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ABSTRACT

The discrete wavelet transform (DWT) has been touted as a very e�ective tool in many signal processing applications,
including compression, denoising and modulation. For example, the forthcoming JPEG 2000 image compression
standard will be based on the DWT. However, in order for the DWT to achieve the popularity of other more
established techniques (e.g., the DCT in compression) a substantial e�ort is necessary in order to solve some of
the related implementation issues. Speci�c issues of interest include memory utilization, computation complexity
and scalability. In this paper we concentrate on wavelet-based image compression and provide examples, based
on our recent work, of how these implementation issues can be addressed in three di�erent environments, namely,
memory constrained applications, software-only encoding/decoding, and parallel computing engines. Speci�cally we
will discuss (i) a low memory image coding algorithm that employs a line-based transform, (ii) a technique to exploit
the sparseness of non-zero wavelet coeÆcients in a software-only image decoder, and (iii) parallel implementation
techniques that take full advantage of lifting �lterbank factorizations.

Keywords: Discrete Wavelet Transform, Low Memory Implementation, Software Implementation, Parallel Archi-
tecture, Finite State Machine, Boundary Postprocessing, Split-and-Merge

1. INTRODUCTION

The discrete wavelet transform (DWT) has quickly become a very popular tool in a number of digital signal processing
applications. Filterbanks, such as those used to compute the DWT, have been an active research topic since the early
1980s. Their renewed popularity for applications such as compression or recognition, as well as the establishment
of the link between the theory of �lterbanks and that of wavelets, have contributed to increase the interest in the
implementation of these �lterbanks. Whether cost (e.g., memory) or speed is the main consideration, one key obstacle
to the full blown deployment of wavelet technology has been the relative lack of study of DWT implementation issues,
especially as compared to well established transform techniques, such as the discrete cosine transform (DCT) and
the Fast Fourier Transform (FFT).

This paper provides an overview of some of our recent research on the implementation of the DWT. Here, our goal
is to maximize performance according to an appropriate metric, such as computation time or memory utilization.
The relevant parameter of interest will depend on the application chosen, and may not be the same for a digital
camera, high-end scienti�c computation in a network of workstations or the decoding of a wavelet coded video stream
in standard PC. We will concentrate on image processing applications, and in particular compression, as the DWT is
particularly challenging in these situations, given the potentially large volumes of data to be handled. Given that the
soon to be �nalized JPEG 2000 standard will use the DWT, compression is likely to be one of the major applications
for wavelet technology.

We will consider three case studies to illustrate the diÆculties in wavelet transform implementation, as well as
some of the potential solutions available. First, in Section 2, we consider the issue of memory eÆciency, which is of
particular importance when considering applications such as digital cameras. Our results show the lowest memory
requirements reported in the literature and are competitive with state of the art algorithms (that have much higher
memory requirements) in terms of compression performance. Then, in Section 3, we discuss some implementation
issues that are speci�c of software environments. In particular, when fast software decoding is required in a low-
end platform it is useful to consider techniques that minimize the number of computations, in the average case,



by performing input-dependent computation. We will show how it is possible to speed up the computation of the
inverse DWT (IDWT) by avoiding computations in cases when the wavelet coeÆcients are zero. Finally, in Section 4
we study the parallel implementation of a wavelet transform. Parallel implementations are likely to be prefered in
large scale computations or in hardware platforms (e.g. FPGAs) that provide built-in parallelism. We show that
signi�cant performance gains can be achieved by taking advantage of the structure of the wavelet �lters. In particular
it is shown that for certain lifting factorizations it is possible to reduce signi�cantly the number of times processors
have to communicate with each other.

2. LOW MEMORY 2D WAVELET IMAGE CODING

Memory costs are an important consideration in applications such as compression for digital cameras, where they can
be a major component of the cost. In these low memory applications, existing algorithms based on the Discrete Cosine
Transform (DCT) (e.g., the JPEG standard [1]) have proven to be popular, as they allow block by block processing.
Instead, wavelet-based coders, such as those being considered within the JPEG 2000 standardization process [2], often
require orders of magnitude more memory than standard JPEG-based techniques. Indeed, improving the memory
eÆciency is currently one area of major research activity within the JPEG2000 standardization process [2].

Algorithms such as those in [3{10], are representative of the state of the art in wavelet image coders. All of these
algorithms assume that the DWT for the whole image has been computed so that all the corresponding coeÆcients
are available in the coding process. Global image information� is used in various ways including, among others,
classi�cation (e.g., [6]), initialization of the probability models used by a quantizer or arithmetic coder [7{9] or
selection of speci�c decompositions of the signal [5]. It is also worth noting that even if no global information has
to be measured, algorithms that provide progressive transmission [3,4] may require storing all wavelet coeÆcients,
since they are coded using a layered coding approach.

In this section, we will �rst describe an approach, the so-called line-based wavelet transform, which can compute
a separable 2D transform with the least amount of memory, and produce the same result as a standard transform.
We will then provide experimental evidence that combining such a transform with a low memory coding algorithm
produces results comparable to the best in the literature, at a fraction of the memory utilization. While other authors
have approached low memory transforms (e.g., [11]), or encoding for low memory decoding (e.g., [12,13]), the work
we describe here is unique in that it addresses memory at the encoder, and presents a complete low memory coding
system. We refer to [14{16] for more detailed descriptions of the algorithms.

