse matrix implementation in scipy

[6].

2.3 Data

Run time benchmarks were computed on 18 fecal samples obtained

from children with Crohn’s disease at different time points during

Implementation Time (s)

rCSCS 1.53

pyCSCS 1.66

Sedio et al. 507.31

Table 1. CSCS timing benchmarks for a dataset consisting of 18 fecal samples

obtained from children with Crohn’s disease at different time points during

nutritional therapy [22].

nutritional therapy [22]. This dataset is publicly available at https:

//massive.ucsd.edu/ under the MassIVE accession number

MSV000081120. A total of 1245 MS/MS features were retrieved

for this dataset using the GNPS networking parameters publicly

accessible at https://gnps.ucsd.edu/ProteoSAFe/status.

jsp?task=b0524246804a4b50a8a4ec6244a8be2e. Samples

from the American Gut Project data are publicly available under the

MassIVE accession number MSV000080179 [9]. This dataset consisted

of 489 samples and 16349 features using GNPS networking parameters

publicly accessible at https://gnps.ucsd.edu/ProteoSAFe/

status.jsp?task=a07557dc26cc4d3f8a2076d5ae0898a2.

3 Results

3.1 Benchmarks

We computed CSCS for a dataset consisting of 18 fecal samples obtained

from children with Crohn’s disease at different time points during

nutritional therapy [22] and a total of 1245 MS/MS features, a realistically

sized dataset on a single core of a Macbook Pro (2.8 GHz i7), and compared

it against the published implementation from Sedio and collaborators [19].

Results shown in Table 1 include run time overhead that should be minimal

in realistic applications. To demonstrate the utility of this implementation

on a scale that is relevant to high-throughput collection of data, we used

the American Gut Project that consists of 489 samples with 16349 MS/MS

features when downloaded from GNPS. Analysis of this dataset with our

python implementation finished in 7.5 hours on 40 CPU cores. We did not

compare run time of the original implementation [19], as this will likely

not finish in a reasonable time.

3.2 Chemical information produces distinct similarities

To evaluate how the CSCS metrics compare with other popular metrics, we

compared them with Bray-Curtis, Jaccard and Canberra metrics estimated

for a dataset of 594 metabolome samples from the American Gut Project

[9]. We used Procrustes analysis[20] to measure the similarity between

the distance matrices and used this information as input for a PCoA plot

(Figure 1). Metrics with chemical information are clearly separated from

those without, and on this dataset the weighting of chemical information

with ion intensities drives the separation on the axis that explains the most

variance, while the unweighted CSCS is distinctly separated on the second

principal component.

4 Conclusion

We have implemented the calculation of weighted and unweighted CSCS

distances in R and Python. Through benchmarking of publicly available

data we have demonstrated the highly significant run time improvement,

which expands the application of CSCS to large datasets.
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Fig. 1. Figure 1: PCoA of the procrustes distances between various distance metrics

commonly used in metabolomics. Metrics colored in green include chemical information,

either weighted by ion intensities or unweighted. Metrics with no chemical information are

colored red. information
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