2.1. Line-based Wavelet Transforms

Low memory implementations of 1D wavelet transforms were �rst addressed in [11]. Our proposed line-based ap-
proach essentially extends the work in [11] by considering 2D data and taking into account bu�er requirements for
synchronization between encoder and decoder. Since it is very common to acquire image data line by line (e.g.,
through a scanner), we will focus our discussion on algorithms that require the smallest number lines to perform the
2D DWT. The straightforward approach to compute the 2D DWT would consist of performing line �ltering and then
vertical �ltering. However, this would require storing the output generated by �ltering each input line, and therefore
a memory size of the order of the image size is required. Instead, we are interested in minimizing the number of lines
that need to be kept in memory. We assume that as soon as these coeÆcients are computed they can be processed
(e.g., compressed) and removed from main memory (e.g., transmitted.)

The obvious alternative to completing row �ltering before starting column �ltering is to start column �ltering as
soon as a suÆcient number of lines, as determined by the �lter length, has been horizontally �ltered. For example
for a one level decomposition if we use 9-7 tap �lters we only need 9 lines of the image in order to start the column
�ltering and generate the �rst line of output wavelet coeÆcients.

2.1.1. 1D DWT: Delay and Synchronization Filters

Let us consider �rst an implementation of a 1D DWT, where the system receives data sequentially, one pixel at a
time. Without loss of generality, consider the case where the longest �lter in the �lterbank has odd length equal to
L = 2S + 1. Consider �rst a single stage of the DWT. At time zero we start receiving data and store it in the �lter
memory (a shift register). At time S, with appropriate extensions, we have received enough data to �ll the entire

�i.e., information that can only be obtained after the whole image has been transformed. Examples include the largest

coeÆcient magnitude, the energy or the coeÆcient histograms for each subband.
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Figure 1. Cascade of two levels of wavelet decomposition. The delay for the �rst level is S, the delay for the second
level is 2S and the total delay for both levels is S + 2S. The time units for the delay are considered in the input
sampling rate.
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Figure 2. When both synthesis and analysis �lter banks are considered two syncronization bu�ers, z�S, are needed
to delay the x(0)(n) samples.

input bu�er (S+1 samples received, and the S samples duplicated to generate the symmetric extension.) Thus, the
delay for generating output coeÆcients for one level of decomposition is S.

Consider the two-level decomposition of Figure 1. Let � be the sample rate (in samples per second) at the input
of the �lterbank. Then the sample rate at the output of the �rst level will be 2�1�. Let us consider the interval
between input samples (i.e., 1=� seconds) as our basic time unit. Each individual �lterbank introduces an S sample
delay. However the input to the second �lterbank arrives at a lower rate 2�1�, due to downsampling. Thus to begin
�ltering and see the �rst outputs of the second �lterbank we will have to wait (i) S time units for the �rst output
of the �rst level �lterbank to be generated, and then (ii) another 2S time units until suÆcient samples have been
generated at rate 2�1�. Thus, the total delay from input to output of the second level in Figure 1 is S + 2S input
samples.

This analysis can be easily extended to the case of an N -level decomposition. Let the decomposition levels be
indexed from 0 to N � 1, where 0 corresponds to the �rst level. It will take 2nS time intervals for S samples to be
loaded in the nth level �lters and this will happen only after outputs have been generated by levels 0 to n� 1. Thus
the total delay from input to output of an N level �lterbank will be DN = S + 2S + 22S + 23S + : : : + 2N�1S =P

N�1
k=0 2kS = (2N � 1)S. The delay from the nth level to the output will be the same as the delay from the input to

the output of an N � n level decomposition, i.e., Dn;N = DN�n = (2N�n � 1)S.

The memory needed for �ltering will be L samplesy for each level of decomposition, i.e., the total will be L �N if
we use a dyadic tree decomposition. In general we will just need an additional memory of size L for each additional
2-channel �lter-bank added to our wavelet tree.

yImplementations with memory sizes of S + 1 samples (or lines) are also possible, but here we assume storage of L lines

to facilitate the description of the synchronization problems. More eÆcient approaches based on lifting implementations or

lattice structures, can asymptotically bring the memory needs from L down to S + 1.
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Figure 3. One dimensional analysis and synthesis decomposition trees. As shown the memory needed for the
synchronization bu�ers increases exponentially with the number of levels.

In the synthesis �lter-bank the delays from input to output are the same as in the analysis �lter-bank and are thus
a function of the number of levels of decomposition. Note that, referring to Figs. 1 and 2, the synthesis �lterbank

will not be able to process x
(0)

1 until it has processed a suÆcient number of x
(1)

0 ; x
(1)

1 coeÆcients to generate x
(0)

0 .

However the analysis bank generates x
(0)

1 with less delay than x
(1)

0 ; x
(1)

1 . Thus we will need to store a certain number

of x
(0)

1 samples while the x
(1)

0 ; x
(1)

1 samples are being generated. We will call the required memory to store these
samples synchronization bu�ers.

Because 2S samples at level 1 are produced before the �rst sample at level 2 is produced, we will need a
synchronization memory of 2S samples (see Figure 2). The required memory can be split into two bu�ers of size S,
with one bu�er assigned to the analysis �lterbank and the other to the synthesis �lterbankz. In the more general
N -level case the delay for samples to move from level n to level N � 1 is DN�n. The synchronization bu�er for level
n is equal to the delay for data to move from level n to level N � 1 which is also DN�n, thus the total bu�er size

needed for synchronization is TN =
P

N�1
k=0 DN�k =

P
N

k=1Dk = (2N �N � 1)S. For a �ve level decomposition the
size of the synchronization bu�ers can be seen in Figure 3.

In summary, memory is needed for both �ltering and synchronization, with bu�ers of size L, and DN�n =
(2N�n � 1)S, respectively, needed for the nth level of decomposition. Therefore the total memory size needed for
N levels of decomposition in a symmetric system is: Ttotal;N = (2N � N � 1)S + NL, where it can be seen that
synchronization bu�ers can become very large as the number of decomposition levels grows.

2.1.2. Two dimensional wavelet transform

Let us now generalize our memory analysis to two dimensions. As a simplifying assumption we assume that horizontal
�ltering is performed in the usual manner, i.e., our memory budget allows us to store complete lines of output
coeÆcients after horizontal �ltering. Thus, after each line is received all the corresponding �lter outputs are generated
and stored in memory, requiring a memory of size X for each line, where X is the width of the image. Thus we can
now apply the above analysis to the vertical �ltering operation, except that the input to the DWT is now comprised
of lines of output coeÆcients generated by horizontal �ltering, and thus the memory sizes shown above have to be
adjusted to account for line bu�ering requirements.

The exact memory requirements depend on the structure of decomposition. We consider here the dyadic decom-
position where only LL bands at each level of decomposition are further decomposed. In order to implement a one
level decomposition vertically we need to bu�er L lines. At the second level of the decomposition again we will need
to bu�er L lines, but the length of each line will be X=2 coeÆcients, since in the dyadic composition the second level

zHere we assumed the synchronization bu�ers are split equally between analysis and synthesis, but synchronization bu�ers

can also be easily assigned to either the analysis or the synthesis �lterbanks if it is necessary to make one more memory-eÆcient

than the other.



decomposition is only applied to the low pass coeÆcients generated by the �rst level. Thus the width of our image
is reduced by two each time we move up one level in the decomposition, and, correspondingly, the memory needs
are reduced by half each time. For N levels we will need

P
N�1
k=0 2�kL = 2(1 � 2�N )L \equivalent" image lines for

�ltering. As N grows the required number of lines tends to 2L, and the corresponding memory becomes 2LX i.e.,
asymptotically we only need a number of lines equal to twice the �lter length.

As in the 1D case, synchronization bu�ers are needed. For example in a two-level decomposition we will need
to store the HL0;LH0;HH0 bandsx since these bands become available before the HL1;LH1;HH1 bands, and the
synthesis �lterbank has to start processing data from the second level before it can process data from the �rst level.
In an N -level decomposition the synchronization delay required for data at level n is DN�n = (2N�n � 1)S lines{,
where the width of each line is the width of a subband at a particular level, e.g., the width of one line at level
n will be 2�n�1X , due to down-sampling. Because 4 bands are generated at each level, but only one (i.e. the
LL band) is decomposed further, we will need synchronization bu�ers for the remaining three subbands. Thus the
synchronization bu�ers for level n will have a total size of 3 � (2N�n�1)S �2�n�1X coeÆcients and the total memory
needed for synchronization will be:

T
(2d)

N
= 3

N�1X
k=0

(2N�k � 1)SX2�k�1 = (2 � 2N + 2�N � 3)XS pixels (1)

From (1) we see that the size of the synchronization bu�er increases exponentially with the number of levels, while
as discussed before the memory needed for �ltering is upper bounded by 2LX pixels. Thus, as the number of
decomposition levels grows, the �ltering requirements remain relatively modest, while the size of the synchronization
bu�ers tends to grow fast. However, memory-eÆcient implementations are still possible because the �ltering bu�ers
hold data that is accessed multiple times, while the synchronization bu�ers are only delay lines (FIFO queues). This
is a key distinction because the data in the synchronization bu�ers will only be used by the decoder and therefore it
can be quantized and entropy coded so that the actual memory requirements are much lower. This is the approach
we use in our system to limit the memory required for synchronization.

In summary, for an N -level dyadic decomposition, we will need �ltering bu�ers for up to 2LX pixels, and

synchronization bu�ers for T
(2d)

N
= (2 � 2N + 2�N � 3)XS coeÆcients.

2.2. Low memory DWT compression results

In order to take advantage of this low-memory line-based approach, and achieve a complete low memory encod-
ing/decoding, it is necessary to de�ne a compression algorithm that can compress and transmit coeÆcients as soon
as these are generated. Therefore coding should be performed on the y, without the need for any global information.

It should be noted that if providing an embedded bit stream is required it will be necessary to perform several
passes through the data and thus the memory requirements will be larger. An embedded coder will typically send
the most signi�cant bits of all the wavelet coeÆcients, whereas a memory eÆcient approach would tend to transmit
coeÆcients (down to maximum level of signi�cance) as they are produced. If an embedded bit-stream is desired then
it will be necessary to store all the wavelet coeÆcients (so that the most signi�cant bits of all coeÆcients can be sent
�rst). Alternatively, with the appropriate bit-stream syntax, it may be possible to generate an embedded bit-stream
by �rst storing a compressed image and then reordering the bit-stream before transmission (as in [17]). In either
case, an embedded output requires more bu�ering than our proposed approach.

In our approach we use context modeling and classi�cation to provide the probability model to be used by an
arithmetic coder. Processing is based on the lines of wavelet coeÆcients produced by the DWT. Each band is encoded
separately, and no cross-band information, or global information is used. We have demonstrated in [14{16] that a
line-based transform combined with a line-based coder can be competitive in terms of compression performance, at a
fraction of the memory requirements of a more general algorithm like [8,4,10,3,9]. Note that using backward adaptive
algorithms is particularly useful in our case since other approaches, e.g., those based on explicit classi�cation, would
require us to store more wavelet coeÆcients. The overall memory requirements for context modeling are modest
compared to the memory needed for �ltering.

xIndex 0 corresponds to the �rst level of decomposition
{Note that we express this delay in terms of number of input lines, instead of pixels



Rate SPIHT[4] C/B[8] JPEG-AR VM2.0[10] Line Based [15,16]
Lena 0.125 31.10 31.32 28.45 30.93,(27.96) 31.05

512 � 512 0.25 34.13 34.45 31.96 34.03,(31.36) 34.20
0.50 37.24 37.60 35.51 37.16,(34.75) 37.35
1.00 40.45 40.86 38.78 40.36,(38.60) 40.47

Barbara 0.125 24.84 25.39 23.69 24.87,(23.27) 25.20
512 � 512 0.25 27.57 28.32 26.42 28.17,(25.38) 28.18

0.50 31.39 32.29 30.53 31.82,(29.20) 31.87
1.00 36.41 37.40 35.60 36.96,(33.79) 36.68

Goldhill 0.125 28.47 28.61 27.25 28.48,(26.84) 28.49
512 � 512 0.25 30.55 30.75 29.47 30.58,(29.21) 30.64

0.50 33.12 33.45 32.12 33.27,(31.88) 33.27
1.00 36.54 36.95 35.57 36.81,(35.47) 36.66

Bike 0.125 25.82 26.16 24.88 25.75,(21.89) 25.92
2560 � 2048 0.25 29.12 29.43 28.20 29.30,(24.83) 29.17

0.50 33.00 33.47 32.11 33.28,(29.30) 33.04
1.00 37.69 38.27 36.39 38.08,(34.39) 37.66

Woman 0.125 27.27 27.67 26.05 27.23,(24.09) 27.51
2560 � 2048 0.25 29.89 30.36 28.83 29.79,(26.12) 30.14

0.50 33.54 34.12 32.47 33.54,(28.80) 33.74
1.00 38.24 38.92 37.11 38.30,(32.96) 38.47

Table 1. Comparison between our method [15,16] and [4,8,1,10] for images: Barbara, Lena, Goldhill, Bike and Woman,

the last two images are part of the test images for JPEG2000. We used �ve levels dyadic decomposition with 9-7 tap

�lters.(JPEG-AR stands for JPEG compression with the addition of arithmetic coding.) For algorithm [10] the numbers in

parenthesis correspond to tiles of size 128� 128.

Image
Size

compressed SPIHT[4] C/B[8] JPEG[1] VM2.0[10] Line Based [15,16]

5.2M
2560 � 2048

650K 27M 21M 688K 51M (1.5M) 850K

16.9M
3312 � 5120

2.1M 81M 67M 720K 97M (3.4M) 1.3M

33.9M
6624 � 5120

4.2M * 92M 720K * (5.5M ) 1.3M

Table 2. Memory usage for the algorithms in [4,8,1,10], for tree di�erent image sizes 5:2; 16:9 and 33:9 Mbytes.
All images were compressed at 1b/p. Results were obtained using an HP Kayak-XU workstation with a 300MHz
Pentium II processor running windows NT, with 128M of memory. The numbers in parenthesis for the line based
algorithm correspond to the memory needed for the algorithm plus memory for bu�ering of the complete bit stream.
The numbers were measured for the decoder but for all the above algorithms encoder and decoder are symmetric in
terms of memory. The \*" corresponds to cases where the memory needs exceeded the machines limitations .

Table 1 shows PSNR comparisons with the algorithms in [4,8,10] and also JPEG [1] with arithmetic codingk. Our
results are competitive at a fraction of the complexity and memory utilization. Table 2 presents the exact memory
usage for all algorithms [8,4,10,1], the memory needs of our algorithm are much closer to JPEG than any of the above
mentioned algorithms. The scaling problems of wavelet coders can be seen clearly in Table 2, where the memory
needs increase in proportion to the image size. While it is possible to tile the images in order to reduce the memory
needs, this comes at the cost of lower performance. For example, in Table 1 the results corresponding to [10] are

kWe use the higher performance arithmetic coding based JPEG (JPEG-AR) instead of baseline JPEG. Memory require-

ments are similar for both JPEG algorithms and a fair performance is possible since all wavelet coding schemes considered

also use arithmetic coding.



based on using tiles of size 128 � 128, resulting in memory needs slightly above those of our algorithm, but with
PSNR performance lower than JPEG-AR.

3. INVERSE WAVELET TRANSFORMS OF QUANTIZED DATA

Line-based approaches such as those described above have also advantages in terms of computation speed. While
the number of operations is the same, a low memory algorithm is more likely to allow processing to be performed
with more eÆcient use of the processor memory cache (i.e., each set of pixels may only have to be read once into the
cache). Thus the above described system is also the fastest when operating with large images. If a wavelet based
encoder is to be implemented on a software platform further speed-ups are possible. In particular this section focuses
on a fast algorithm for computing the Inverse Discrete Wavelet Transform (IDWT), which takes advantage of the
sparseness of the wavelet coeÆcients after quantization. The key idea here is to design an IDWT algorithm that is
optimized for the average case, i.e., such that the computation time will depend on the input, but lower on average
than for a �xed computation version of the algorithm. Our results show average case reductions in computation time
of about 20% to 50% for PSNRs in the range 35dB to 29dB.

3.1. Motivation

EÆcient implementations of the DCT have been widely studied. A recent trend, due to the wide use of software-based
image coding and decoding schemes, has been to use input dependent implementations. For example to minimize the
complexity of the inverse DCT can be reduced by not processing zero transform coeÆcients (e.g., [18,19]). The same
idea can be applied to wavelet coding, where, as shown in Fig. 4, after quantization only a few wavelet coeÆcients
are non-zero. As an example, in the HL subband of the �rst level of decomposition about 50% of zero streams have
length 256, i.e., half the lines are all zero.
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Figure 4. Histograms of zero streams. The x-axis is the logarithm of the length of zero streams. The y-axis is the
percentage of each of the zero streams (Number of zero streams of a given length divided by the total possible number
of such non-overlapping streams.) Results are for a 512x512 image using 3 levels of decomposition and quantization
(the corresponding PSNR is 32dB.)

Related work in [20] has taken advantage of this sparseness in the context of progressively coded subbands. Here
each level of resolution consists of a bitplane. Multiplications are avoided and the IDWT operation becomes a set of
additions and right shifts. The reconstruction is done coeÆcient by coeÆcient. Instead, our work [21] is not based
on bitplane coding and assumes that the quantized wavelet coeÆcients are known with full resolution.



3.2. Basic Zero Testing Algorithm

The basic approach to speed up the computation is to locate zero-valued wavelet coeÆcients and to skip the �ltering
operations on those. This is not straightforward for several reasons. First, while it may be possible to test each
coeÆcient (and thus skip operation on all those coeÆcients that are zero) the cost of testing in this case would be too
large and therefore there will be no savings in overall complexity (the additional testing cost would be more than the
�ltering savings.) Second, �ltering is a \running", rather than block-based, operation and thus from zero positions
we will need to deduce which �ltering operations can be skipped given that a running convolution is computed.

Thus we propose a systematic way of testing for streams of zero coeÆcients. A signi�cance map of the coeÆcients
is formed when decoding, where each coeÆcient is represented by one bit, that is set to zero if the corresponding
coeÆcient is zero. In our experiments, since column-�ltering is done �rst, the bitmap is formed column-wise. Zero
testing is then carried out on streams of coeÆcients before �ltering. The zero testing is done in a tree-like manner -
the top of the tree representing testing for zero streams of a certain length and progressively lower levels of the tree
corresponding to testing for zero steams of progressively shorter lengths. A method to optimize the testing, which
uses the statistics of typical image coeÆcients, is also proposed.

A column of wavelet coeÆcients is processed by �rst zero testing the corresponding column in the bit-map
and then performing �ltering if necessary. Figure 5 illustrates the testing method for a stream of 32 coeÆcients.
Essentially, we try to determine which sets of coeÆcients are zero, �rst testing the 32 coeÆcients, then each subset
of 16 coeÆcients, and so on. Filtering is then performed except for those sets of coeÆcients that have been found to
be zero.

The key question, in order to minimize the overall computation, is to determine what are the appropriate root
and leaf sizes to be used in a tree such as that of Figure 5. A deeper tree search would have larger overhead of zero
testing coeÆcient steams. This overhead will be o�set if there are a signi�cant number of streams of zero coeÆcients
of shorter length. We can �nd what the best root and leaf sizes are by considering the statistics of the data. Consider
�ltering a column of N coeÆcients. We could test if all N coeÆcients are zero and then perform �ltering if needed.
This would correspond to a one-level tree search. The overall complexity of this IDWT operation is given by:

C = cz + p1NfLcm + (L� 1)cag: (2)

where, cz is the complexity of a single zero test, ca is the complexity of an addition, cm is the complexity of a
multiplication, L is the �lter length, and p1 is the probability that not all N coeÆcients are zero. This probability
can be obtained by averaging measurements over some typical images. Since the best choices for root and leaf size
tend to be similar, and to avoid the overhead of having to switch sizes in each band, in our experiments we selected
the same sizes for all bands and levels of decomposition.

Test 32 bits

L 16 R 16

L 8 R 8 L 8 R 8

L 4 R 4 L 4 R 4 L 4 R 4 L4 R 4

Key:

L 16: Left 16 bits test

R 16: Right 16 bits test

Figure 5. Zero Testing Algorithm



Note that row and column �ltering have to be treated di�erently, In column �ltering we have information about
the locations of zeros. However, the number of zeros decreases after column and their exact can only be calculated
from existing bitmaps. Most of the gain is thus achieved in the �rst (column) �ltering.

3.3. Results and Discussion

We present results using Daubechies orthogonal �lters of length 8 with three levels of decomposition. The algorithm
was trained on three images: Barbara, Goldhill and Lena, and then tested on three other images (Boat, Creek
and Lake) in addition to the training images. Fig. 6 represents the percentage savings in computation time of the
IDWT compared to the baseline IDWT implementation. Note that we include the time to compute the bitmap when
determining the complexity for the Inverse DWT with zero testing.

0 20 40 60 80 100
15

20

25

30

35

40

45

50

55

60

65

mean−squared error

%
 d

ec
re

as
e 

in
 c

om
pl

ex
ity

Barbara

Goldhill

Lena

0 20 40 60 80 100
0

10

20

30

40

50

60

mean−squared error

%
 d

ec
re

as
e 

in
 c

om
pl

ex
ity

Boat

Creek

Lake

Figure 6. Complexity Savings vs Distortion

Our results show a marked improvement over the baseline case. The algorithm also performed well with the
three images it was not trained on. The complexity saving begins to level o� after certain distortions when most
insigni�cant coeÆcients are zero.

4. PARALLEL IMPLEMENTATIONS OF DWT USING LIFTING FACTORIZATIONS

Parallel implementations of the DWT are particularly relevant in applications where speed is important, data volume
can be signi�cant and cost may not be the main consideration. Important examples include a number of DWT-based
image processing applications, such as satellite imagery compression and analysis in remote sensing [22,23], fast image
retrieval and browsing in large databases and real-time pattern recognition and autonomous tracking [24]. Platforms
for parallel implementation include Massively Parallel Processors (MPP), such as Intel's Paragon and MasPar's
MP-1/2, or combinations of cheap multiple Processing Elements (PE), forming a Network of Workstations (NOW)
[25] or a Local Area Multicomputer (LAM) [26]. Examples of analysis of the parallel implementation of the DWT
include [22,27{29]. In our work [30,31] we speci�cally address the boundary issues that arise in the computation of
the wavelet transform, when data is split to be sent to more than one processor.

Note that boundary issues are also encountered in standard �ltering using the FFT and can be easily handled
with appropriate data overlapping. However, the DWT consists of the recursive application of a �ltering operation
followed by downsampling, and thus the amount of overlap required will grow exponentially with the number of
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Figure 7. An example DWT dataow chart using Boundary Preprocessing in a two-processor parallel system.
Processors 1 and 2 are allocated with input data block 1 and 2 respectively. Solid lines: completely transformed
data; Dashed lines: boundary samples from the neighboring block. Operations 1,3,5: communicate boundary data
samples to neighboring blocks; Operations 2,4,6: transform for current level.

levels of decomposition. Thus, if initial data overlap is used, only one communication is needed, but the amount of
overhead in terms of memory can be signi�cant.

An alternative approach would be to compute each level of the wavelet decomposition and then exchange data
between processors as illustrated in Fig. 7. This Boundary Preprocessing approach is used in most existing parallel
architectures [27,29]. In this case the information that has to be exchanged is reduced, and is a function of the
�lter length, but the number of exchanges is now equal to the number of levels of decomposition. Obviously this
communication overhead adversely a�ects the speedup of parallel systems, specially those with large communication
latencies, such as NOWs and LAMs [32].

To reduce this communication overhead, two alternative approaches have been proposed in the literature. First,
it is possible to use the overlap technique, as discussed above, where suÆcient input data samples are given to each
processor so that no communication is needed [33]. This approach may be undesirable due to the increase in mempory
requirements and the size of the overlap. A second approach is the tiling method [28], which approximates, at each
processor, unavailable boundary data samples by symmetric or periodic extensions. While this approach completely
eliminates interprocessor communication, without requiring much additional memory, it results in incorrect wavelet
coeÆcients along block boundaries, and this can lead to signi�cant performance degradation in coding applications
[34], as well as in pattern recognition and image analysis applications.

4.1. The Split-and-Merge Parallel Architecture

We have introduced [30,31] a new technique, Boundary Postprocessing, for the DWT computation near block bound-
aries. Using this technique, the DWT can be computed correctly, while the interprocessor communication overhead
is signi�cantly reduced.

4.1.1. DWT as a Finite State Machine

The basic idea is to model the DWT as a Finite State Machine (FSM), which updates/transforms each raw input
sample (initial state) progressively into a wavelet coeÆcient (�nal state) as long as there are enough neighboring
samples present. Obviously, data samples near block boundaries can only be updated to intermediate states due
to lack of enough neighboring samples, and thus we propose that partially updated samples can be saved and
communicated between processors. The proposed FSM model is based on exploiting �lterbank factorizations such as
the ones in [35{37]. In particular, we use the lifting factorization [38] that permits the in-place computation property
needed to introduce the FSM approach. Note that �lterbank factorizations have been motivated traditionally by
the reduction of memory and number of operations, whereas here we demonstrate that they can also contribute to
a reduction in the communication overhead in a parallel computation.



Using the Euclidean algorithm, Daubechies and Sweldens [38] have shown that, for any FIR wavelet �lters, the
polyphase matrix Ps(z) (subscript s stands for the synthesis) has a factorization form as

Ps(z) =

mY
i=1

�
1 �si(z)
0 1

� �
1 0
�ti(z) 1

� �
K 0
0 1=K

�
(3)

and the corresponding analysis polyphase matrix Pa(z) as

Pa(z) =

�
1=K 0
0 K

� 1Y
i=m

�
1 0
ti(z) 1

��
1 si(z)
0 1

�
(4)

where (si(z); ti(z)) are Laurent polynomials and m � bL=2c (L is the �lter length) is determined by the speci�c
factorization from. The Perfect Reconstruction (PR) property can be easily veri�ed as Ps(z)Pa(z) = I where I is
the identity matrix. It has been shown that such a lifting-factorization based DWT algorithm is, asymptotically for
long �lters, twice as fast as a direct implementation of the �lterbank (Theorem 8 in Daubechies and Sweldens[38]).
For example, for the popular (9; 7) �lters [39], a one-level decomposition using the direct approach requires 11:5
mult/add operations per output sample, while the cost of the lifting-based algorithm is 7.

The elementary matrices (upper and lower triangular) in (4) can be further classi�ed into prediction/lifting,

updating/dual lifting operations [40]. Since their computation requirements are the same, without loss of generality,
we use li(z) to represent either si(z) or ti(z) and let ei(z) be the corresponding elementary matrix. That is

ei(z) �

�
1 li(z)
0 1

�
or ei(z) �

�
1 0
li(z) 1

�
:

The inverses of ei(z) are the matrix inverses, denoted as e�i(z).

Let us consider the input X(z) as a column vector, de�ne the intermediate states in the process of transformation,
fXi(z); i = 0; 1; � � � ; 2m+1g, where Xi(z) is the result of applying the operation ei�1(z) to Xi�1(z), and where the
initial input is X0(z) = X(z). Obviously, the forward transform starts from the raw input data samples, the initial
state X0(z) = X(z), and, using these elementary matrices ei(z), progressively updates the input into the wavelet
transform coeÆcients, the �nal state Y(z) = X2m+1(z). The inverse transform reverses this process to reconstruct
the input. One can see that, because of the in-place computation property, every time we generate Xi(z), we only
need to store this set of values, i.e., we do not need to know any of the other Xj(z), for j < i, in order to compute
the output. Thus, it is clear that the �ltering operation can be seen as a Finite State Machine (FSM) as depicted in
Fig. 8, where each elementary matrix ei(z) updates the FSM state Xi(z) to the next higher level Xi+1(z).

X X XX X
X Y0 1 i i+1 2m+1

e0 e1 ei e2m

e-2me-ie-1e-0

Figure 8. State transition diagram of DWT as a Finite State Machine.

4.1.2. Boundary Postprocessing

In the FSM model, the DWT is computed as each input sample updates itself with the help of samples in its
neighborhood (weighted by the prediction/updating �lter coeÆcients at each stage). This is illustrated by Fig. 9. If
there are enough neighboring samples available, then this state transition process will continue until each sample
reaches its �nal state (a wavelet coeÆcient). However, if not enough neighboring samples are available, then only
partial updating is possible which will leave samples in intermediate states. This is exactly the situation for samples
near block boundaries when the DWT is computed on a block-by-block basis. Note that in Fig. 9 only the central
wavelet coeÆcient is computed while those on the sides of the block cannot be computed. However these partially
updated coeÆcients are maintained as \state information". As long as necessary state information in each block
is preserved, the boundary transform can be completed after independent transformations of each block. This
is done by communicating this state information across blocks so that postprocessing operations are initiated to



complete the transform. We thus call this boundary transform technique Boundary Postprocessing in contrast to the
Boundary Preprocessing approach which communicates raw data samples before the start of transform of each block
[11,41,14,15,42,27,29].
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Figure 9. Illustration of DWT as a FSM using the (9; 7) wavelet �lters. Solid lines represent operations performed
for the transform of input pair (x(0); x(1) while dashed lines represent operations to be performed later for input
pair (x(2); x(3). Along each line is the multiplication factor with default value 1. The operation at each end node is
a summation. Shaded boxes represent state information on one side of the input vector X.

What makes this Boundary Postprocessing technique attractive is that it can be generalized to any arbitrary
number of decomposition levels. After one level of decomposition, half of the samples (the high frequency subband)
will remain unchanged while the other half (the low frequency subband) starts over another round of state transitions
exactly the same as in the previous level of decomposition. This process continues until the transform reaches
the deepest level of decomposition. Each block can then be independently transformed up to the required level of
decomposition. The state information is communicated after and postprocessing is initiated to complete the transform
for boundary samples. In Fig.10 we show an example dataow chart of a three-level wavelet decomposition using the
Boundary Postprocessing technique. Application of the proposed Boundary Postprocessing technique results in a new
parallel DWT architecture, Split-and-Merge, shown in Fig.11. As one can see, for 1D wavelet decompositions, only
one interprocessor data exchange is needed for any J-level wavelet decompositions. Compared to existing approaches
which require J communications [22,27{29], the interprocessor communication overhead is signi�cantly reduced.

In Fig.11 the proposed parallel DWT architecture is shown. The striped data partition scheme, as described
by Fridman and Manolakos [27], is used to allocate the input data sequence uniformly onto P available processors.
Each processor computes its own allocated data up to the required wavelet decomposition level J . This stage is
called Split. The output from this stage consists of two parts: (i) completely transformed coeÆcients and (ii) the
state information (partially updated boundary samples). In the second stage, Merge, a one-way communication
is initiated and the state information is transfered to the neighboring processors. The state information from the
neighboring processor is then combined together with its own corresponding state information to complete the whole
DWT transform.

4.2. Experimental Results

We provide some experimental results for a case when implementation takes place in a processor network, in which
each processor can communicate to every other processor. A typical example is the LAM/NOW systems where
locally connected machines are recon�gured into a parallel system. Though virtually any arbitrary topology can be
built upon such a physical processor network, for a parallel system local interprocessor communication is preferred
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Figure 10. An example dataow chart of a three-level wavelet decomposition using the proposed Boundary Post-

processing technique. Solid lines: completely transformed data; Dashed lines: partially transformed data. Operation
1: each block transforms its own allocated data independently and state information is bu�ered; Operation 2: state
information is communicated to neighboring blocks; Operation 3: complete transform for the boundary data samples.
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Figure 11. The proposed Split-and-Merge parallel DWT architecture. The shaded parts store the state information.
In Split stage, each processor computes its allocated data independently up to the required decomposition level. In
Merge stage, a one-way communication is initiated to communicate the state information to neighboring processors.
A postprocessing operation is then started to complete the transform for boundary samples.

to reduce the network traÆc, and hence the communication overhead. Consequently, we propose to use the strip
partition to allocate data to di�erent processors, where processor Pn is allocated with input samples of indices
(x; y); 0 � x �W � 1; nNc � y � (n+ 1)Nc. The block size is now WxNc.

In the �rst stage, Split, each processor is allocated with its own strip and transforms up to the required level
of decomposition J . Since no segmentation is done in the row direction, state information obviously will only
appear along up and down boundaries in each block. This is shown in Fig.12. Next, in the Merge stage, only one
communication is necessary to transfer/receive the column state information from neighboring processors.

In the simulation, we compare a standard parallel algorithm, one based on lifting but using the standard approach
at boundaries, and one based on boundary postprocessing. The Daubechies (7,9) �lters are used. The baseline
sequential algorithm is chosen to be the fast lifting DWT algorithm [38]. The strip partition strategy is used in the
experiment to segment an input 512x512 image into two strips of size 256x512, each of which is loaded into one machine
for transform. The parallel platform is LAM 6.1 from Ohio Supercomputer Center [26], which runs over Ethernet
connected SUN ULTRA-1 workstations in our lab (CPU clock frequency 133MHz). Two workstations are used to
simulate a parallel system with two processors. The algorithm running time is measured using the MPI Wtime()
function call from MPI libraries averaging over 50 running instances. The relative speedup is calculated against the
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Figure 12. Merge operations for strip parallel implementation. (a) transfer row state information from Pi to Pi+1;
and (b) complete transforms for boundary samples in each processor.

sequential lifting algorithm as Tseq=Tpara � 1. The results of DWT running times for di�erent decomposition levels
are given in Table.4.2.

As one can see, the simple parallel standard algorithm and the parallel lifting algorithm do not improve that
much from the sequential lifting algorithm (relative speedup is only about 10% to 30%) due to communication
overhead between the two workstations. However, using the Boundary Postprocessing technique, the proposed
parallel algorithm provides speedup from 50% to 70% for all �ve levels of decompositions. It can be concluded that
the proposed parallel algorithm can reduce the DWT computation time by signi�cantly reducing the communication
overhead.

Table 3. DWT running time of di�erent parallel algorithms (in seconds).
Level Sequential Lifting Parallel Standard Parallel Lifting Parallel Proposed

time speedup time speedup time speedup
1 0.3638 0.3115 17% 0.2745 33% 0.2045 78%
2 0.3649 0.3275 11% 0.2899 26% 0.2338 56%
3 0.3952 0.3490 13% 0.2938 34% 0.2369 67%
4 0.4028 0.3513 15% 0.3041 34% 0.2383 69%
5 0.4041 0.3675 9% 0.3165 28% 0.2417 67%
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